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Abstract

Bearing in mind that lack of data is a common problem in the study of porphyry copper mining exploration,
our goal was set to identify the hidden patterns within the data and to extend the information to the data-less
areas. To do this, the combination of pattern recognition techniques has been used. In this work, multi-layer
neural network was used to estimate the concentration of geochemical elements. From 1755 surface and
boreholes data available, analyzed by ICP, 70% was used for training, and the rest for testing. The average
accuracy of estimators for 22 geochemical elements when using all data was equal to 75%. Based on
validation, the optimal number of clusters for the total data was identified. The Gustafson-Kessel (GK)
clustering was used to design the estimator for the geochemical element concentrations in different clusters,
and the clusters were selected for estimation. The results obtained show that using GK, the estimator's
average accuracy increase up to 84%. The accuracy of the elements Zn, As, Pb, Mo, and Mn with low
accuracies of 0.51, 0.62, 0.64, 0.65, and 0.68 based on all data were developed to 0.76, 0.86, 0.76, 0.80, and
0.71 with the clustered data, respectively. The mean square error using all the data was 0.079, while in the
case of hybrid developed method, it decreased to 0.048. There were error reductions in Al from 0.022 to
0.012, in As, from 0.105 to 0.025, and from 0.115 to 0.046 for S.

Keywords: Clustering Algorithm, Estimation Precision Improvement, Gustafson-Kessel, Geochemical
Elements Estimation, Neural Network.

1. Introduction

The main purpose of geochemical exploration
studies in porphyry copper mines is to identify the
primary and secondary geochemical halos,
mineralized elements, tail, and above front halo
elements. Estimation of element concentration is
one of the methods used for evaluation of the
behavior of elements in geochemical dispersion
halos. Estimation of geochemical concentration is
a challenge in mining engineering and geology
[1]. Geochemical element distribution is the end
product of diverse geochemical processes
operating at a wide range of scales, and usually
interacting with each other via various ways [2-4].
Exploring the geochemical patterns based on data
analysis is a convenient and effective way to
improve our understanding of the geochemical
characteristics of a given studied area [5].

Estimation of element concentration is a common
method for evaluation of mineralization in depth
[6]. The precision of estimation is the most
important parameter that depends on the method,
and is identified by specific indices [7]. Different
methods such as geo-statistics [8, 9], artificial
neural networks (ANNSs) [10-13], and fuzzy logic
are used for this purpose [14, 15].

Numerous limitations exist in training and
designing networks using neural networks. For
instance, a relatively great amount of data from
the studied area is required when using neural
networks. In the network architecture, the weight
of input data is one of the most important items
that has a direct effect on performance. The
weights are controlled by the neural network
structure and learning algorithm parameters. The
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parameters affecting the performance of neural
network include the input type, number of hidden
layers and their nodes, memory, and learning rate
[16]. Researchers have attempted to combine
ANNs with other optimization methods to
increase the estimation precision and to optimize
ANN for concentration estimation using the
Levenberg—Marquardt (LM) algorithms and the
genetic algorithm [16, 17].

Data mining and pattern recognition techniques
(PRTs) have been widely used in the Earth
sciences for effective, scalable, and flexible data
analyses [18, 19]. PRTs have been used to classify
the data into a number of various classes [20, 21].
PRTs have been used in the identification of
geological information, hidden mineralization in
the geochemical data, and determination of
anomaly and background pattern determination
since 1970s [22]. These methods have also been
used in the examination of relationships between
regional geochemical patterns and large deposits
[23, 24].

The data with the highest sample correlation
arranged within the same cluster and clustering
algorithms has the ability to find these clusters.
Using the data with a greater sample correlation
has improved the relationship between the
estimator input and output and increased the
estimation accuracy. This condition was not
considered in the earlier studies, and the precision
of the estimation was reduced. In the present
research work, the pattern recognition methods
such as fuzzy clustering were used to increase the
precision of estimating the concentration of
geochemical elements.

In this work, multi-layer perceptron (MLP) was
applied to identify non-linear relations between
the input and output data. To increase the
accuracy of neural network estimation, the
Gustafson Kessel clustering method was used.

2. Geology of studied area

The Sonajil exploration area is located 17 Km
from Heris, East Azarbaijan province, NW of
Iran. Magmatic activities in the subduction zone
including the intrusive and volcanic rocks were
developed through the studied area. The studied
area has a potential for copper-molybdenum-gold
mineralization based on economic geology
investigations [25].
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Field investigations on Sonajil deposit show that
host rocks including volcanic and Eocene volcano
clastic rocks consist of basaltic flows (Q,),
andesite and hornblende andesite (E.,),
mega-porphyry andesite (E,;), porphyry andesite
(E4p), microdiorite and microdioritic dikes (Eiy),
and granitoids (Oy). Porphyry andesite has
covered an extensive part of the area. The Sonajil
porphyry displays various alterations including
potassic and phyllic ones in the surface [25]
(Figure 1).

3. Geochemical data

The surface geochemical data consisted of 562
rock samples that were systematically collected
with a distance of 100 m. Six exploration
boreholes, a total of 2465 m drilling including
1193 rock samples were also utilized in this
investigation (Figure 2).

The surface rock samples were analyzed by the
ICP-MS method for 45 elements, and the borehole
rock samples were analyzed for 23 elements. The
same elements for the surface and borehole were
selected for this research work, which are listed in
Table 1.

4. Algorithms

4.1. Artificial neural networks (ANN5s)

ANNs are based upon complex structures of
human brain, which consists of millions of neural
cells interacting with each other [26]. ANN
identifies the relationships between the input and
output variables through a group of processing
units called neurons. They are capable of
identifying the complex relationship between the
input and output data [27].

The main feature of neural networks is based upon
training samples. This feature produces a highly
practical and computational model that is used in
different research fields. In the condition that
there is no accurate understanding of the nature, it
becomes more applicable [28].

ANN consists of the input, hidden, and output
layers. Data is used in the input layer, and all the
other layers cooperate in processing to produce
the final output [29].

Each ANN except for the input layer consists of
five parts of input matrices (P), weight matrix
(W), combination function (D)), activation
function (f), and output (a) [30] (Figure 3).
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Figure 1. Geological map of eastern part of Sonajil-Heris exploration zone [Modified, 25].
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Table 1. Selected surface and borehole geochemical elements.
Al As Ba Be Ca Co Cu Fe K La Mg
Mn Mo Na Ni P Pb S S¢c Sr V ~Zn

Figure 3. Different parts of ANN including input layer, hidden layer, and output layer.
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4.2. Gustafson-Kessel clustering algorithm

The Gustafson-Kessel (GK) algorithm, as one of
the soft clustering methods, could identify linear
and elliptical clusters using an induction matrix.
In the GK algorithm, each cluster is created based
on one point and one matrix in which the point
determines the center of the cluster, and the
matrix defines its covariance. Hence, the GK
algorithm has the ability of elliptical cluster
separation, and unlike most clustering methods, it
has no limitation for creating circular clusters
[31].

Many fuzzy clustering algorithms are based upon
optimization of one scheme, and they tend to
minimize an objective function such as J(V, U),
which shows data clustering connection error
[32].

V U :i Z lk djc (1)

N
i=l k=l
where uy is the membership degree of point data
x¢ to the model of pattern i (center of cluster),
U=[u,] is the segmentation matrix with dimension
of ¢ x N, V=[v{] is the initial sample matrix with
dimension of ¢ x q, and dy is the distance between
the point data K and sample i. The parameter § >
1 is the exponential weight, which controls the
segmentation fuzzification.

The GK algorithm is able to identify not only the
spherical clusters but also the elliptical cluster.
This algorithm is an expansion of the standard
algorithm FCM using the adaptive distance norm
to identify clusters from various geometrical
shapes in dataset.

The adaptive distance for each separate cluster is
derived from Equation (2), and the inductive norm
matrix (Si=1...c) is calculated from Equation (3):

dizk = ”Xk - Vi”szi = (Xk -V )Tsi (Xk -V ) ()

S, =[p; det(E)]"'E" 3)

where q is the number of initial data features, p; is
the volume of cluster i, and F; is the fuzzy
covariance matrix that is calculated based on the
following equation:

Zzlcv:l (uik )ﬂ (xk —Vi )(xk —Vi )T

F, = (4)

Z;iv(uik )ﬂ

Minimization of the cost function J(V, U), subject
to the limitation of }}{_, u, =1, is performed by

an iterative algorithm that optimizes center of
clusters and membership degree [33]:

N
Vizw,izl...c,kzl..N
zk(uik)P

and

)

! 1:1...C,k:1...N (6)

Uy = = —,1
k Zj:l (dik/djk o

4.3. Validation indices

In order to estimate the number of clusters,
validation indices are utilized, which determine
the compression or concentration and the
separation. The first group, compression indices,
exclusively use clustering memberships, while the
second one, separation indices, are used to
evaluate memberships in connection with the data.
For the first group, Partition Coefficient (PC) and
Classification Entropy (CE) are often calculated
[34]. For the second group, Xie-Beni, XB [35],
Partition, SC, and Separation (S) index are applied
for validation [36].

(a) PC index has been developed to measure
the overlap of clusters by Bezdek [34], as follows:

N;gwk (7)

in which, N denotes the number of data and p is
the membership of K point data at cluster i.

(b) CE index, which measures the amount of
fuzziness, is defined as follows [34]:

ZZwm%m (8)
i=1 =

When the number of clusters are evaluated, the
PC and CE Indices reach zero and one,
respectively, for the best cluster number. The PC
and CE Indices are sensitive to the  parameter.
When the PC Index approaches 1/B, the results
become more ambiguous. A continuous decrease
in the PC index, with respect to B, is the main
weakness for it and has no direct dependency on
the data. However, the PC index shows how much
the clusters overlap. The CE index has the same
disadvantages. As the number of clusters rises, the
PC index reduces, while the CE index increases.
Estimations of both the PC and CE indices
relatively denote how many clusters overlap.

() The Xie-Beni index is defined to
determine the ratio of the total variation within
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clusters and separation of clusters based on the
following equation [35]:

m N 2
XB= Zi:l Zk:l M&”Xk _ui” )

N. miniAk”xk - ui||2

xy denotes the studied sample and u; is the center
of cluster.

The Xie-Beni index is focused on the feature
condensation and separation. As more clusters are
partitioned from each other, the Xie-Beni index
adopts the least value [34].

(d) The SC index is a proportion of the total
condensation to separate clusters from each other,
which is defined by Equation (10):

2
B
T N o —ulf

The more SC index is reduced, the better
clustering is derived. This index is useful when
different clusterings having the same clusters are
compared with each other [36, 37].

The XB and SC indices exhibit the amount of
noise among clusters and the resolution of
separation, respectively. In other words, with the
highest XB index and lowest SC index, the best
separation of the cluster is performed.

(e) The separation index S uses a minimum
separation distance for segmentation verification,
and is defined as follows [36]:

S = Zln; ZkN:I l’li2k||xk _ui”2

. 2
N.rnmi'k”ui —uk||

(10)

(11)

Index S represents an optimum segmentation. The
more the S index, the better the clusters are
separated. When prediction of cluster number is
unknown, the validation indices are useful.

5. Estimator design

5.1. Estimator design based on whole data

The MLP method is used to estimate the
geochemical element concentrations. To design
estimators, all the available geochemical
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information including 1755 surface and borehole
rock samples for 22 elements was utilized in this
work. The estimator was designed based on 70%
of training and 30% of test data (Figure 4). The
hidden layers were chosen to be 24 in number
based on trial and error and maximum accuracy of
estimators. In the input network, X, Y, and Z were
considered as the coordinates of samples, and in
the output network, concentrations of different
geochemical elements were estimated (Figure 5).
The results obtained from estimator design were
calculated and shown in Figure 6. The results
obtained indicated that neural network-based
estimator reached the acceptable accuracies of
0.95, 0.89, 0.87, 0.87, 0.84, 0.83, and 0.81 for the
elements Al, Na, K, Ba, S, Be, and Cu,
respectively. In addition, except for Zn, As, Pb,
Mo, and Mn with the respective accuracies of
0.51, 0.62, 0.64, 0.65, and 0.68, other elements
showed a satisfactory accuracy. The average
accuracy of 22 elements was about 75%.

5.2. Estimator design using clustered data
Identification of optimum clusters based on
validation indices and then clustered data using
GK algorithm was investigated in the next phase
of study. For this purpose, 70% of the data was
used for training and 30% for testing (Figure 7).
According to the indices for determining
optimized cluster number (Figures 8 and 9), all
indices converge to an approximate constant value
after four clusters.

Based on the clustering data, there are 416, 369,
532, and 438 data in the first, second, third, and
fourth clusters, respectively (Table 2).
Distribution of clusters in 3D space of coordinate
axes is shown in Figure 10.

—The 3D diagram of the clustered data shows that
the clusters are well-separated, and that similar
samples are within the same cluster.

The results of estimator design by clustered data
with GK for geochemical elements are illustrated
in Figure 11.

The estimator accuracy has generally increased,
and the average accuracy has reached 84%, which
is a 9% increase.
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Figure 4. Estimator design using whole geochemical data.
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Figure 5. Estimator design model for MLP neural network.
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Table 2. Data clustering results using GK clustering algorithm.

Clustering algorithm Total data Number of data in different clusters
Cluster 1 Cluster 2 Cluster 3  Cluster 4
Gustafson kessel 1755
416 369 532 438
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Figure 10. Distribution of clustered samples using Gustafson-Kessel method in 3D space.
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6. Comparing accuracy of estimators and
estimation error comparison

6.1. Comparing accuracy of estimators

The comparison of results from two estimators
shows that the average accuracy of estimators
when using clustered data increases dramatically
from 75 to 84 percent (Figure 12).

The accuracy of the elements Zn, As, Pb, Mo, and
Mn with low accuracies of 0.51, 0.62, 0.64, 0.65,
and 0.68 is based upon all data, and increases to
0.76, 0.86, 0.76, 0.80, and 0.71 with clustered
data. In between, the accuracy of zinc with
unacceptable value reaches an acceptable value of

/N

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50

\

76% with clustering. The results of different
element estimators based on all data and clustered
data with GK method are demonstrated in Table
3.

Clustering algorithm not only increases the
estimation accuracy of elements but also develops
the estimation validity. For a better understanding,
the regression graph of Zn and Al estimators with
the highest and the lowest accuracy estimation are
shown in Figure 13. While using -clustering
algorithm, since inter-cluster data has a better
coordination, estimation accuracy increases and
causes regression slope to approach y=x.
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4‘0@
>
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Figure 12. Comparison of accuracy of estimators (1) using all data and (2) using GK clustered data.
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Table 3. Accuracy of estimating concentration of geochemical elements (1) using all data and (2) clustering

algorithm.
Total data Gustafson kessel Clusterin method
Variable AllR2  Training R2  Validation R2  TestR2 | Variable @ AllR2  Training R2  Validation R2  Test R2
Al 0.95 0.96 0.94 0.94 Al 0.96 0.96 0.96 0.96
As 0.62 0.64 0.57 0.60 As 0.86 0.88 0.82 0.82
Ba 0.87 0.86 0.85 0.89 Ba 0.90 0.90 0.91 0.93
Be 0.83 0.83 0.82 0.82 Be 0.90 0.91 0.88 0.87
Ca 0.75 0.77 0.76 0.67 Ca 0.92 0.95 0.88 0.86
Co 0.71 0.72 0.68 0.71 Co 0.73 0.74 0.67 0.74
Cu 0.81 0.81 0.82 0.86 Cu 0.85 0.85 0.82 0.90
Fe 0.71 0.71 0.72 0.70 Fe 0.82 0.84 0.79 0.78
K 0.87 0.87 0.86 0.85 K 0.91 0.92 0.91 0.89
La 0.81 0.82 0.78 0.74 La 0.81 0.82 0.73 0.83
Mg 0.77 0.78 0.77 0.72 Mg 0.94 0.96 0.92 0.86
Mn 0.68 0.70 0.60 0.64 Mn 0.71 0.72 0.80 0.62
Mo 0.65 0.66 0.62 0.64 Mo 0.80 0.81 0.79 0.75
Na 0.89 0.89 0.88 0.89 Na 0.98 0.99 0.96 0.96
Ni 0.70 0.70 0.70 0.69 Ni 0.78 0.80 0.73 0.76
P 0.71 0.72 0.73 0.65 P 0.83 0.86 0.82 0.70
Pb 0.64 0.65 0.62 0.60 Pb 0.76 0.76 0.73 0.76
S 0.84 0.84 0.86 0.82 S 0.84 0.81 0.86 0.92
Sc 0.73 0.73 0.73 0.74 Sc 0.79 0.81 0.76 0.75
Sr 0.76 0.76 0.71 0.80 Sr 0.82 0.82 0.80 0.88
\Y% 0.72 0.71 0.76 0.71 A% 0.83 0.86 0.88 0.74
Zn 0.51 0.53 0.54 0.43 Zn 0.76 0.80 0.77 0.61
Average 0.75 0.76 0.74 0.73 Average 0.84 0.85 0.83 0.81
a 1‘4 104 All: R=0.95634 All: R=0.96738
212 Y=T OOOOOO C @ )
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Figure 13. Regression graph of actual and estimated data; x-axis represents actual data and y-axis shows
estimated data. (a.1) Regression graph of Al using all data, and (a.2) clustered data, (b.1) regression graph of Zn
using all data, and (b.2) clustered data.
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The comparison of concentration maps of the
actual and estimated values shows that the results
obtained correspond well with reality. For
example, the surface geochemical maps were
drawn for the actual and estimated concentration
of the elements Al, Cu, and Zn (Figure 14). A
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homogeneous distribution of Cu concentration is
realized when using clustered data in comparison
with the actual data. The geochemical spatial
distribution pattern was achieved using an
estimated map based on the surface and borehole
data.
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Figure 14. Comparison between actual and estimated surface concentration, (c.1) concentration map for Al with
actual data, and (c.2) estimated data, (d.1) concentration map for Zn with actual data, and (d.2) estimated data,
(e.1) concentration map for Cu with actual data, and (e.2) estimated data.
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6.2. Estimation error comparison

Estimation error is also a parameter in evaluation
of estimators’ performance, which must be
reduced to minimum. Data range varies
between -1 and 1.

For estimation error analysis, MSE was used.
According to the results from different design
schemes, the mean error using all data for
estimator design was 0.079. This error was higher
than the case of using clustering algorithm. The
average estimation error of 22 elements using GK
clustering algorithm reduced to 0.048. Therefore,
clustering algorithm increases the estimation

0.250
0.200
0.150
0.100
0.050
0.000

Al
As
Ba
Be
Ca
Co
Cu
Fe
La
Mg

=== Total Data mse

MSE

Mn

accuracy or reduces the estimation error. The
results of estimator error of geochemical elements
are shown in Figure 15.

Exploring error plots reveals a reduce in Al from
0.022 to 0.012, in As, from 0.105 to 0.025, and
from 0.115 to 0.046 in S.

The performance graph and distribution histogram
of error for As element show that the estimator
performance for clustered data is followed by
error reduction and symmetrical histogram (in
Figure 16). Generally, estimation error for all the
elements decreases by the clustering algorithm.
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Figure 15. Estimation error comparison for using all data and clustering method.
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7. Conclusions

In order to identify the pattern for element
distribution concentrations and to estimate the
concentration, multi-layer neural networks can be
applied. The results obtained from estimation
using neural networks, in the case of using all
data, showed that they adopted a proper
performance in element concentration estimation.
This method did not produce satisfactory results
for some elements such as Zn, As, Pb, Mo, and
Mn.

By clustering the available data and selecting the
best cluster for estimation design, accuracy of
estimators was improved. Clustering made
different data with the same characteristics in the
same clusters, and the correlation of data in
clusters reached a maximum value. The
performance of neural network in identification
governing pattern and estimation accuracy were
developed. The average accuracy for the 22
studied elements reached 84% when using
clustered data, which showed 9% increase in
comparison with estimation using all data.
Elemental accuracy increased in the case of using
clustered data.

In addition, a method other than estimation
accuracy could improve the estimation error. The
results obtained exhibited that the estimation error
when using GK clustering algorithm decreased
from 0.079 to 0.048 in comparison with all the
data used. Finally, wusing the estimated
concentrations of the geochemical elements at
different depth levels, it is possible to study the
changes of geochemical halos. Using the results
obtained, it is possible to identify the hidden
mineralization, surface erosion, and deep
extension of mineralization.
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