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Abstract 

Bearing in mind that lack of data is a common problem in the study of porphyry copper mining exploration, 

our goal was set to identify the hidden patterns within the data and to extend the information to the data-less 

areas. To do this, the combination of pattern recognition techniques has been used. In this work, multi-layer 

neural network was used to estimate the concentration of geochemical elements. From 1755 surface and 

boreholes data available, analyzed by ICP, 70% was used for training, and the rest for testing. The average 

accuracy of estimators for 22 geochemical elements when using all data was equal to 75%. Based on 

validation, the optimal number of clusters for the total data was identified. The Gustafson-Kessel (GK) 

clustering was used to design the estimator for the geochemical element concentrations in different clusters, 

and the clusters were selected for estimation. The results obtained show that using GK, the estimator's 

average accuracy increase up to 84%. The accuracy of the elements Zn, As, Pb, Mo, and Mn with low 

accuracies of 0.51, 0.62, 0.64, 0.65, and 0.68 based on all data were developed to 0.76, 0.86, 0.76, 0.80, and 

0.71 with the clustered data, respectively. The mean square error using all the data was 0.079, while in the 

case of hybrid developed method, it decreased to 0.048. There were error reductions in Al from 0.022 to 

0.012, in As, from 0.105 to 0.025, and from 0.115 to 0.046 for S. 

 

Keywords: Clustering Algorithm, Estimation Precision Improvement, Gustafson-Kessel, Geochemical 

Elements Estimation, Neural Network. 

1. Introduction 

The main purpose of geochemical exploration 

studies in porphyry copper mines is to identify the 

primary and secondary geochemical halos, 

mineralized elements, tail, and above front halo 

elements. Estimation of element concentration is 

one of the methods used for evaluation of the 

behavior of elements in geochemical dispersion 

halos. Estimation of geochemical concentration is 

a challenge in mining engineering and geology 

[1]. Geochemical element distribution is the end 

product of diverse geochemical processes 

operating at a wide range of scales, and usually 

interacting with each other via various ways [2-4]. 

Exploring the geochemical patterns based on data 

analysis is a convenient and effective way to 

improve our understanding of the geochemical 

characteristics of a given studied area [5]. 

Estimation of element concentration is a common 

method for evaluation of mineralization in depth 

[6]. The precision of estimation is the most 

important parameter that depends on the method, 

and is identified by specific indices [7]. Different 

methods such as geo-statistics [8, 9], artificial 

neural networks (ANNs) [10-13], and fuzzy logic 

are used for this purpose [14, 15]. 

Numerous limitations exist in training and 

designing networks using neural networks. For 

instance, a relatively great amount of data from 

the studied area is required when using neural 

networks. In the network architecture, the weight 

of input data is one of the most important items 

that has a direct effect on performance. The 

weights are controlled by the neural network 

structure and learning algorithm parameters. The 
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parameters affecting the performance of neural 

network include the input type, number of hidden 

layers and their nodes, memory, and learning rate 

[16]. Researchers have attempted to combine 

ANNs with other optimization methods to 

increase the estimation precision and to optimize 

ANN for concentration estimation using the 

Levenberg–Marquardt (LM) algorithms and the 

genetic algorithm [16, 17]. 

Data mining and pattern recognition techniques 

(PRTs) have been widely used in the Earth 

sciences for effective, scalable, and flexible data 

analyses [18, 19]. PRTs have been used to classify 

the data into a number of various classes [20, 21]. 

PRTs have been used in the identification of 

geological information, hidden mineralization in 

the geochemical data, and determination of 

anomaly and background pattern determination 

since 1970s [22]. These methods have also been 

used in the examination of relationships between 

regional geochemical patterns and large deposits 

[23, 24]. 

The data with the highest sample correlation 

arranged within the same cluster and clustering 

algorithms has the ability to find these clusters. 

Using the data with a greater sample correlation 

has improved the relationship between the 

estimator input and output and increased the 

estimation accuracy. This condition was not 

considered in the earlier studies, and the precision 

of the estimation was reduced. In the present 

research work, the pattern recognition methods 

such as fuzzy clustering were used to increase the 

precision of estimating the concentration of 

geochemical elements. 

In this work, multi-layer perceptron (MLP) was 

applied to identify non-linear relations between 

the input and output data. To increase the 

accuracy of neural network estimation, the 

Gustafson Kessel clustering method was used. 

2. Geology of studied area 

The Sonajil exploration area is located 17 Km 

from Heris, East Azarbaijan province, NW of 

Iran. Magmatic activities in the subduction zone 

including the intrusive and volcanic rocks were 

developed through the studied area. The studied 

area has a potential for copper-molybdenum-gold 

mineralization based on economic geology 

investigations [25]. 

Field investigations on Sonajil deposit show that 

host rocks including volcanic and Eocene volcano 

clastic rocks consist of basaltic flows (Qv), 

andesite and hornblende andesite (Ean),  

mega-porphyry andesite (Eam), porphyry andesite 

(Eap), microdiorite and microdioritic dikes (Eim), 

and granitoids (Og). Porphyry andesite has 

covered an extensive part of the area. The Sonajil 

porphyry displays various alterations including 

potassic and phyllic ones in the surface [25] 

(Figure 1). 

3. Geochemical data 

The surface geochemical data consisted of 562 

rock samples that were systematically collected 

with a distance of 100 m. Six exploration 

boreholes, a total of 2465 m drilling including 

1193 rock samples were also utilized in this 

investigation (Figure 2). 

The surface rock samples were analyzed by the 

ICP-MS method for 45 elements, and the borehole 

rock samples were analyzed for 23 elements. The 

same elements for the surface and borehole were 

selected for this research work, which are listed in 

Table 1. 

4. Algorithms 

4.1. Artificial neural networks (ANNs) 

ANNs are based upon complex structures of 

human brain, which consists of millions of neural 

cells interacting with each other [26]. ANN 

identifies the relationships between the input and 

output variables through a group of processing 

units called neurons. They are capable of 

identifying the complex relationship between the 

input and output data [27]. 

The main feature of neural networks is based upon 

training samples. This feature produces a highly 

practical and computational model that is used in 

different research fields. In the condition that 

there is no accurate understanding of the nature, it 

becomes more applicable [28]. 

ANN consists of the input, hidden, and output 

layers. Data is used in the input layer, and all the 

other layers cooperate in processing to produce 

the final output [29]. 

Each ANN except for the input layer consists of 

five parts of input matrices (P), weight matrix 

(W), combination function (∑), activation 

function (f), and output (a) [30] (Figure 3). 
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Figure 1. Geological map of eastern part of Sonajil-Heris exploration zone [Modified, 25]. 

 

 
Figure 2. Position of surface samples and location of boreholes in studied area. 

 
Table 1. Selected surface and borehole geochemical elements. 

Al As Ba Be Ca Co Cu Fe K La Mg 

Mn Mo Na Ni P Pb S Sc Sr V Zn 

 
Figure 3. Different parts of ANN including input layer, hidden layer, and output layer. 
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4.2. Gustafson-Kessel clustering algorithm 

The Gustafson-Kessel (GK) algorithm, as one of 

the soft clustering methods, could identify linear 

and elliptical clusters using an induction matrix. 

In the GK algorithm, each cluster is created based 

on one point and one matrix in which the point 

determines the center of the cluster, and the 

matrix defines its covariance. Hence, the GK 

algorithm has the ability of elliptical cluster 

separation, and unlike most clustering methods, it 

has no limitation for creating circular clusters 

[31]. 

Many fuzzy clustering algorithms are based upon 

optimization of one scheme, and they tend to 

minimize an objective function such as J(V, U), 

which shows data clustering connection error 

[32]. 
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where uik is the membership degree of point data 

xk to the model of pattern i (center of cluster), 

U=[uij] is the segmentation matrix with dimension 

of c × N, V=[vi] is the initial sample matrix with 

dimension of c × q, and dik is the distance between 

the point data K and sample i. The parameter β > 

1 is the exponential weight, which controls the 

segmentation fuzzification. 

The GK algorithm is able to identify not only the 

spherical clusters but also the elliptical cluster. 

This algorithm is an expansion of the standard 

algorithm FCM using the adaptive distance norm 

to identify clusters from various geometrical 

shapes in dataset. 

The adaptive distance for each separate cluster is 

derived from Equation (2), and the inductive norm 

matrix (Si=1…c) is calculated from Equation (3): 
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where q is the number of initial data features, ρi is 

the volume of cluster i, and Fi is the fuzzy 

covariance matrix that is calculated based on the 

following equation: 
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Minimization of the cost function J(V, U), subject 

to the limitation of ∑   
     

  , is performed by 

an iterative algorithm that optimizes center of 

clusters and membership degree [33]: 
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4.3. Validation indices 

In order to estimate the number of clusters, 

validation indices are utilized, which determine 

the compression or concentration and the 

separation. The first group, compression indices, 

exclusively use clustering memberships, while the 

second one, separation indices, are used to 

evaluate memberships in connection with the data. 

For the first group, Partition Coefficient (PC) and 

Classification Entropy (CE) are often calculated 

[34]. For the second group, Xie-Beni, XB [35], 

Partition, SC, and Separation (S) index are applied 

for validation [36]. 

(a) PC index has been developed to measure 

the overlap of clusters by Bezdek [34], as follows: 

(7) 2
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in which, N denotes the number of data and μik is 

the membership of K point data at cluster i. 

(b) CE index, which measures the amount of 

fuzziness, is defined as follows [34]: 
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When the number of clusters are evaluated, the 

PC and CE Indices reach zero and one, 

respectively, for the best cluster number. The PC 

and CE Indices are sensitive to the β parameter. 

When the PC Index approaches 1/β, the results 

become more ambiguous. A continuous decrease 

in the PC index, with respect to β, is the main 

weakness for it and has no direct dependency on 

the data. However, the PC index shows how much 

the clusters overlap. The CE index has the same 

disadvantages. As the number of clusters rises, the 

PC index reduces, while the CE index increases. 

Estimations of both the PC and CE indices 

relatively denote how many clusters overlap. 

(c) The Xie-Beni index is defined to 

determine the ratio of the total variation within 
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clusters and separation of clusters based on the 

following equation [35]: 

(9) 
2

ikk.i

2

ikik

N

1k

m

1i

uxmin.N

ux
XB








  

xk denotes the studied sample and ui is the center 

of cluster. 

The Xie-Beni index is focused on the feature 

condensation and separation. As more clusters are 

partitioned from each other, the Xie-Beni index 

adopts the least value [34]. 

(d) The SC index is a proportion of the total 

condensation to separate clusters from each other, 

which is defined by Equation (10): 
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The more SC index is reduced, the better 

clustering is derived. This index is useful when 

different clusterings having the same clusters are 

compared with each other [36, 37]. 

The XB and SC indices exhibit the amount of 

noise among clusters and the resolution of 

separation, respectively. In other words, with the 

highest XB index and lowest SC index, the best 

separation of the cluster is performed. 

(e) The separation index S uses a minimum 

separation distance for segmentation verification, 

and is defined as follows [36]: 
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Index S represents an optimum segmentation. The 

more the S index, the better the clusters are 

separated. When prediction of cluster number is 

unknown, the validation indices are useful. 

5. Estimator design 

5.1. Estimator design based on whole data 

The MLP method is used to estimate the 

geochemical element concentrations. To design 

estimators, all the available geochemical 

information including 1755 surface and borehole 

rock samples for 22 elements was utilized in this 

work. The estimator was designed based on 70% 

of training and 30% of test data (Figure 4). The 

hidden layers were chosen to be 24 in number 

based on trial and error and maximum accuracy of 

estimators. In the input network, X, Y, and Z were 

considered as the coordinates of samples, and in 

the output network, concentrations of different 

geochemical elements were estimated (Figure 5). 

The results obtained from estimator design were 

calculated and shown in Figure 6. The results 

obtained indicated that neural network-based 

estimator reached the acceptable accuracies of 

0.95, 0.89, 0.87, 0.87, 0.84, 0.83, and 0.81 for the 

elements Al, Na, K, Ba, S, Be, and Cu, 

respectively. In addition, except for Zn, As, Pb, 

Mo, and Mn with the respective accuracies of 

0.51, 0.62, 0.64, 0.65, and 0.68, other elements 

showed a satisfactory accuracy. The average 

accuracy of 22 elements was about 75%. 

5.2. Estimator design using clustered data 

Identification of optimum clusters based on 

validation indices and then clustered data using 

GK algorithm was investigated in the next phase 

of study. For this purpose, 70% of the data was 

used for training and 30% for testing (Figure 7). 

According to the indices for determining 

optimized cluster number (Figures 8 and 9), all 

indices converge to an approximate constant value 

after four clusters. 

Based on the clustering data, there are 416, 369, 

532, and 438 data in the first, second, third, and 

fourth clusters, respectively (Table 2). 

Distribution of clusters in 3D space of coordinate 

axes is shown in Figure 10. 

–The 3D diagram of the clustered data shows that 

the clusters are well-separated, and that similar 

samples are within the same cluster. 

The results of estimator design by clustered data 

with GK for geochemical elements are illustrated 

in Figure 11. 

The estimator accuracy has generally increased, 

and the average accuracy has reached 84%, which 

is a 9% increase. 
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Figure 4. Estimator design using whole geochemical data. 

 

 
Figure 5. Estimator design model for MLP neural network. 

 

 
Figure 6. Estimator accuracy bar chart for all data. 

 

 
Figure 7. Estimator design using clustering data for geochemical elements. 
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Figure 8. PC and CE validation indices. 

 

 
Figure 9. SC, S, and XB validation indices. 

 
Table 2. Data clustering results using GK clustering algorithm. 

Clustering algorithm Total data Number of data in different clusters 

Gustafson kessel 1755 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

416 369 532 438 

 

 
Figure 10. Distribution of clustered samples using Gustafson-Kessel method in 3D space. 



Jahangiri et al./ Journal of Mining & Environment, Vol.9, No.2, 2018 

506 

 

 
Figure 11. Estimator accuracy bar chart using GK clustered data. 

 

6. Comparing accuracy of estimators and 

estimation error comparison 

6.1. Comparing accuracy of estimators 

The comparison of results from two estimators 

shows that the average accuracy of estimators 

when using clustered data increases dramatically 

from 75 to 84 percent (Figure 12). 

The accuracy of the elements Zn, As, Pb, Mo, and 

Mn with low accuracies of 0.51, 0.62, 0.64, 0.65, 

and 0.68 is based upon all data, and increases to 

0.76, 0.86, 0.76, 0.80, and 0.71 with clustered 

data. In between, the accuracy of zinc with 

unacceptable value reaches an acceptable value of 

76% with clustering. The results of different 

element estimators based on all data and clustered 

data with GK method are demonstrated in Table 

3. 

Clustering algorithm not only increases the 

estimation accuracy of elements but also develops 

the estimation validity. For a better understanding, 

the regression graph of Zn and Al estimators with 

the highest and the lowest accuracy estimation are 

shown in Figure 13. While using clustering 

algorithm, since inter-cluster data has a better 

coordination, estimation accuracy increases and 

causes regression slope to approach y=x. 

 

 
Figure 12. Comparison of accuracy of estimators (1) using all data and (2) using GK clustered data. 
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Table 3. Accuracy of estimating concentration of geochemical elements (1) using all data and (2) clustering 

algorithm. 
Total data Gustafson kessel Clusterin method 

Variable All R2 Training R2 Validation R2 Test R2 Variable All R2 Training R2 Validation R2 Test R2 

Al 0.95 0.96 0.94 0.94 Al 0.96 0.96 0.96 0.96 

As 0.62 0.64 0.57 0.60 As 0.86 0.88 0.82 0.82 

Ba 0.87 0.86 0.85 0.89 Ba 0.90 0.90 0.91 0.93 

Be 0.83 0.83 0.82 0.82 Be 0.90 0.91 0.88 0.87 

Ca 0.75 0.77 0.76 0.67 Ca 0.92 0.95 0.88 0.86 

Co 0.71 0.72 0.68 0.71 Co 0.73 0.74 0.67 0.74 

Cu 0.81 0.81 0.82 0.86 Cu 0.85 0.85 0.82 0.90 

Fe 0.71 0.71 0.72 0.70 Fe 0.82 0.84 0.79 0.78 

K 0.87 0.87 0.86 0.85 K 0.91 0.92 0.91 0.89 

La 0.81 0.82 0.78 0.74 La 0.81 0.82 0.73 0.83 

Mg 0.77 0.78 0.77 0.72 Mg 0.94 0.96 0.92 0.86 

Mn 0.68 0.70 0.60 0.64 Mn 0.71 0.72 0.80 0.62 

Mo 0.65 0.66 0.62 0.64 Mo 0.80 0.81 0.79 0.75 

Na 0.89 0.89 0.88 0.89 Na 0.98 0.99 0.96 0.96 

Ni 0.70 0.70 0.70 0.69 Ni 0.78 0.80 0.73 0.76 

P 0.71 0.72 0.73 0.65 P 0.83 0.86 0.82 0.70 

Pb 0.64 0.65 0.62 0.60 Pb 0.76 0.76 0.73 0.76 

S 0.84 0.84 0.86 0.82 S 0.84 0.81 0.86 0.92 

Sc 0.73 0.73 0.73 0.74 Sc 0.79 0.81 0.76 0.75 

Sr 0.76 0.76 0.71 0.80 Sr 0.82 0.82 0.80 0.88 

V 0.72 0.71 0.76 0.71 V 0.83 0.86 0.88 0.74 

Zn 0.51 0.53 0.54 0.43 Zn 0.76 0.80 0.77 0.61 

Average 0.75 0.76 0.74 0.73 Average 0.84 0.85 0.83 0.81 

 

 

 
Figure 13. Regression graph of actual and estimated data; x-axis represents actual data and y-axis shows 

estimated data. (a.1) Regression graph of Al using all data, and (a.2) clustered data, (b.1) regression graph of Zn 

using all data, and (b.2) clustered data. 

 

 



Jahangiri et al./ Journal of Mining & Environment, Vol.9, No.2, 2018 

508 

 

The comparison of concentration maps of the 

actual and estimated values shows that the results 

obtained correspond well with reality. For 

example, the surface geochemical maps were 

drawn for the actual and estimated concentration 

of the elements Al, Cu, and Zn (Figure 14). A 

homogeneous distribution of Cu concentration is 

realized when using clustered data in comparison 

with the actual data. The geochemical spatial 

distribution pattern was achieved using an 

estimated map based on the surface and borehole 

data. 

 

  

  

  
Figure 14. Comparison between actual and estimated surface concentration, (c.1) concentration map for Al with 

actual data, and (c.2) estimated data, (d.1) concentration map for Zn with actual data, and (d.2) estimated data, 

(e.1) concentration map for Cu with actual data, and (e.2) estimated data. 
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6.2. Estimation error comparison 

Estimation error is also a parameter in evaluation 

of estimators’ performance, which must be 

reduced to minimum. Data range varies  

between -1 and 1. 

For estimation error analysis, MSE was used. 

According to the results from different design 

schemes, the mean error using all data for 

estimator design was 0.079. This error was higher 

than the case of using clustering algorithm. The 

average estimation error of 22 elements using GK 

clustering algorithm reduced to 0.048. Therefore, 

clustering algorithm increases the estimation 

accuracy or reduces the estimation error. The 

results of estimator error of geochemical elements 

are shown in Figure 15. 

Exploring error plots reveals a reduce in Al from 

0.022 to 0.012, in As, from 0.105 to 0.025, and 

from 0.115 to 0.046 in S. 

The performance graph and distribution histogram 

of error for As element show that the estimator 

performance for clustered data is followed by 

error reduction and symmetrical histogram (in 

Figure 16). Generally, estimation error for all the 

elements decreases by the clustering algorithm. 

 

 
Figure 15. Estimation error comparison for using all data and clustering method. 

 

  

  
Figure 16. Error variation plot and error distribution histogram for element As, (e.1) error plot when using all 

data, (e.2) error plot when using clustered data, (f.1) error histogram when using all data, (f.2) error histogram 

when using clustered data. 
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7. Conclusions 

In order to identify the pattern for element 

distribution concentrations and to estimate the 

concentration, multi-layer neural networks can be 

applied. The results obtained from estimation 

using neural networks, in the case of using all 

data, showed that they adopted a proper 

performance in element concentration estimation. 

This method did not produce satisfactory results 

for some elements such as Zn, As, Pb, Mo, and 

Mn. 

By clustering the available data and selecting the 

best cluster for estimation design, accuracy of 

estimators was improved. Clustering made 

different data with the same characteristics in the 

same clusters, and the correlation of data in 

clusters reached a maximum value. The 

performance of neural network in identification 

governing pattern and estimation accuracy were 

developed. The average accuracy for the 22 

studied elements reached 84% when using 

clustered data, which showed 9% increase in 

comparison with estimation using all data. 

Elemental accuracy increased in the case of using 

clustered data. 

In addition, a method other than estimation 

accuracy could improve the estimation error. The 

results obtained exhibited that the estimation error 

when using GK clustering algorithm decreased 

from 0.079 to 0.048 in comparison with all the 

data used. Finally, using the estimated 

concentrations of the geochemical elements at 

different depth levels, it is possible to study the 

changes of geochemical halos. Using the results 

obtained, it is possible to identify the hidden 

mineralization, surface erosion, and deep 

extension of mineralization. 
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 چکیده:

و گسیترش   هیا  دادهتعیین الگوهای مخفیی در   شافی معادن مس پورفیری است، در این پژوهش هدفکمبود داده یک مشکل رایج در مطالعات اکتبا توجه به اینکه 

 در ایین پیژوهش، شیبکه ع یبی لانید رییه بیرای        .تشخیص الگو استفاده شده است های تکنیک. برای انجام این کار، ترکیبی از استاطلاعات به مناطق ناشناخته 

 11، میورد ننیالیق قیرار گرفتیه اسیت      ICPداده سطحی و عمقی موجود که بیا روش   7155از مجموع  .تخمین غلظت عناصر ژئوشیمیایی مورد استفاده قرار گرفت

یمیایی در حالیت  عن یر ژئوشی   11ها برای نزمون استفاده شده است. میانگین دقت تخمینگرهای طراحیی شیده بیرای    درصد داده 91ها برای نموزش و درصد داده

 -بنیدی گوستافسیون  الگیوریتم خوشیه   .ها شناسایی شدها برای کل دادهس اعتبار سنجی، تعداد مطلوب خوشهدرصد است. بر اسا 15ها برابر با استفاده از کل داده

ه نتیایج بی   .برای طراحی تخمینگر انتخاب شیدند ها و خوشهمختلف مورد استفاده قرار گرفت  های خوشهکسل برای طراحی تخمینگر غلظت عناصر ژئوشیمیایی در 

دقت عناصر روی، نرسنیک، سیرب، مولیبیدن    .یابددرصد افقایش می 48دقت متوسط تخمینگرها تا  کسل -گوستافسون دهد که با استفاده ازدست نمده نشان می

بنیدی  هیای خوشیه  بیر اسیاس داده   17/1و  41/1، 12/1، 42/1، 12/1یب به ها به ترتبر اساس تمام داده 24/1و  25/1، 28/1، 21/1، 57/1های کم با دقت منگنق و

 .کیاهش یافیت   184/1بود، در حالی که با استفاده از روش ترکیبی توسعه یافتیه، بیه    113/1 ها دادهداده شد. میانگین خطای مربع با استفاده از تمام  افقایششده 

 .بود گوگرد برای 182/1به  775/1و از  115/1به  715/1ک از نرسنی در 171/1به  111/1کاهش خطا در نلومینیوم از 

 .شبکه ع بی ،کسل، تخمین عناصر ژئوشیمیایی -گوستافسون ،بندی، بهبود دقت تخمینالگوریتم خوشه :کلمات کلیدی

 

 

 

 


