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Abstract

A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and
geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations.
Also shales are among the most difficult to treat formations. Therefore, in this research work, using the
artificial neural network (ANN), a model was built to predict the ultimate strength of shale, and comparison
was made with support vector machine (SVM), multiple linear regression models, and the widely used
conventional polyaxial failure criteria in the stability analysis of rock structures, Drucker-Prager, and Mogi-
Coulomb. For building the model, the corresponding results of triaxial and polyaxial tests have been
performed on shales by various researchers. They were collected from reliable published articles. The results
obtained showed that a feed forward back propagation multi-layer perceptron (MLP) was used and trained
using the Levenberg—Marquardt algorithm, and the 2-4-1 architecture with root-mean-square-error (RMSE)
of 24.41 exhibits a better performance in predicting the ultimate strength of shale in comparison with the
investigated models. Also for further validation, triaxial tests were performed on the deep shale specimens.
They were prepared from the Ramshire oilfield in SW Iran. The results obtained were compared with ANN,
SVM, multiple linear regression models, and the conventional failure criterion prediction. They showed that
the ANN model predicted ultimate strength with a minimum error and RMSE being equal to 43.81. Then the
model was used for prediction of the threshold broken pressure shale layer in the Gachsaran oilfield in Iran.
For this, a vertical and horizontal stress was calculated based on a depth of shale layer. The threshold broken
pressure was calculated for the beginning and ending of a shale layer to be 154.21 and 167.98 Mpa,
respectively.
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1. Introduction

Instability of shale-contained formations is the
cause of many complicated problems in the
mining, civil, and oil and gas wellbore drilling
projects. This problem is one of the main
challenges in the stability of rock structures, and
consumes a large amount of cost and
unproductive time. Specially, shales account for
nearly 75% of the drilled formations and 90% of
the instability of drilling wellbores [1, 2].
Annually 500 million dollars is spent only in the
oil industry in relation to the wellbore instability
in the shale formations [3].

One of the main aspects of stability analysis of
rock structures is the selection of an appropriate
failure criterion for predicting the rock ultimate
strength [4]. Many theoretical and empirical
criteria have been presented by the researchers
such as Hoek-Brown [5], Mohr [6],
Mogi-Coulomb  [7],  Drucker-Prager  [8],
Bienawski [9], Lade [10], and Ramamurthy [11].
However, these conventional criteria are not
usually appropriate for all types of rocks and all
states of stresses and failure modes. The reason
for this limitation is that the failure criteria are not
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flexible enough to be used for various conditions
[12]. The statistical methods such as simple and
multiple regression techniques can be applied to
establish predictive models in rock engineering
[13]. Principally, statistical methods based on
linear regression models suffer from several
demerits. Consequently, if the data is expended in
a wide range, statistic methods cannot be
predicted accurately. Furthermore, this method is
tolerant neither to outliers nor to extreme values in
the data. Moreover, it should be noted that the
statistical method is unsuitable to solve the
non-linear and multivariable problems [14].

In the recent years, there has been a growth in the
research works in the field of artificial intelligence
like the artificial neural network (ANN) and
support vector machine (SVM) techniques for
developing predictive models in complicated
problems. The ANN technique is considered to be
one of the most adequate tools for solving
intricate systems. This technique has the ability to
generalize a solution from the pattern presented to
it during the training process. Once the network is
trained with a competent number of sample
datasets, predictions can be made based on the
previous  learnings [14]. Due to its
multi-disciplinary nature, ANN is becoming
popular among the researchers, planners, and
designers as an effective tool for the success of
their works. In the last two decades, an increase in
the ANN applications has been observed in the
fields of rock mechanics and geotechnics [15].
These applications demonstrate that ANN is
effective in solving problems in geosciences,
whose many parameters influence the process.
ANN models are widely used to predict the
mechanical properties in rock and soil mechanic
engineering problems [16]. For example, Sirat and
Talbot (2001) have used ANNs to recognize,
classify, and predict patterns of different fracture
sets in the top 450 m in crystalline rocks at the
Aspd Hard Rock Laboratory (HRL), SE Sweden.
Using two hidden layers with tan-sigmoid and
linear transfer functions, a series of trials have
been carried out using BP neural networks for
supervised classification, and the BP networks
have recognized different fracture sets accurately
[17]. Sonmez et al. (2006) have constructed
ANNs to prepare a chart for a generalized
prediction of the elastic modulus of intact rock
using a large database including UCS, unit
weight, and modulus of elastic of intact rock (E;)
[18]. Mohammadi and Rahmannejad (2010) have
used ANNSs to obtain a model for estimating rock
mass deformation modulus based on the radial

92

basis function (RBF). The model displayed high
accuracy levels when compared to in-situ tests
from the elastic modulus of Karun IV dam [19].
Majdi and Beiki (2010) have used a genetic
algorithm to optimize the architecture and
heuristics of a BP ANN for predicting the
deformation modulus of rock masses. Using a
database obtained from four dam sites and
powerhouses, the superiority of the ANN
technique in comparison with the typical
regression methods has been demonstrated [20].
Beiki et al. (2010) have employed an ANN as a
tool for conducting a parametric study to
determine the sensitivity of the rock mass
deformation modulus to the modulus of elasticity
of intact rock, UCS, rock mass quality
designation, joint frequency, porosity, dry density,
and geological strength index (GSI) [21]. Rafiai
and Jafari (2011) have trained ANNs to predict
the value of major principal stress at failure from
uniaxial compressive stress and minor principal
stress. They found that, on average, for different
rock types, using ANN models led to about 30%
decrease in the prediction error relative to the
state-of-the-art empirical models [22].

Especially, with ANN of flexible tools in
estimating the non-linear functions, in contrast to
the conventional methods of regression, it could
be implemented in predicting uniaxial strength
and the ultimate strength of rock under different
confining pressures. The neural network method,
being flexible against the conventional failure
criteria, exhibits less error in predicting the
ultimate strength [12]. Dehghan et al. (2010) [13],
Majidi and Rezaee (2013) [14], Cerayan et al.
(2012) [23], Rabbani et al. (2012) [24], Tonnizam
et al. (2015) [25], Momeni et al. (2015) [26],
Barzegar et al. (2016) [27], Asadi (2016) [28],
Madhubabu et al. (2016) [29] have used the ANN
model for prediction of uniaxial strength using
rock properties.

More detailed descriptions of the ANN-based
failure criterion method have been reported by
Meulenkamp and Grima (1999) [30], Singh et al.
(2001) [15], Anakci and Pala (2007) [31], Tiryaki
(2008) [32], Zorlu et al. (2008) [33], Rafiai and
Jafari (2011) [22, 34], Kaunda (2014) [35], and
Asteris and plevris (2017) [36]. Also a LSSVM-
based rock failure criterion was described by Zhu
et al. (2015) [37].

In this research work, considering the importance
of the failure criterion in stability analysis, also
problems associated with shaly formations in rock
projects, especially drilling the oil and gas
wellbores based on the database that includes the
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triaxial and polyaxial compressive strength tests
performed on the shale specimen, an ANN model
was developed for prediction of the ultimate
strength of shales. Then the ANN model was
compared with SVM, multiple regression models,
and two conventional failure criterion basis of the
same database. Also for further examination,
prediction of ANN model, SVM, multiple
regression models, and two convention failure
criteria were compared with the triaxial test
results. Tests were performed on shale samples
that were prepared from Ramshire oilfield in SW
Iran. Then the ANN model was used to determine
the threshold broken pressure of shale layer for
drilling operation in the Gachsaran oilfield in Iran.

2. Artificial neural network (ANN)

ANN is inspired by the biological neural system
(human brain) that processes the information but,
in comparison to the human brain, it is relatively
simple with a more straight forward functionality.
The early studies corresponding to the neural
network go back to 1943 [38-40]. The advantages
of using ANNs are their parsimonious data
requirements, rapid implementation time, and
capability to yield models, where the relationship
between inputs and outputs is not fully understood
[41]. ANNs have the potential to model complex
and non-linear relations between the input and
output variables of a system and so they are
commonly used in non-linear engineering
problems. In the design of engineering projects,
the neural network systems can be used to confirm
and refine design solutions [42]. A particular
network is defined using three fundamental
components: transfer ~ function,  network
architecture, and learning law. One has to define
these constituents depending on the problem to be
solved [14].

2.1. Multi-layer perceptron (MLP)

MLP is one of the commonly used ANN
approaches for prediction studies.

An MLP network consists of five parts: input,
bias, weights, performance function, and output.
The inputs are the input information to the
network bias. A neural network is comprised of
weight, indicating the effect of input to output,
and bias, indicating the effect of a constant input
to the neuron. Weight and bias could be adjusted,
and the performance function is selected by the
designer. Based upon the selected performance
function and the training algorithm type, the
parameters weight and bias are adjusted. Training
means that by changing the weight and bias, a
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logical relation is found between the inputs and
outputs [34]. The number of input and output
neurons is determined by the actual number of
input and output variables. Figure 1 shows the
structure of an MLP neural network model. In this
figure, i, j, and k denote the input layer, hidden
layer, and output layer neurons, respectively, and
w is the applied weight by the neuron.

My Ny
yi =/fo Zijfh {ZWjiXino]"‘Wko (1)

i=1 i=1

where W; is a weight in the hidden layer
connecting the iy, neuron in the input layer and the
Jw neuron in the hidden layer, Wj, is the bias for
the jy, hidden neuron, f;, is the activation (transfer)
function of the hidden neuron, W,; is a weight in
the output layer connecting the jg neuron in the
hidden layer and the ky, neuron in the output layer,
W,y is the bias for the kg, output neuron, f; is the
activation function for the output neuron, X; is the
1y, input variable for the input layer, and y; is the
computed output variable. Ny and My are the
numbers of neurons in the input and hidden
layers, respectively [26].

Input Layer Hidden Layer Qutput Layer

Figure 1. ANN structure [26].

The number of hidden layers, number of neurons
in these layers, and number of training data are
assessed based on the trial and error.

The reason for investigating these parameters is
that an increase in the number of training data
results in over-training, which enhances the
precision of training data. However, concerning
the assessment data, it results in a large error but
the low number of neurons and the training data
result in a lower precision per the inputs used for
producing the output. Also a large number of
neurons cause over-training and error in the new
data.

The extra layers are dependent on the precision,
and the results of the output data and the number
of neurons in the input layer are dependent on the
input number. Also the number of intermediate
neurons depends on the assessment and
skillfulness of the network designer [35].
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3. Support vector machine (SVM)

SVM is an estimation technique based on the
principals of the statistical learning theory [43].
The algorithm estimates unknown values using an
optimal linear regression model in a new feature
space, which is defined by mapping the input data
from the original space into a higher
m-dimensional space. Consider a given training
data in a p-dimensional input vector and a 1D
target vector. The objective is to formulate
between the input and output data in the following
form [43]:

y=f@)=W"px)+b 2

where ¢ is a non-linear mapping function and W
and b are the weighting vector and bias term of
the regression equation, respectively. The optimal
W and b are determined by minimizing the
following risk function using the slack variables

as & , & subjected to:
R = +C 38D G
i=l

v W) -b<e+g
Whox)+b—d, <&+ i=1,..,L 4)
GioGi =

Here, C is a constant parameter that defines the
trade-off between the flatness and estimation
error. Quality of approximation is measured by
tube in the loss function. Eq. (4) is solved based
on a foundation of dual problem formulation and

defining the Lagrange multipliers, «,, al.* € [0, C],

and ultimately, the following solution is obtained
[36]:
L * *
f(x)ZZ(ai_a[)k(xi_xi)"'b (5
i=1

where k (x, —x)) is the kernel function. The kernel
function plays an important role in SVM. With a

suitable choice of kernel, the data can become
separable in feature space, while the original input
space is still non-linear. Thus whereas the data for
n-parity or the two spirals problem is non-
separable by a hyper plane in the input space, it
can be separated in the feature space by the proper
kernels. Table 1 gives some of the most common
kernels.

Similar to other multivariate statistical models, the
performances of SVM for regression depend on a
combination of several parameters. They are the
capacity parameter C, of insensitive loss function,
and the kernel type K and its corresponding
parameters. C is a regularization parameter that
controls the trade-off between maximizing the
margin and minimizing the training error. In order
to make the learning process stable, a large value
should be set up for C. The optimal value for C
depends on the type of noise present in the data,
which is wusually unknown. Even if enough
knowledge of the noise is available to select an
optimal value for, there is the practical
consideration of the number of the resulting
support vectors. Insensitivity prevents the entire
training set meeting boundary conditions, and so
allows for the possibility of sparsity in the dual
formulations solution. Therefore, choosing an
appropriate value is critical in the theory [36]. The
schematic diagram of a SVM is shown in Figure
2.

predict results

kernel function

Eﬁl-'(-‘i:)i E‘DFN)E . Ed’[-"-k]i nonlinear mapping

Figure 2. Schematic representation of SVM for
regression [43].

Table 1. Types of kernel functions.

Name Definition Parameter
Linear kernel function k(x; —x;) =(x; —x:) -
Polynomial kernel function k(x; —x:) = [(xl. —x;) + l]q q

Radial basis function

* * 2
k(x; —xi):exp[;/“x[ -X; H ) y
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4. Multiple regression analysis

4.1. Multiple linear regression model (MLR)

As a way to provide a visual illustration of the
concept of multiple regression analysis, a quasi
Venn diagram is used to explain the shared
variance in correlation or regression. Simple
regression analysis can show how a single
dependent variable is affected by the values of one
independent variable. This method only concerns
the X; variable as a predictor (i.e. independent
variable) and the Y variable as an outcome (i.e.
dependent wvariable). Thus if two or more
predictors are used for the simple regression
analysis, each predictor can separately show an
individual relationship with the outcome variable.
Another anomaly of the simple regression analysis
is that it cannot predict the most significant X
variable among the independent variables [44]. A
multiple linear regression model is generally
expressed by the relationship between a single
outcome variable (Y) and some explanatory
variables (Xj), given as:

Y =a+bX,+b,X,+..+b,X, (6)

where the term Y is the predicted value of Y
(estimated from X;), a is the intercept, and b; is the
partial regression coefficient. The multiple
regressions present two different overlaps, the
overlap for the combined effect and the overlap
for the individual effect [45].

4.2. Multiple non-linear regression models
Many different empirical failure criteria (f(o;, o,
03)=0) have been used for prediction of rock
strength based on regression models in polyaxial
states. In this work, the Drucker-Prager and
Mogi-Coulomb failure criteria were selected
because they are used in the stability analysis and
they are multiple non-linear in the principal stress
space (o}, 02, 03).

4.2.1. Drucker-Prager criterion

This criterion was first developed for soil
mechanics. This criterion was expressed in terms
of the principal stresses, as follows:

t.,=k+mo,, (7)

o, :W (8)
_l\/ 2 2 2

Toct =3 (01—0,) +(0y, —03)" + (07 —03) &)
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where m and k are the material constants. These
values could be obtained from the drawn failure
push in thet,.t — 0pet Space [7]. It can be
observed that the criterion is linear in the Ty —
Ooct Space but is non-linear in the principal stress
space.

f(01,0,,03) =

%\/(O'1 —0'2)2 + (o, —0'3)2 + (o, —0'3)2

(10)

r _m(0'1+0'2+0'3):0

4.2.2. Mogi-Coulomb criterion
The Mogi-Coulomb criterion presented by Al-
Ajmi, given below, has widely been used in the
oil wellbore stability analysis. In fact, the Mogi-
Coulomb criterion is the extended form of the
Mohr-Coulomb criterion in three dimensions [46,
71.

t.,=a+tbo,,

(I

where 7,.; is the octahedral shear stress, which is
calculated by Eq. (9) and o,,, is also the
octahedral normal stress, given by the following
expression:

o, +o
o =217

na=2 (12)

It was found that the criterion is non-linear in the
principal stress space.

S (0y,0,,03) =

%\/(0'1 _0'2)2 + (o, _0'3)2 + (o _0'3)2

(13)

_a_b(%)zo

5. Criterion for model performance

In this research work, to compare the efficiency of
the models, coefficient of correlation (R),
coefficient of determination (Rz), mean square
error (MSE), and root mean square error (RMSE)
were used. Their corresponding relationships are
as follow:

DX -X) -Y)

R =
W -XpYe vy (9

s X - Y
oo o -ye 1) (15)



Moshrefi et al./ Journal of Mining & Environment, Vol.9, No.1, 2018

6. Data collection and preparation

MSE = lZ:(Y -Y,) (16) Data collection is one of the most important stages
n in ANN, SVM, and regression modeling. In this

work, the results of triaxial and polyaxial tests

RUMSE — Z(Y ~Y,)? (17) performed on shale samples by various
h \j n researchers were collected from reliable published

In the above expressions, Y; is the measured
value, Y is the estimated value, Y is the mean
estimated value, X is the observed value, X is the
mean observed value, and n is the total number of
data [28, 47, 48].

The mean square error (MSE), root mean square
error (RMSE), and coefficient of correlation (R)
are calculated for all the models, and accordingly,
the model with minimum RMSE and MSE and

. 2 . .
maximum R or R “ is chosen as the optimum one.

articles [49-53]. 83 datasets were used for
training, validation, and testing. The data included
maximum, intermediate, and minimum stresses at
the failure stage. The ranges of maximum,
intermediate, and minimum stresses are shown in
Table 2. Also for the more assessment of the
neural network method and failure criteria, the
multi-stage triaxial tests under different confining
pressure values were performed on three shale
rock specimens prepared from the Ramshire
oilfield in SW Iran. Figure 3 and Table 3 show the
characteristics of deep shale samples. Also Table
4 shows the results of the multi-stage triaxial tests.

Table 2. Description of input and output parameter in modeling.

Type of data Parameter Symbol Unit Min Max
Input Minimum stress o3 Mpa 0 400
Intermediate stress o Mpa 0 400
Output Maximum stress o Mpa 3240 745.90
i i
g i) bt
el (14 1 nist k2

Ay
i

: . 3
"y o g

W ) LT ml
"J‘A ?i!i‘:ﬁ = h“"l
?6 3 = el

Figure 3. Samples of shalle from southern and southwestern oil fields in I_lran.

Table 3. Characterization of deep shale samples.

Sample Filed Well No. Depth (m) Formation
o1 Ramshire 3260.10 Pabdeh
Y1 Ramshire 3266.20 Pabdeh
Pl Ramshire 3246.30 Pabdeh

Table 4. Results of multi-stage triaxial test on deep shale samples.

Number c,=0;(Mpa) o, (Mpa)
1 17 162.20
2 25 207.70
3 30 244.00
4 33 224.00
5 38 236.00
6 40 256.00

7. Analysis of strength data using ANN
MATLAB 2016 software was used for ANN
modeling. In the MATLAB procedure, the
training and testing data are chosen randomly. In
this work, 70% of the data was used for training,
15% for validation, and 15% for testing.
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The error back propagation algorithm is one of the
most known training algorithms for multi-layer
perceptron that utilizes a special training
algorithm for the transfer of error from the end
layer to the preceding layer, and it adjusts the
weights and bias with a minimum time [28, 47].
Also the LM algorithm is known to be the fastest
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method for training the moderate-sized
feed-forward neural networks [33].

In order to develop a three-layered ANN model,
two inputs including 6, and o3 are used in the first
layer, and o, as the output, is utilized in the last
layer. The feed-forward neural network is trained
with the Levenberg—Marquardt algorithm (Train
LM). The number of hidden neurons for MLP
models is selected via the trial and error method.
For this, root mean square error (RMSE) is
calculated for different numbers of hidden
neurons, and accordingly, the model with
minimum RMSE is chosen as the optimum one
[14]. There is no direct method available to
identify the number of hidden layers and the
number of neurons in each hidden layer. The
optimal number of neurons in the hidden layers is
also obtained by the trial and error method based
on the minimum RMSE [16].

Table 5 shows the network performance for
different numbers of neurons in the hidden layers.
As it can be seen, the best model has RMSE equal
to 24.41 for the test datasets. This model is an
optimum model with a 2-4-1 architecture, (Figure
4); it has two input neurons, four neurons in the
hidden layer, and one output neuron, respectively.
The results of the network are presented in this
section to demonstrate its performance. The
coefficient of correlation between the predicted
and measured values of ultimate strength is taken
as the network performance. The prediction was
based upon the input datasets (discussed in the
previous section). Figure 5 illustrates the
coefficient of correlation (R) for the proposed
ANN model including the training, test,
validation, and overall data.

8. Analysis of strength data using SVM

The data (input: o, o3 and output: c;) was
randomly divided into two subsets: 70% of the
total data was allotted to the training data for the

SVM model construction and 30% was allocated
to the test data used to assess the reliability of the
development model. Now it would be necessary to
select a suitable kernel function. A lot of kernel
functions have been proposed in the literature.
Among them, the ones based on Radial Basis
Functions (RBF) are widely employed. In this
work, we decided to employ the RBF kernel since
it has been previously used in defect prediction
and context [54-56], and usually yields a better
performance than the other kernels [57].

When SVM is used by the RBF kernel, the three
parameters C, €, and y have to be set by the user.
The selection of appropriate values for these
parameters is crucial to obtain a good regression
performance. As described earlier, C 1is the
penalty factor for misclassified points. If it is too
large, a higher penalty for non-separable points
are added, leading to store too many support
vectors and thus over-fit. On the other hand, if C
is too small, an under-fitting can occur. The y
parameter specifies the radius of RBF, also having
a strong impact on the accuracy. To obtain the
optimum parameters C, g, and y of the SVM
model, different values of these parameters must
be examined based on the trial and error method.
In this research work, Weka 3.6.9 software was
used for SVM modeling. Then root mean square
error (RMSE) was calculated for all the models,
and accordingly, the model with minimum RMSE
was chosen as the optimum model [56]. Figure 6
shows the output of Weka software for the SVM
model.

The training result is presented in Table 6. As
shown in this table, the coefficient of correlation
of training data and RMSE are 0.96 and 32.54,
implying the proper performance of SVM. Also
Figure 7 shows the relation between the measured
values and the failure criteria predicted values
ultimate strength.

Table 5. Results of ANN model with different architectures.

ANN Transfer Training Net Training Validation Test Model

Model Function Law Architecture R R R R MSE  RMSE
MLP TANSIG LM 2-1-1 0.97 0.96 0.98 0.96 839.50  28.97
MLP TANSIG LM 2-2-1 0.96 0.98 095 095 913.45  30.22
MLP TANSIG LM 2-3-1 0.97 0.98 0.97 097 759.28  27.55
MLP TANSIG LM 2-4-1 0.96 0.98 0.98 097 596.10 2441
MLP TANSIG LM 2-5-1 0.95 0.98 096 096 1151.15 33.92
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Output Layer

4 1

Figure 4. Topology of ANN used for prediction of polyaxial strength.
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Figure 5. Relation between measured (Target) values and ANN model predicted values of ultimate strength
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Table 6. SVM model factors.
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Figure 7. Relation between measured values and
SVM model predicted values ultimate strength.

, oct (Mpa)

180

Vol.9, No.1, 2018

9. Analysis of strength data using multiple
linear regression and convention failure
criterion

The same datasets were used for training the ANN
and SVM models. They are analyzed to obtain the
parameters of multiple linear and conventional
criteria. The parameters are introduced in Section
4.

Figures 8 and 9 show the SPSS software output
for the multiple linear regression model and fitting
curves on test data of shale to determine the
parameters of Drucker-Prager and Mogi-Coulomb
failure criteria. The results of the models are
summarized in Table 7. In this research work,
SPSS, Sigmaplot, and Excel software were used
for determination and plot of the regression
models.

Figure 10 and Table 8 show the relation between
the measured values and predicted values of
ultimate strength based on the multiple linear,
Drucker-Prager, and Mogi-Coulomb failure

criteria.
Model Summary
Mod "N Adjusted R Std. Error of
R R Square Square the Estimate
T
1 N .95 .9024/ .900 36.982
a. Predictors: (Constant), sig2, sig3
Coefficients®
Model Standardized
Unstandardized Coefficients Coefficients
g—
/B Std. Error Beta t Sig.
1 (Constant) 86.905 ' 5.937 14.639 .000
sig3 1.096 147 .527 7.473 .000
sig2 .By .136 .456 6.473 .000
a. Dependent Variable: sig1

Figure 8. SPSS software output for multiple linear regression model.
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Figure 9. Fitting curves on test data of shale to determine parameters of Drucker-Prager and Mogi-Coulomb
failure criteria.
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Table 7. Parameters and coefficient of determination of multiple linear, Drucker-Prager, and Mogi-Coulomb
failure criteria.

Model Equation R R’ Parameter
MLR oy =a+bo, +byoy; 095 090 a=86.90 b;=1.09,b,=0.88
Drucker-Prager T, =k +mo,, 093 0.86 k=25.73 m=0.378
Mogi-Coulomb Toy =a+b0, 5 0.92 0.84 a=28.48 b=0.34
T 600 1 Drucker-Prager ) ;«T 600 Mogi-Coulomb o e
% e Data Point = e Data Point
g ] y=x %, 500 4 y=x o o o
g R2=0.90 * 5 R2=0.88 i
& RMSE=36.66 3 RMSE=39.73
£ 400 A _3 400
£ E o
3 300 3 3001 . .
3 :
g [
§ 200 § 200 - ?
3 H .
g 100 § 100{ qeSdpsee
[ =4
o o
0 0

T T T T T T
100 200 300 400 500 600

Measured value of ultimate strength(MPa)

600

100 200 300 400 500 600

Measured value of ultimate strentgh(MPa)

o Data point
y=x

R2=0.90
RSME=36.28
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T T
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T T T
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Measured value of ultimate strength (Mpa)
Figure 10. Relation between measured values and failure criteria predicted values ultimate strength of multiple
linear, Drucker-Prager, and Mogi-Coulomb failure criteria in Mpa.

Table 8. Performance indices of multiple linear, Drucker-Prager, and Mogi-Coulomb failure criteria.

Models R R?2 RMSE MSE
Drucker-Prager 0.95 0.90 36.66 1343.95
Mogi-Coulomb 0.94 0.88 39.73 1578.47

MLR 0.95 0.90 36.28 1207.56

10. Comparison of models

In order to control the prediction performances of
the ANN, SVM, multiple linear, Drucker-Prager,
and Mogi-Coulomb failure criteria, their predicted
ultimate strengths were compared with the
measured ones. For this purpose, three key
performance indices including the coefficient of
correlation (R), root mean square error (RMSE),
and mean square error (MSE) were used. These
indices are described in Section 5. The model
performance indices are summarized in Table 9.

It can be observed that the neural network model
with minimum RMSE (24.41) predicts the
ultimate strength of shale with respect to SVM,
multiple linear regression, and two conventional
failure criteria. For more comparison, the
accuracy of different failure criteria can be made
by considering their predicted values for uniaxial
compressive strength. The measured values of
uniaxial compressive  strength ~ with  the
corresponding predicted value using SVM,
multiple linear regression two conventional
criteria, and ANN-based criteria are shown in
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Table 10. However, from the results obtained, it
was found that the neural network had the highest
precision in predicting the shale rock strength
with respect to the failure criteria.

11. Further examination of ANN model

In the preceding sections, the accuracy of ANN
model (the same model in Section 7) in prediction
of ultimate strength of shale under triaxial and
polyaxial state of stress is considered. For this,
multi-triaxial tests were performed in the
confining pressures of 17, 25, 30, 33, 38, 40 Mpa

on shale samples in the Ramshire oilfield in Iran.
The results were compared with the ultimate
strength predicted value using the ANN, SVM,
multiple linear regression models, and the
conventional failure criteria based on the same
data used in the previous sections. Table 11 shows
the predicted values of ultimate strength of every
model. It was seen that the ANN model predicted
the ultimate strength of shale with minimum
RMSE (equal to 43.81).

Table 9. Performance indices of models.

Models R R’ RMSE MSE
Drucker-Prager 0.95 090 36.66 1343.95
Mogi-Coulomb 0.94 0.88 39.73  1578.47

ANN 097 094 2441  596.10

SVM 096 092 3254 10568.85

MLR 095 090 3628 1207.56

Table 10. Measured and predicted values of uniaxial compressive strength in Mpa and associated error values in

percent.

Drucker-Prager

Mogi-Coulomb

ANN SVM MLR

E i . . . . . .
Type  Experimental Predict Error Predict Predict Predict Error Predict Error Predict Error
UCS 50.80 74.49 46.63 94.61 86.24 45.70 10.03  62.10 22.24  86.90 71.06

Table 11. Comparison of ultimate strength prediction in different confining pressures using ANN model, SVM,
multiple linear regression, and conventional failure criteria for Ramshire oilfield samples.

Confining pressure (Mpa) Experimental (Mpa)

Ultimate strength prediction (Mpa)

Drucker-Prager Mogi-Coulomb ANN SVM  MLR
15 161.20 118.05 121.40 137.38 13420 116.54
25 207.70 134.80 138.36 17438 167.61 136.30
30 244.00 145.27 148.96 188.76 181.34 146.18
33 224.00 151.55 155.32 194.66 194.77 152.10
38 236.00 162.02 165.92 201.21 198.38 162.00
40 256.00 166.21 170.16 203.00 200.12 165.94
RMSE - 79.56 75.89 43.81 44.08 79.30
12. Application of ANN model in determining e
of threshold broken pressure in Gachsaran o, :% (18)

oilfield

A number of effective parameters of the drilling
rate are as follow: load on bit, rotation, depth,
rock strength, bit condition, formation pressure,
mud weight, mud type, bit diameter, and mud
flow rate [40]. One of the main aspects of the
drilling operation is ultimate strength of rock or
break point of rock in drilling depth [58, 50]. In
this section, the break point of the shale layer is
determined using the ANN-based failure criteria
(the same model in Section 7) in the Gachsaran
oilfield in SW Iran.

Shale layer has 141 m thickness in the Gahsaran
oilfield (depth 2248-2589 m). Vertical stress was
calculated at the beginning and ending layer using
Eq. (18).
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where H is the layer of depth, g is the acceleration
of gravity, 0 is the layer density (average density
Kg

2

was assumed 2.7 ), and O, is the vertical

stress in Mpa.

Vertical stress is 60.61, 69.90, corresponding to
the beginning and ending layer. Minimum
horizontal stress is minimum stress in the normal
stress region. It was calculated using Eq. (19) [37,
52].
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4 (19)

where 0, is the minimum horizontal stress, &, is

the effective of stress ratio, and vy is the Poisson's
ratio.

The effective of stress ratio changes about 0-0.50.
If the Poisson's ratio is assumed 0.25 for the shale

layer, k,is obtained to be 0.33. Therefore, the

confining pressure is 20.20, 23.30 Mpa,
corresponding to the beginning and ending of
layer. Now for drilling operation, threshold

broken pressure (0, ) is estimated in the 20.20 and

23.30 Mpa confining pressures using the ANN
model. The results show that the threshold broken
pressure is 154.21, 167.98, corresponding to the
beginning (depth 2248 m) and ending (depth 2589
m) of layer. The results obtained are summarized
in Table 12.

Table 12. Vertical stress, minimum horizontal stress, and threshold broken pressure at beginning and ending of
shale layer.

Depth (m) 0, (Mpa) 0, (Mpa) 0, (Mpa)
2248 60.61 20.20 154.21
2589 69.90 23.30 167.98

13. Conclusions

In this research work, a neural network was
utilized for predicting the shale ultimate strength
in the condition of conventional triaxial and
polyaxial stresses. The database is comprised of
83 collected data from various sources.

The best model for predicting the shale ultimate
strength is the multi-layer perceptron network
with sigmoid activating function for the hidden
layer, linear function for the output layer, and
error back-propagation training rule
(Levenberg-Marquardt) with the 2-4-1
architecture. This model calculates the shale
ultimate strength with the MSE and RMSE values
0f 596.10 and 24.41, respectively. Also the neural
network has the highest precision in predicting the
uniaxial strength (UCS) shale.

The coefficient of correlation values obtained
from the neural network model are greater than
those of SVM, multiple linear regression, and
conventional  failure  criteria.  Also  the
corresponding MSE and RMSE values of the
neural network model were smaller than the index
values of the other models, and this reveals the
high efficiency of the neural network model with
respect to the investigated models.

For further examination, the results of the multi-
stage triaxial tests performed on the specimens
produced from the Ramshire oil fields in Iran
were compared with the ANN model, SVM,
multiple linear regression, and conventional
failure criteria ultimate strength prediction. It was
found that the ANN model predicted the ultimate
strength with a higher accuracy, RMSE 43.81.
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The threshold broken pressure was estimated at
the beginning and ending layer using the ANN
model. One of the main aspects of the drilling
operation is the ultimate strength of rock or break
point of rock in drilling depth. The threshold
broken pressure or break point of rock was
determined using the ANN-based Failure criteria
for the Gahsaran oilfield in Iran. The results
obtained showed that the threshold broken
pressure was 154.21, 167.98, corresponding to the
beginning (depth 2248 m) and ending (depth 2589
m) of layer.
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