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Abstract 

A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and 

geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. 

Also shales are among the most difficult to treat formations. Therefore, in this research work, using the 

artificial neural network (ANN), a model was built to predict the ultimate strength of shale, and comparison 

was made with support vector machine (SVM), multiple linear regression models, and the widely used 

conventional polyaxial failure criteria in the stability analysis of rock structures, Drucker-Prager, and Mogi-

Coulomb. For building the model, the corresponding results of triaxial and polyaxial tests have been 

performed on shales by various researchers. They were collected from reliable published articles. The results 

obtained showed that a feed forward back propagation multi-layer perceptron (MLP) was used and trained 

using the Levenberg–Marquardt algorithm, and the 2-4-1 architecture with root-mean-square-error (RMSE) 

of 24.41 exhibits a better performance in predicting the ultimate strength of shale in comparison with the 

investigated models. Also for further validation, triaxial tests were performed on the deep shale specimens. 

They were prepared from the Ramshire oilfield in SW Iran. The results obtained were compared with ANN, 

SVM, multiple linear regression models, and the conventional failure criterion prediction. They showed that 

the ANN model predicted ultimate strength with a minimum error and RMSE being equal to 43.81. Then the 

model was used for prediction of the threshold broken pressure shale layer in the Gachsaran oilfield in Iran. 

For this, a vertical and horizontal stress was calculated based on a depth of shale layer. The threshold broken 

pressure was calculated for the beginning and ending of a shale layer to be 154.21 and 167.98 Mpa, 

respectively. 
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1. Introduction 

Instability of shale-contained formations is the 

cause of many complicated problems in the 

mining, civil, and oil and gas wellbore drilling 

projects. This problem is one of the main 

challenges in the stability of rock structures, and 

consumes a large amount of cost and 

unproductive time. Specially, shales account for 

nearly 75% of the drilled formations and 90% of 

the instability of drilling wellbores [1, 2]. 

Annually 500 million dollars is spent only in the 

oil industry in relation to the wellbore instability 

in the shale formations [3]. 

One of the main aspects of stability analysis of 

rock structures is the selection of an appropriate 

failure criterion for predicting the rock ultimate 

strength [4]. Many theoretical and empirical 

criteria have been presented by the researchers 

such as Hoek-Brown [5], Mohr [6],  

Mogi-Coulomb [7], Drucker-Prager [8], 

Bienawski [9], Lade [10], and Ramamurthy [11]. 

However, these conventional criteria are not 

usually appropriate for all types of rocks and all 

states of stresses and failure modes. The reason 

for this limitation is that the failure criteria are not 
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flexible enough to be used for various conditions 

[12]. The statistical methods such as simple and 

multiple regression techniques can be applied to 

establish predictive models in rock engineering 

[13]. Principally, statistical methods based on 

linear regression models suffer from several 

demerits. Consequently, if the data is expended in 

a wide range, statistic methods cannot be 

predicted accurately. Furthermore, this method is 

tolerant neither to outliers nor to extreme values in 

the data. Moreover, it should be noted that the 

statistical method is unsuitable to solve the  

non-linear and multivariable problems [14]. 

In the recent years, there has been a growth in the 

research works in the field of artificial intelligence 

like the artificial neural network (ANN) and 

support vector machine (SVM) techniques for 

developing predictive models in complicated 

problems. The ANN technique is considered to be 

one of the most adequate tools for solving 

intricate systems. This technique has the ability to 

generalize a solution from the pattern presented to 

it during the training process. Once the network is 

trained with a competent number of sample 

datasets, predictions can be made based on the 

previous learnings [14]. Due to its  

multi-disciplinary nature, ANN is becoming 

popular among the researchers, planners, and 

designers as an effective tool for the success of 

their works. In the last two decades, an increase in 

the ANN applications has been observed in the 

fields of rock mechanics and geotechnics [15]. 

These applications demonstrate that ANN is 

effective in solving problems in geosciences, 

whose many parameters influence the process. 

ANN models are widely used to predict the 

mechanical properties in rock and soil mechanic 

engineering problems [16]. For example, Sirat and 

Talbot (2001) have used ANNs to recognize, 

classify, and predict patterns of different fracture 

sets in the top 450 m in crystalline rocks at the 

Äspö Hard Rock Laboratory (HRL), SE Sweden. 

Using two hidden layers with tan-sigmoid and 

linear transfer functions, a series of trials have 

been carried out using BP neural networks for 

supervised classification, and the BP networks 

have recognized different fracture sets accurately 

[17]. Sonmez et al. (2006) have constructed 

ANNs to prepare a chart for a generalized 

prediction of the elastic modulus of intact rock 

using a large database including UCS, unit 

weight, and modulus of elastic of intact rock (Ei) 

[18]. Mohammadi and Rahmannejad (2010) have 

used ANNs to obtain a model for estimating rock 

mass deformation modulus based on the radial 

basis function (RBF). The model displayed high 

accuracy levels when compared to in-situ tests 

from the elastic modulus of Karun IV dam [19]. 

Majdi and Beiki (2010) have used a genetic 

algorithm to optimize the architecture and 

heuristics of a BP ANN for predicting the 

deformation modulus of rock masses. Using a 

database obtained from four dam sites and 

powerhouses, the superiority of the ANN 

technique in comparison with the typical 

regression methods has been demonstrated [20]. 

Beiki et al. (2010) have employed an ANN as a 

tool for conducting a parametric study to 

determine the sensitivity of the rock mass 

deformation modulus to the modulus of elasticity 

of intact rock, UCS, rock mass quality 

designation, joint frequency, porosity, dry density, 

and geological strength index (GSI) [21]. Rafiai 

and Jafari (2011) have trained ANNs to predict 

the value of major principal stress at failure from 

uniaxial compressive stress and minor principal 

stress. They found that, on average, for different 

rock types, using ANN models led to about 30% 

decrease in the prediction error relative to the 

state-of-the-art empirical models [22]. 

Especially, with ANN of flexible tools in 

estimating the non-linear functions, in contrast to 

the conventional methods of regression, it could 

be implemented in predicting uniaxial strength 

and the ultimate strength of rock under different 

confining pressures. The neural network method, 

being flexible against the conventional failure 

criteria, exhibits less error in predicting the 

ultimate strength [12]. Dehghan et al. (2010) [13], 

Majidi and Rezaee (2013) [14], Cerayan et al. 

(2012) [23], Rabbani et al. (2012) [24], Tonnizam 

et al. (2015) [25], Momeni et al. (2015) [26], 

Barzegar et al. (2016) [27], Asadi (2016) [28], 

Madhubabu et al. (2016) [29] have used the ANN 

model for prediction of uniaxial strength using 

rock properties. 

More detailed descriptions of the ANN-based 

failure criterion method have been reported by 

Meulenkamp and Grima (1999) [30], Singh et al. 

(2001) [15], Anakci and Pala (2007) [31], Tiryaki 

(2008) [32], Zorlu et al. (2008) [33], Rafiai and 

Jafari (2011) [22, 34], Kaunda (2014) [35], and 

Asteris and plevris (2017) [36]. Also a LSSVM-

based rock failure criterion was described by Zhu 

et al. (2015) [37]. 

In this research work, considering the importance 

of the failure criterion in stability analysis, also 

problems associated with shaly formations in rock 

projects, especially drilling the oil and gas 

wellbores based on the database that includes the 
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triaxial and polyaxial compressive strength tests 

performed on the shale specimen, an ANN model 

was developed for prediction of the ultimate 

strength of shales. Then the ANN model was 

compared with SVM, multiple regression models, 

and two conventional failure criterion basis of the 

same database. Also for further examination, 

prediction of ANN model, SVM, multiple 

regression models, and two convention failure 

criteria were compared with the triaxial test 

results. Tests were performed on shale samples 

that were prepared from Ramshire oilfield in SW 

Iran. Then the ANN model was used to determine 

the threshold broken pressure of shale layer for 

drilling operation in the Gachsaran oilfield in Iran. 

2. Artificial neural network (ANN) 

ANN is inspired by the biological neural system 

(human brain) that processes the information but, 

in comparison to the human brain, it is relatively 

simple with a more straight forward functionality. 

The early studies corresponding to the neural 

network go back to 1943 [38-40]. The advantages 

of using ANNs are their parsimonious data 

requirements, rapid implementation time, and 

capability to yield models, where the relationship 

between inputs and outputs is not fully understood 

[41]. ANNs have the potential to model complex 

and non-linear relations between the input and 

output variables of a system and so they are 

commonly used in non-linear engineering 

problems. In the design of engineering projects, 

the neural network systems can be used to confirm 

and refine design solutions [42]. A particular 

network is defined using three fundamental 

components: transfer function, network 

architecture, and learning law. One has to define 

these constituents depending on the problem to be 

solved [14]. 

2.1. Multi-layer perceptron (MLP) 

MLP is one of the commonly used ANN 

approaches for prediction studies. 

An MLP network consists of five parts: input, 

bias, weights, performance function, and output. 

The inputs are the input information to the 

network bias. A neural network is comprised of 

weight, indicating the effect of input to output, 

and bias, indicating the effect of a constant input 

to the neuron. Weight and bias could be adjusted, 

and the performance function is selected by the 

designer. Based upon the selected performance 

function and the training algorithm type, the 

parameters weight and bias are adjusted. Training 

means that by changing the weight and bias, a 

logical relation is found between the inputs and 

outputs [34]. The number of input and output 

neurons is determined by the actual number of 

input and output variables. Figure 1 shows the 

structure of an MLP neural network model. In this 

figure, i, j, and k denote the input layer, hidden 

layer, and output layer neurons, respectively, and 

w is the applied weight by the neuron. 

0 0 0

1 1

.
N NM N

K kj h ji i j k

i i

y f W f W X W W
 

  
   

    
   (1) 

where Wji is a weight in the hidden layer 

connecting the ith neuron in the input layer and the 

jth neuron in the hidden layer, Wj0 is the bias for 

the jth hidden neuron, fh is the activation (transfer) 

function of the hidden neuron, Wkj is a weight in 

the output layer connecting the jth neuron in the 

hidden layer and the kth neuron in the output layer, 

Wk0 is the bias for the kth output neuron, f0 is the 

activation function for the output neuron, Xi is the 

ith input variable for the input layer, and yj is the 

computed output variable. NN and MN are the 

numbers of neurons in the input and hidden 

layers, respectively [26]. 

 

 
Figure 1. ANN structure [26]. 

 

The number of hidden layers, number of neurons 

in these layers, and number of training data are 

assessed based on the trial and error. 

The reason for investigating these parameters is 

that an increase in the number of training data 

results in over-training, which enhances the 

precision of training data. However, concerning 

the assessment data, it results in a large error but 

the low number of neurons and the training data 

result in a lower precision per the inputs used for 

producing the output. Also a large number of 

neurons cause over-training and error in the new 

data. 

The extra layers are dependent on the precision, 

and the results of the output data and the number 

of neurons in the input layer are dependent on the 

input number. Also the number of intermediate 

neurons depends on the assessment and 

skillfulness of the network designer [35]. 
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3. Support vector machine (SVM) 

SVM is an estimation technique based on the 

principals of the statistical learning theory [43]. 

The algorithm estimates unknown values using an 

optimal linear regression model in a new feature 

space, which is defined by mapping the input data 

from the original space into a higher  

m-dimensional space. Consider a given training 

data in a p-dimensional input vector and a 1D 

target vector. The objective is to formulate 

between the input and output data in the following 

form [43]: 

( ) ( )Ty f x W x b    (2) 

where φ is a non-linear mapping function and W 

and b are the weighting vector and bias term of 

the regression equation, respectively. The optimal 

W and b are determined by minimizing the 

following risk function using the slack variables 

as i , 
*

i subjected to: 

2 *

1

1
( ) ( )

2

L

j i

i

R f w C  


    (3) 

*

*

( )

( ) , 1,...,

, 0

T
i j i

T
j i i

i i

y W x b

W x b d i L
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 

    


    



 (4) 

Here, C is a constant parameter that defines the 

trade-off between the flatness and estimation 

error. Quality of approximation is measured by 

tube in the loss function. Eq. (4) is solved based 

on a foundation of dual problem formulation and 

defining the Lagrange multipliers, 
*,i i  ∈ [0, C], 

and ultimately, the following solution is obtained 

[36]: 

* *

1

( ) ( ) ( )
L

i i i i

i

f x k x x b 


     (5) 

where *( )i ik x x  is the kernel function. The kernel 

function plays an important role in SVM. With a 

suitable choice of kernel, the data can become 

separable in feature space, while the original input 

space is still non-linear. Thus whereas the data for 

n-parity or the two spirals problem is non-

separable by a hyper plane in the input space, it 

can be separated in the feature space by the proper 

kernels. Table 1 gives some of the most common 

kernels. 

Similar to other multivariate statistical models, the 

performances of SVM for regression depend on a 

combination of several parameters. They are the 

capacity parameter C, of insensitive loss function, 

and the kernel type K and its corresponding 

parameters. C is a regularization parameter that 

controls the trade-off between maximizing the 

margin and minimizing the training error. In order 

to make the learning process stable, a large value 

should be set up for C. The optimal value for C 

depends on the type of noise present in the data, 

which is usually unknown. Even if enough 

knowledge of the noise is available to select an 

optimal value for, there is the practical 

consideration of the number of the resulting 

support vectors. Insensitivity prevents the entire 

training set meeting boundary conditions, and so 

allows for the possibility of sparsity in the dual 

formulations solution. Therefore, choosing an 

appropriate value is critical in the theory [36]. The 

schematic diagram of a SVM is shown in Figure 

2. 

 

 
Figure 2. Schematic representation of SVM for 

regression [43]. 

 
Table 1. Types of kernel functions. 

Name Definition Parameter 

Linear kernel function * *( ) ( )i i i ik x x x x    - 

Polynomial kernel function * *( ) ( ) 1
q

i i i ik x x x x    
 

 q 

Radial basis function 
2

* *( ) expi i i ik x x x x
 

   
 

  
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4. Multiple regression analysis 

4.1. Multiple linear regression model (MLR) 

As a way to provide a visual illustration of the 

concept of multiple regression analysis, a quasi 

Venn diagram is used to explain the shared 

variance in correlation or regression. Simple 

regression analysis can show how a single 

dependent variable is affected by the values of one 

independent variable. This method only concerns 

the Xi variable as a predictor (i.e. independent 

variable) and the Y variable as an outcome (i.e. 

dependent variable). Thus if two or more 

predictors are used for the simple regression 

analysis, each predictor can separately show an 

individual relationship with the outcome variable. 

Another anomaly of the simple regression analysis 

is that it cannot predict the most significant X 

variable among the independent variables [44]. A 

multiple linear regression model is generally 

expressed by the relationship between a single 

outcome variable (Y) and some explanatory 

variables (Xi), given as: 

1 1 2 2 ... n nY a b X b X b X      (6) 

where the term Y is the predicted value of Y 

(estimated from Xi), a is the intercept, and bi is the 

partial regression coefficient. The multiple 

regressions present two different overlaps, the 

overlap for the combined effect and the overlap 

for the individual effect [45]. 

4.2. Multiple non-linear regression models 

Many different empirical failure criteria (f(1, 2, 

3)=0) have been used for prediction of rock 

strength based on regression models in polyaxial 

states. In this work, the Drucker-Prager and  

Mogi-Coulomb failure criteria were selected 

because they are used in the stability analysis and 

they are multiple non-linear in the principal stress 

space (1, 2, 3). 

4.2.1. Drucker-Prager criterion 

This criterion was first developed for soil 

mechanics. This criterion was expressed in terms 

of the principal stresses, as follows: 

oct octk m    (7) 

1 2 3

3
oct

  


 
  (8) 

2 2 2
1 2 2 3 1 3

1
( ) ( ) ( )

3
oct             (9) 

where m and k are the material constants. These 

values could be obtained from the drawn failure 

push in the          space [7]. It can be 

observed that the criterion is linear in the      
     space but is non-linear in the principal stress 

space. 

1 2 3

2 2 2
1 2 2 3 1 3
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  
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    

 
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(10) 

4.2.2. Mogi-Coulomb criterion 

The Mogi-Coulomb criterion presented by Al-

Ajmi, given below, has widely been used in the 

oil wellbore stability analysis. In fact, the Mogi-

Coulomb criterion is the extended form of the 

Mohr-Coulomb criterion in three dimensions [46, 

7]. 

.2oct ma b    (11) 

where      is the octahedral shear stress, which is 

calculated by Eq. (9) and      is also the 

octahedral normal stress, given by the following 

expression: 

1 3
.2

2
m

 



  (12) 

It was found that the criterion is non-linear in the 

principal stress space. 
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(13) 

5. Criterion for model performance 

In this research work, to compare the efficiency of 

the models, coefficient of correlation (R), 

coefficient of determination (
2R ), mean square 

error (MSE), and root mean square error (RMSE) 

were used. Their corresponding relationships are 

as follow: 

22

( )( )

( ) ( )

X X Y Y
R

X X Y Y

 


 



 

 
(14) 

2
( )( )
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X X Y Y
R

X X Y Y

 
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 


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(15) 
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21
( )iMSE Y Y

n
   (16) 

2( )iY Y
RMSE

n



  (17) 

In the above expressions, Yi is the measured 

value, Y is the estimated value,  ̅ is the mean 

estimated value, X is the observed value,   ̅is the 

mean observed value, and n is the total number of 

data [28, 47, 48]. 

The mean square error (MSE), root mean square 

error (RMSE), and coefficient of correlation (R) 

are calculated for all the models, and accordingly, 

the model with minimum RMSE and MSE and 

maximum R or 
2R  is chosen as the optimum one. 

 

6. Data collection and preparation 

Data collection is one of the most important stages 

in ANN, SVM, and regression modeling. In this 

work, the results of triaxial and polyaxial tests 

performed on shale samples by various 

researchers were collected from reliable published 

articles [49-53]. 83 datasets were used for 

training, validation, and testing. The data included 

maximum, intermediate, and minimum stresses at 

the failure stage. The ranges of maximum, 

intermediate, and minimum stresses are shown in 

Table 2. Also for the more assessment of the 

neural network method and failure criteria, the 

multi-stage triaxial tests under different confining 

pressure values were performed on three shale 

rock specimens prepared from the Ramshire 

oilfield in SW Iran. Figure 3 and Table 3 show the 

characteristics of deep shale samples. Also Table 

4 shows the results of the multi-stage triaxial tests. 

 
Table 2. Description of input and output parameter in modeling. 

Max Min Unit Symbol Parameter Type of data 

400 0 Mpa 3 Minimum stress Input 

400 0 Mpa 2 Intermediate stress  

745.90 32.40 Mpa 1 Maximum stress Output 

 

 
Figure 3. Samples of shale from southern and southwestern oil fields in Iran. 

 
Table 3. Characterization of deep shale samples. 

Formation Depth (m) Well No. Filed Sample 

Pabdeh 3260.10 9 Ramshire O1 

Pabdeh 3266.20 9 Ramshire Y1 

Pabdeh 3246.30 9 Ramshire P1 

 
Table 4. Results of multi-stage triaxial test on deep shale samples. 

Number 2=3 (Mpa) 1 (Mpa) 

1 17 162.20 

2 25 207.70 

3 30 244.00 

4 33 224.00 

5 38 236.00 

6 40 256.00 

 

7. Analysis of strength data using ANN 
MATLAB 2016 software was used for ANN 

modeling. In the MATLAB procedure, the 

training and testing data are chosen randomly. In 

this work, 70% of the data was used for training, 

15% for validation, and 15% for testing. 

The error back propagation algorithm is one of the 

most known training algorithms for multi-layer 

perceptron that utilizes a special training 

algorithm for the transfer of error from the end 

layer to the preceding layer, and it adjusts the 

weights and bias with a minimum time [28, 47]. 

Also the LM algorithm is known to be the fastest 
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method for training the moderate-sized  

feed-forward neural networks [33]. 

In order to develop a three-layered ANN model, 

two inputs including 2 and 3 are used in the first 

layer, and 1, as the output, is utilized in the last 

layer. The feed-forward neural network is trained 

with the Levenberg–Marquardt algorithm (Train 

LM). The number of hidden neurons for MLP 

models is selected via the trial and error method. 

For this, root mean square error (RMSE) is 

calculated for different numbers of hidden 

neurons, and accordingly, the model with 

minimum RMSE is chosen as the optimum one 

[14]. There is no direct method available to 

identify the number of hidden layers and the 

number of neurons in each hidden layer. The 

optimal number of neurons in the hidden layers is 

also obtained by the trial and error method based 

on the minimum RMSE [16]. 

Table 5 shows the network performance for 

different numbers of neurons in the hidden layers. 

As it can be seen, the best model has RMSE equal 

to 24.41 for the test datasets. This model is an 

optimum model with a 2-4-1 architecture, (Figure 

4); it has two input neurons, four neurons in the 

hidden layer, and one output neuron, respectively. 

The results of the network are presented in this 

section to demonstrate its performance. The 

coefficient of correlation between the predicted 

and measured values of ultimate strength is taken 

as the network performance. The prediction was 

based upon the input datasets (discussed in the 

previous section). Figure 5 illustrates the 

coefficient of correlation (R) for the proposed 

ANN model including the training, test, 

validation, and overall data. 

8. Analysis of strength data using SVM 

The data (input: 2, 3; and output: 1) was 

randomly divided into two subsets: 70% of the 

total data was allotted to the training data for the 

SVM model construction and 30% was allocated 

to the test data used to assess the reliability of the 

development model. Now it would be necessary to 

select a suitable kernel function. A lot of kernel 

functions have been proposed in the literature. 

Among them, the ones based on Radial Basis 

Functions (RBF) are widely employed. In this 

work, we decided to employ the RBF kernel since 

it has been previously used in defect prediction 

and context [54-56], and usually yields a better 

performance than the other kernels [57]. 

When SVM is used by the RBF kernel, the three 

parameters C, , and  have to be set by the user. 

The selection of appropriate values for these 

parameters is crucial to obtain a good regression 

performance. As described earlier, C is the 

penalty factor for misclassified points. If it is too 

large, a higher penalty for non-separable points 

are added, leading to store too many support 

vectors and thus over-fit. On the other hand, if C 

is too small, an under-fitting can occur. The  

parameter specifies the radius of RBF, also having 

a strong impact on the accuracy. To obtain the 

optimum parameters C, , and  of the SVM 

model, different values of these parameters must 

be examined based on the trial and error method. 

In this research work, Weka 3.6.9 software was 

used for SVM modeling. Then root mean square 

error (RMSE) was calculated for all the models, 

and accordingly, the model with minimum RMSE 

was chosen as the optimum model [56]. Figure 6 

shows the output of Weka software for the SVM 

model. 

The training result is presented in Table 6. As 

shown in this table, the coefficient of correlation 

of training data and RMSE are 0.96 and 32.54, 

implying the proper performance of SVM. Also 

Figure 7 shows the relation between the measured 

values and the failure criteria predicted values 

ultimate strength. 

 
Table 5. Results of ANN model with different architectures. 

 

RMSE MSE 
Model 

R 
Test 

R 

Validation 

R 

Training 

R 

Net 

Architecture 

Training 

Law 

Transfer 

Function 

ANN 

Model 

28.97 839.50 0.96 0.98 0.96 0.97 2-1-1 LM TANSIG MLP 

30.22 913.45 0.95 0.95 0.98 0.96 2-2-1 LM TANSIG MLP 

27.55 759.28 0.97 0.97 0.98 0.97 2-3-1 LM TANSIG MLP 

24.41 596.10 0.97 0.98 0.98 0.96 2-4-1 LM TANSIG MLP 

33.92 1151.15 0.96 0.96 0.98 0.95 2-5-1 LM TANSIG MLP 

http://www.sciencedirect.com/science/article/pii/S1674775513001157#fig0055
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Figure 4. Topology of ANN used for prediction of polyaxial strength. 

 
a 

 

b 

  

c d 

Figure 5. Relation between measured (Target) values and ANN model predicted values of ultimate strength 

(output) for training (a), validation (b), testing (c), and overall datasets (d) in Mpa. 

 

 
Figure 6. Weka software output for SVM model. 
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Table 6. SVM model factors. 

c   R R
2
 RMSE 

350 0.01 0.001 0.96 0.92 32.54 
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Figure 7. Relation between measured values and 

SVM model predicted values ultimate strength. 

 

9. Analysis of strength data using multiple 

linear regression and convention failure 

criterion 

The same datasets were used for training the ANN 

and SVM models. They are analyzed to obtain the 

parameters of multiple linear and conventional 

criteria. The parameters are introduced in Section 

4. 

Figures 8 and 9 show the SPSS software output 

for the multiple linear regression model and fitting 

curves on test data of shale to determine the 

parameters of Drucker-Prager and Mogi-Coulomb 

failure criteria. The results of the models are 

summarized in Table 7. In this research work, 

SPSS, Sigmaplot, and Excel software were used 

for determination and plot of the regression 

models. 

Figure 10 and Table 8 show the relation between 

the measured values and predicted values of 

ultimate strength based on the multiple linear, 

Drucker-Prager, and Mogi-Coulomb failure 

criteria. 

 

 
Figure 8. SPSS software output for multiple linear regression model. 
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Figure 9. Fitting curves on test data of shale to determine parameters of Drucker-Prager and Mogi-Coulomb 

failure criteria. 
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Table 7. Parameters and coefficient of determination of multiple linear, Drucker-Prager, and Mogi-Coulomb 

failure criteria. 
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Figure 10. Relation between measured values and failure criteria predicted values ultimate strength of multiple 

linear, Drucker-Prager, and Mogi-Coulomb failure criteria in Mpa. 

 
Table 8. Performance indices of multiple linear, Drucker-Prager, and Mogi-Coulomb failure criteria. 

MSE RMSE 2R R Models 

1343.95 36.66 0.90 0.95 Drucker-Prager 

1578.47 39.73 0.88 0.94 Mogi-Coulomb 

1207.56 36.28 0.90 0.95 MLR 

 

10. Comparison of models 

In order to control the prediction performances of 

the ANN, SVM, multiple linear, Drucker-Prager, 

and Mogi-Coulomb failure criteria, their predicted 

ultimate strengths were compared with the 

measured ones. For this purpose, three key 

performance indices including the coefficient of 

correlation (R), root mean square error (RMSE), 

and mean square error (MSE) were used. These 

indices are described in Section 5. The model 

performance indices are summarized in Table 9. 

It can be observed that the neural network model 

with minimum RMSE (24.41) predicts the 

ultimate strength of shale with respect to SVM, 

multiple linear regression, and two conventional 

failure criteria. For more comparison, the 

accuracy of different failure criteria can be made 

by considering their predicted values for uniaxial 

compressive strength. The measured values of 

uniaxial compressive strength with the 

corresponding predicted value using SVM, 

multiple linear regression two conventional 

criteria, and ANN-based criteria are shown in 

Model Equation R R
2
 Parameter 

MLR 1 1 2 2 3a b b    
 

0.95 0.90 a=86.90 b1=1.09, b2 =0.88 

Drucker-Prager oct octk m    0.93 0.86 k=25.73 m=0.378 

Mogi-Coulomb .2oct ma b    0.92 0.84 a=28.48 b=0.34 
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Table 10. However, from the results obtained, it 

was found that the neural network had the highest 

precision in predicting the shale rock strength 

with respect to the failure criteria. 

11. Further examination of ANN model 

In the preceding sections, the accuracy of ANN 

model (the same model in Section 7) in prediction 

of ultimate strength of shale under triaxial and 

polyaxial state of stress is considered. For this, 

multi-triaxial tests were performed in the 

confining pressures of 17, 25, 30, 33, 38, 40 Mpa 

on shale samples in the Ramshire oilfield in Iran. 

The results were compared with the ultimate 

strength predicted value using the ANN, SVM, 

multiple linear regression models, and the 

conventional failure criteria based on the same 

data used in the previous sections. Table 11 shows 

the predicted values of ultimate strength of every 

model. It was seen that the ANN model predicted 

the ultimate strength of shale with minimum 

RMSE (equal to 43.81). 

 
Table 9. Performance indices of models. 

MSE RMSE R
2

 R Models 

1343.95 36.66 0.90 0.95 Drucker-Prager 

1578.47 39.73 0.88 0.94 Mogi-Coulomb 

596.10 24.41 0.94 0.97 ANN 

10568.85 32.54 0.92 0.96 SVM 

1207.56 36.28 0.90 0.95 MLR 

 
Table 10. Measured and predicted values of uniaxial compressive strength in Mpa and associated error values in 

percent. 

 
Table 11. Comparison of ultimate strength prediction in different confining pressures using ANN model, SVM, 

multiple linear regression, and conventional failure criteria for Ramshire oilfield samples. 

Confining pressure (Mpa) Experimental (Mpa) 
Ultimate strength prediction (Mpa) 

Drucker-Prager Mogi-Coulomb ANN SVM MLR 

15 161.20 118.05 121.40 137.38 134.20 116.54 

25 207.70 134.80 138.36 174.38 167.61 136.30 

30 244.00 145.27 148.96 188.76 181.34 146.18 

33 224.00 151.55 155.32 194.66 194.77 152.10 

38 236.00 162.02 165.92 201.21 198.38 162.00 

40 256.00 166.21 170.16 203.00 200.12 165.94 

RMSE - 79.56 75.89 43.81 44.08 79.30 

  

12. Application of ANN model in determining 

of threshold broken pressure in Gachsaran 

oilfield 

A number of effective parameters of the drilling 

rate are as follow: load on bit, rotation, depth, 

rock strength, bit condition, formation pressure, 

mud weight, mud type, bit diameter, and mud 

flow rate [40]. One of the main aspects of the 

drilling operation is ultimate strength of rock or 

break point of rock in drilling depth [58, 50]. In 

this section, the break point of the shale layer is 

determined using the ANN-based failure criteria 

(the same model in Section 7) in the Gachsaran 

oilfield in SW Iran. 

Shale layer has 141 m thickness in the Gahsaran 

oilfield (depth 2248-2589 m). Vertical stress was 

calculated at the beginning and ending layer using 

Eq. (18). 

1000
v

gH
   (18) 

where H is the layer of depth, g is the acceleration 

of gravity,  is the layer density (average density 

was assumed 2.7
2

Kg

Cm
), and v is the vertical 

stress in Mpa. 

Vertical stress is 60.61, 69.90, corresponding to 

the beginning and ending layer. Minimum 

horizontal stress is minimum stress in the normal 

stress region. It was calculated using Eq. (19) [37, 

52]. 

Type Experimental 
Prager-Drucker Coulomb-Mogi ANN SVM MLR 

Predict Error Predict Predict Predict Error Predict Error Predict Error 

UCS 50.80 74.49 46.63 94.61 86.24 45.70 10.03 62.10 22.24 86.90 71.06 
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where h  is the minimum horizontal stress, 0k is 

the effective of stress ratio, and γ is the Poisson's 

ratio. 

The effective of stress ratio changes about 0-0.50. 

If the Poisson's ratio is assumed 0.25 for the shale 

layer, 0k is obtained to be 0.33. Therefore, the 

confining pressure is 20.20, 23.30 Mpa, 

corresponding to the beginning and ending of 

layer. Now for drilling operation, threshold 

broken pressure ( s ) is estimated in the 20.20 and 

23.30 Mpa confining pressures using the ANN 

model. The results show that the threshold broken 

pressure is 154.21, 167.98, corresponding to the 

beginning (depth 2248 m) and ending (depth 2589 

m) of layer. The results obtained are summarized 

in Table 12. 

 
Table 12. Vertical stress, minimum horizontal stress, and threshold broken pressure at beginning and ending of 

shale layer. 

Depth (m) v  (Mpa) h  (Mpa) s  (Mpa) 

2248 60.61 20.20 154.21 

2589 69.90 23.30 167.98 

 

13. Conclusions 

In this research work, a neural network was 

utilized for predicting the shale ultimate strength 

in the condition of conventional triaxial and 

polyaxial stresses. The database is comprised of 

83 collected data from various sources. 

The best model for predicting the shale ultimate 

strength is the multi-layer perceptron network 

with sigmoid activating function for the hidden 

layer, linear function for the output layer, and 

error back-propagation training rule  

(Levenberg-Marquardt) with the 2-4-1 

architecture. This model calculates the shale 

ultimate strength with the MSE and RMSE values 

of 596.10 and 24.41, respectively. Also the neural 

network has the highest precision in predicting the 

uniaxial strength (UCS) shale. 

The coefficient of correlation values obtained 

from the neural network model are greater than 

those of SVM, multiple linear regression, and 

conventional failure criteria. Also the 

corresponding MSE and RMSE values of the 

neural network model were smaller than the index 

values of the other models, and this reveals the 

high efficiency of the neural network model with 

respect to the investigated models. 

For further examination, the results of the multi-

stage triaxial tests performed on the specimens 

produced from the Ramshire oil fields in Iran 

were compared with the ANN model, SVM, 

multiple linear regression, and conventional 

failure criteria ultimate strength prediction. It was 

found that the ANN model predicted the ultimate 

strength with a higher accuracy, RMSE 43.81. 

The threshold broken pressure was estimated at 

the beginning and ending layer using the ANN 

model. One of the main aspects of the drilling 

operation is the ultimate strength of rock or break 

point of rock in drilling depth. The threshold 

broken pressure or break point of rock was 

determined using the ANN-based Failure criteria 

for the Gahsaran oilfield in Iran. The results 

obtained showed that the threshold broken 

pressure was 154.21, 167.98, corresponding to the 

beginning (depth 2248 m) and ending (depth 2589 

m) of layer. 
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 چکیده:

و ژئوتکنیک بسیار مهم است. مقاومت نهایی سننگ بنرای ملااعنات مکانینک سنن ی در       سنگ کیمکانبینی مقاومت نهایی در علم معیار شکست سنگ برای پیش

 هنا  آنهنای سنن ی بنا    سازترین سازندهایی هستند که در سنازه ها مشکلاست. همچنین شیل ازیموردنهای معدنی، عمرانی، عملیات حفاری چاه نفت و غیره پروژه

هنای ماشنین   بینی مقاومت نهایی شیل با استفاده از شبکه عصبی مصنوعی ساخته شد. این مدل، با مدلبنابراین در این تحقیق یک مدل برای پیش ؛سروکار داریم

کلمن  مقایسنه    -پراگر و موگی -و معیارهای چند محوره پرکاربرد در تحلیل ناپایداری ساختارهای سن ی مانند دراگر بردار پشتیبان، رگرسیون چند متغیره خلی

های معتبر چنا  شنده اسنت،    های شیل توسط محققین مختلف که در مقااههای سه و چند محوره انجام شده بر روی نمونهشد. برای ساخت مدل از نتایج آزمایش

بنا مجنذور مینان ین     5-1-6منارکوت و معمناری    -آموزش اونبرگ تمیاا وربا  خور شیپها نشان داد که مدل شبکه عصبی پرسپترون چند لایه جهاستفاده شد. نتی

ی سنه  هنا همچنین برای اعتبار سنجی بیشتر، آزمایش دهد.های شیل نشان میبینی مقاومت نهایی در مقایسه با سایر مدلکمترین خلا را در پیش 16/51خلای 

بینی مقاومت نهایی شنیل  با پیش آمده دست  بهرامشیر واقع در جنوب غربی ایران تهیه شد. نتایج  ها از میدانهای عمقی شیل انجام شد. نمونهمحوره بر روی نمونه

نتنایج نشنان داد مندل شنبکه عصنبی      های شبکه عصبی، ماشین بردار پشتیبان، رگرسیون چند متغیره خلی و معیارهای متداول شکست مقایسه شد. توسط مدل

بیننی فشنار آسنتانه شکسنت لاینه شنیل در میندان نفتنی         کند. سپس مدل بنرای پنیش  می بینیپیش ( =16/19RMSEکمترین خلا )مقاومت نهایی شیل را با 

های قائم و افقی بر اساس عمق لایه شیل محاسبه شد. فشار آسنتانه شکسنت بنرای ابتندا و انتهنای      گچساران در ایران مورد استفاده قرار گرفت. برای این کار تنش

 محاسبه شد. پاسکال م ا 31/612و  56/621لایه شیل برابر 
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