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Abstract

The quality properties of andesite (Unit Volume Weight, Uniaxial Compression Strength, Los500, etc.) are
required to determine the exploitable blocks and their sequence of extraction. However, the number of
samples that can be taken and analyzed is restricted, and thus the quality properties should be estimated at
unknown locations. Cokriging has been traditionally used in the estimation of spatially cross-correlated
variables. However, it can face unsolvable matrices in its algorithm. An alternative to cokriging is to
transform variables into spatially orthogonal factors, and then to apply kriging to them. Independent
Component Analysis (ICA) is one of the methods that can be used to generate these factors. However, ICA is
applicable to zero lag distance so that using methods with distance parameter in their algorithms would be
advantageous. In this work, Minimum Spatial Cross-correlation (MSC) was applied to six mechanical
properties of Cubuk andesite quarry located in Ankara, Turkey, in order to transform them into
approximately orthogonal factors at several lag distances. The factors were estimated at 1544 (5 m x 5 m)
regular grid points using the kriging method, and the results were back-transformed into the original data
space. The efficiency of the MSC-kriging was compared with Independent Component kriging (IC-kriging)
and cokriging through cross-validation test. All methods were unbiased but the MSC-kriging outperformed
the IC-kriging and cokriging because of having the lowest mean errors and the highest correlation
coefficients between the estimated and the observed values. The estimation results were used to determine
the most profitable blocks and the optimum direction of extraction.
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1. Introduction

Selective extraction of natural building stone, Taboada et al. [1] have used geostatistical

which maximizes the profit and minimizes the
environmental effects of mining operation, can be
done considering its important physical and
mechanical  properties such as  uniaxial
compression strength, porosity, and tensile
strength. At the planning stage, due to its
expenses, a limited number of samples can be
tested so that the researchers have used different
methods to estimate the required values of
unsampled locations.

techniques to estimate the quality of slate deposits
as a function of depth. They developed a quality
index that indicated the percentage of material
that could be extracted. Taboada et al. [2] have
used fuzzy kriging in resource evaluation of a
granite deposit, and Tutmez and Tercan [3] have
applied fuzzy modeling to the spatial estimation
of some mechanical properties of rocks. Fuzzy
kriging can account for the fact that a block may
contain different qualities and that the definition
of qualities in the field is subject to uncertainty. In
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this method, it is necessary to define membership
functions to represent uncertainty in the quality
variables under consideration. Ayalew et al. [4]
and Exadaktylos and Stavropoulou [5] have used
the kriging method to determine the spatial
variability of rock quality designation and rock
mass parameters. Saavedra et al. [6] have used a
compositional kriging technique to determine the
value of quality attributes in a granite deposit, and
Taboada et al. [7] have applied it in determining
the spatial distribution and the volume of four
commercial quartz grades, namely silicon metal,
ferrosilicon, aggregate, and kaolin in a quartz
seam.

Kriging is appropriate for univariate studies, and
in the presence of spatially cross-correlated
variables, it would be better to apply multivariate
estimation methods such as the traditional
cokriging approach. However, in the cokriging
method, the semi-variogram analysis is tedious

due to simultaneously modeling p
auto-variograms and px(p—-1/2
cross-variograms to guarantee the positive

definiteness of covariance matrices, where p 1is

the number of variables [8-9]. Although the linear
model of coregionalization guarantees the positive
definiteness of matrices, its imposed restrictions
may result in poor variogram fitting that deprives
cokriging from some of its possible advantages
over the kriging system [10-11]. In order to
guarantee the positive definiteness of matrices of
the cokriging system, and also to reduce the
number of auxiliary variables, Taboada et al. [12]
and Martinez et al. [13] have used the Principal
Component Analysis (PCA) to find a factor that
approximately represents the properties of all
original variables due to the highest variance it
has. Then they used this factor as an auxiliary
variable in the cokriging method.

There are also other works for transforming
spatially cross-correlated random variables into a
set of orthogonal factors that could be separately
estimated using univariate techniques, and the
results could be back-transformed into the original
data space [14-17]. The Stepwise Conditional
Transformation (SCT) is one of these
orthogonalization methods that aims to produce
normally distributed uncorrelated scores at zero
lag distance. Although SCT has the advantage of
producing Gaussian factors, it suffers from
ordering issues associated with the transformation
sequence of variables [18]. The next method is
Min/Max Autocorrelation Factors (MAF), which
has been used in several research works such as
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Tercan and Ozcelik [19], Desbarats [20],
Vargas-Guzman and Dimitrakopoulos [21],
Rondon [22], Sohrabian and Ozcelik [23],
Shakiba [24], and De Freitas Silva and

Dimitrakopoulos [25] to produce uncorrelated
factors at two lag distances. Some other works
such as Ruessink et al. [26], Nielsen [27], Liu et
al. [28], and Musafer and Thompson [29] take
advantage of non-linear PCA that is capable of
removing non-linear relationships.

Sohrabian and Ozcelik [30] have introduced
Independent Components Analysis (ICA) to
generate  independent factors from some
mechanical attributes of an andesite quarry. It has
been used in several works such as Tercan and
Sohrabian [31], Boluwade and Madramootoo
[32], and Minniakhmetov and Dimitrakopoulos
[33].

The general purpose of orthogonalization
techniques is to develop algorithms that produce
spatially independent factors. However, in most
real datasets, it is practically impossible to
generate factors that are orthogonal at all lag
distances [34]. Therefore, methods that look for
factors with approximate orthogonality at several
lag distances have gained popularity. Xie and
Myers [35] have suggested a version of
simultaneous diagonalization that minimizes the
cross-variogram models. The main drawback of
this approach is its smoothing feature imposed by
model variogram utilization. A method proposed
by Cardoso and Souloumiac [36] and Cardoso and
Souloumiac [37] has replaced a high-dimensional
minimization problem with a set of simple
problems in 2-D sub-spaces, and consequently,
applies Cholesky decomposition in each sub-
space. Despite being fast and convenient, this
method is applicable to positive definite matrices,
and it would not be operable in the presence of
non-invertible sub-space matrices [38]. Another
algorithm introduced by Joho and Rahbar [39] and
used in Joho [40] applies the Newton method to
minimize a second-order Taylor series
approximation of a cost function that contains off-
diagonal elements of matrices that should be
orthogonalized simultaneously. This method,
which is mathematically difficult, has a significant
handicap of substituting the cost function with its
approximation. Mueller and Ferreira [41] and
Tichavsky and Yeredor [42] have proposed an
efficient diagonalization method named uniformly
weighted exhaustive diagonalisation with Gauss
iterations (U-WEDGE), which has a good
convergence speed but is complicated and
practicable to positive definite matrices.
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Sohrabian and Tercan [43] have introduced the
Minimum Spatial Cross-correlation (MSC)
method, which uses the same sub-spaces
presented in [36]. However, instead of running the
Chokesky decomposition, MSC applies the
gradient descent method in the minimization
process of a univariate cost function. Then it is
simple and can be applied in the approximate
orthogonalization of any kind of matrices
including those with non-invertible sub-spaces.

In this work, we applied the MSC method to
produce factors that were approximately
orthogonal at several lag distances. The data
consisted of six spatially cross-correlated
mechanical attributes of an andesite quarry,
located in Ankara, Turkey. Variograms of the
generated factors were analyzed, and the
parameters obtained were used to estimate each
factor, separately, using the kriging method. The
method’s efficiency was compared with the
Independent Components kriging (IC-kriging) and
cokriging using their cross-validation results.
Then the same procedure was executed to predict
the unknown values of six mechanical attributes
of 1544 5m x5m blocks. Then the estimations
were used to classify the andesite blocks as
exploitable and non-exploitable.

This paper is structured as what follows. The
second section presents a factor approach for
multivariate geostatistical estimation. The third
section briefly explains the ICA and MSC
decomposition methods. The fourth section
presents a case study including the quarry and
data description, factor generation and efficiency
test of the MSC-kriging, and evaluation of the
Cubuk andesite quarry. At last, a conclusion is
presented.

2. Factor approach for multivariate
geostatistical estimation

Suppose that there are p stationary random

variables that are isotopically sampled at x data

locations. These variables can be shown in the
matrix form as follows:
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2(:)=[Z,(x), .. Z,(x)] (1)

where each element of Z includes one of the
variables. The variogram matrix of these variables
can be written as:

2, () =E ([26) -2 + [Z0) -2 +m] | (2)

where 2I',(h) represents a variogram matrix at

lag distance /, E is the expectation, and T is
transposition. The diagonal and off-diagonal
elements of this px p matrix present direct and
cross-variograms of variables at each lag distance
h, respectively. When /4 —> oo, the variogram
matrix equals variance-covariance matrix B .

If there is a linear transformation W that
transforms the given variables into factors
F(x):[Fl(x), vy Fp(x)] whose  cross-

variograms are 0 for all lags, then the factors can
be independently estimated, and the estimations
can be back-transformed into the original data
space using W' .

In our previous work [23], we applied the fast
ICA algorithm [44] to generate transformation
matrix W and factors that were independent at
zero lag distance. In this work, we used the MSC
method to find the appropriate W matrix that
gives factors with the lowest possible cross-
correlations at several lag distances. A flow chart
of the estimation process using orthogonalized
factors is shown in Figure 1.

3. Decomposition methods

We assumed that before running the ICA and
MSC algorithms, the multivariate data were
whitened with PCA. Without whitening, it was
necessary to find an arbitrary transformation

matrix with p®> parameters. However, after

whitening, the number of parameters reduced to
px(p—1)/2 and then it could be said that

whitening decreased the complexity and solved
half of the problem [43-44].
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Set mean values of variables to zero and then whiten them ‘
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‘ Run orthogonalization method to find a transformation matrix ‘

v

Generate spatially un-correlated factors by multiplying
white data to the transformation matrix

v

Estimate each factor independently using
kriging method

v

Back-transform the estimation
results into the data space

v

Figure 1. Flow chart of estimation process using orthogonalized factors.

3.1. Independent component analysis (ICA)
ICA, which tries to find mutually independent
factors from a linear combination of original
variables, is among the blind source separation
methods. In blind source separation problems, the
transformation and the resulting matrices are
unknown, and the number of equations is quite
smaller than the number of unknowns. For this
reason, statistical properties of the factors should
be considered as criteria. For example, the
negentropy of independent factors is the highest,
and then it can be iteratively maximized.
Therefore, ICA uses negentropy in its algorithm
searching for factors with super-Gaussian or
hyper-Gaussian distributions. In the presence of
one normally distributed underlying factor, ICA
finds all the non-Gaussian components, and then
the Gaussian factor would be automatically
explored. For two or more normally distributed
independent factors, ICA loses its efficiency, and
it cannot find all the independent directions so that
some of the resulting components would be a
mixture of the normally distributed factors.
Independent components can be achieved using
several ICA algorithms. Due to its accuracy and
speed of convergence [44], we used the FastICA
algorithm with deflationary orthogonalizaiton, as
follows:

1. Centralize the data to zero mean.

2. Whiten the centralized data by generating the
principal components and setting their variances
to 1 to obtainZ .
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3. Choose c, the number of ICs to be estimated.
Set the counter p <—1.

In our work, c is equal to the number of variables.
4. Choose a randomly generated initial vector of

unit norm for W, which is the pth column of the
transformation matrix W .

5. let W, <« E{zgW, )} —-E{e' W)W,
the
function for smoothing, and z is the rows of data
matrix 7, (expectation is taken with respect to

z).

6. Do the following orthogonalization:

where g represents hyperbolic tangent

p-1
Wy W, =20 WV, 3)

T.1etW, «<W,/noomW ).

8. If the inner product of two consequent W, is

greater than an assigned value, go back to step 5.
9.8Set p< p+1if p<c, goback to step 4.

3.2. Minimum spatial cross-correlation method
In this section, a brief explanation of the MSC
method and its algorithm are presented. Theory of
the MSC method is presented in details in [45].

The MSC method is capable of handing linear
relationships, and not the non-linear ones. The
average distance of adjacent samples can be
selected as the optimum lag distance. The number
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of lags can be chosen by dividing the maximum
range of auto/cross-variograms to the lag distance.
The MSC factors are a linear combination of the
original variables. These factors can be generated
by finding an  appropriate = orthogonal
transformation matrix W. In the MSC method,
the px p minimization problem is replaced by

px(p—1)/2 2D problems, which are easier to

handle. At first, we presented the problem in one
of the 2D spaces consisting of two variables, and
after that, we generalized it to several variables.
Assume that there are two  spatially
cross-correlated variables with a scatter plot
shown in Figure 2. The variogram matrix of these

variables at lag distance £, is:

7uh,) 7a(h,)
l—‘Z hm = 4
() 7 () vy, )} “)
r.(h __ cos@, sind, | 7, (h,) r,(h,) | cos,
()= __Singlz cos&, || 7 (h,) 7,(h,)

c0s 8, siné, (5, (h, ) =7, (h,))+ (cos 0, —sin’ 6.7, (h,,)

sing,,

m is the number of lags that should be regarded.
Now the objective is to find a 2x2
transformation matrix W .

W=|:COSHIZ —sin&z} 5)

sing, cos6,
which generates the F| and F, factors with

minimum sum of absolute cross-variograms over
several lags. @), is the angle that the direction of

the first component, F;, makes with the

1»
horizontal axis in a 2D space (Figure 2). The
variogram matrix of the produced factors can be
written as follows:

—sing,
} (6)

cosf,

cos 0,7 () + sin’ 6,7(h, ) —2cos8,sin6,y,,(h,,)

:{ cos” 6,7,(h,, ) +sin’ 6,7, (h,, ) +2c0s 6, sin 0,7, (h,,) cos 6, sin G, (7, (h,,) = 11,(h,,)) +(cos 6, —sin’ 6,)y,, (h,, ):|

Then for each 2-D case, the objective function
that contains the off-diagonal element of
variogram matrix of the new factors can be
written as follows:

P0,)=3 s (h,)] =
(7

> leosd, sing, (7, (h,) 7, (h,)) +(cos> 6, —sin> 6, )y, (h,)I

where i and j show the variables that are

considered at each step. y,. . (h,) represents the
iy

cross-variogram of the factors F; and F/,.

Algorithm of the MSC method can be shown as
follows:
1. Centralize the data to zero mean.

op(6;)
00,

0, =0 ~¢

il
6 =6y

0p(0,) 0%, 0rr, (b))
1ol7) 117

i i

4 . 4 2 )
2K, (cos™ 0, +sin" 6, —6xcos” 0, sin” 6, )y, (h,,)]

Where K, = Vi (hm) — Vi (hm) .

2. Whiten the centralized data to obtainZ. .
3. Give the number of variables p and the
number of lags 7 that should be considered.

4. Choose random initial values for (91.1. ,

i=l.,p—land j=i+1..p.

5. Minimize the spatial cross-correlation of each
pair of variables i and j. Spatial cross-
correlation of each pair of variables is a function
of 6.

lj b
every 1.57 radians (Figure 2). Therefore, it can be
easily minimized using the gradient descent

algorithm with the step size of C, as follows:

and has a global minimum that repeats

(®)

=" [(cos’ 8, sing, —sin* 6, cosd, )(2K 2 872 (h, )+

6. Find the total pX p transformation matrix,
W:
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p-1 r
Wpo - Hi:l Hj=f+IA
P

[cos@, —sind, 0 |
sing, cos6, O I

0 0 1

. . . . IX

L

0 0 0 . 1
| 0 0 0 . L
10 0 0o |
0 1 0 0
00 0 0
0 0 s6,,, —sind,
100 ng,,, cosb,,, |

Cardoso and Souloumiac [36] have presented a
similar way of approximately orthogonalizing
several matrices using 2D sub-spaces. In their
method, the Cholesky decomposition, which is
a decomposition of a Hermitian, positive-definite
matrix into the product of the eigenvalues, and
eigenvector matrices, is used. It is rare but
possible to face non-invertible covariance
matrices in sub-spaces while the total pxp

covariance matrix is positive definite. Then the
MSC method has the advantage of being
applicable to all kinds of matrices, and it does not
have the imposed restriction of the Cholesky
decomposition and is free of any assumption
about the distribution type of the produced factors.
Although the MSC method converges to the
absolute minimum without being trapped in the

e * |Z . .
*e 8 1, z 612
F,* 28 Fo®
(] % *
M T a2
e ®
3 2 .- ~ '(". ele, o 2 3
L]
- .
- .y .
- o - L]
L] - ’ L
P L] : . g0

a)

L0 =4,,0:)xA,, (6

0018,
001§
0014
0012
1]
L4

J) XX A

prlp ) =

PXp (

)

possible local minima of p —D space (p >2),

this method is a little slow and requires an
appropriate choice of the step size. Another issue
is that the MSC method can be applied to the
isotopically sampled data. If some variables are
unsample at some locations, MSC can be
implemented based on the complete-case analysis
using the isotopic sub-space of the data [16].
However, this approach reduces the number of
samples, and results in the loss of information.
Another approach is to apply the imputation
methods to complete data by assigning the
missing observations. Imputation approaches vary
from the simplest one that takes an average of the
nearby values to the complicated cases of multiple
imputation, which can be found in Little and
Rubin [46].

0008 4
0008 .
0004 ]
0002 1
% 05 1 5 7 25 3 35
645 (radian)

b)

Figure 2. a) Direction of original variables and produced factors, b) ¢ shown as a function of G, .
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4. Case study

4.1. Quarry and data descriptions

The studied area is an andesite quarry located in
the western side of Menekse Hill, 3 km south of
Susuz village in the Cubuk district, and 60 km NE
of Ankara, the capital of Turkey. The location
map of the studied area is given in Figure 3. It
occurs in the Tertiary Mamak Formation, which

consists of volcanic units such as andesite, dacite,
rhyolitic lava, and tuff. Lava flow orientation is
between N30-35E and 26—45SE in the centre of
the quarry and on the northern part. In the
southern part, a significant difference is observed
in lava flow orientation. The strike is between
E-W and N63W. The dip is between 37° and 55°
towards the north and northeast [47].

[T -

I'll. ] “-

Jos,
sl > -
A
7600
~——_ == Yy
— ;
Jo
20
i ey
\J
b
N
13 b Jg,
\
|\l \
MENEK! \.._

Figure 3. Location map of studied area and regular grid of size 20 m x 20 m used for sampling. Sample locations
are shown with red squares. UTM coordinate system was used in this work, and 36 UTM is valid for this area.

In this work, 108 (20cm x20cm x20cm) rock

samples were collected in a 20mx20m regular
grid shown in Figure 3. Then 5 cores were taken
from each of these samples and tested for Unit
Volume Weight (UW), Water Absorption capacity
by mass (WA), Uniaxial Compression Strength
(UCS), Tensile Strength (TS), Los500, and
Porosity (P) based on the guidelines of ISRM
[48]. After discarding the outliers, for each sample
location, the amount of attributes was calculated
by taking the average of the remained values.
Regarding this procedure and also applying a
regular sampling grid with an acceptable density
over the studied area, it can be said that the
samples are representative. The summary statistics
of variables and TS 10835 standards [49], which
are used to classify andesite as facing and building
stones, are presented in Table 1. The scatter plots
of variables, demonstrated in Figure 4, do not
show a considerable clustering issue.

Using the following equation, the spatial
cross-correlations of variables can be calculated at
different lag distances, /.

261

h

A 7ij

=
Vi X7

Cross-correlation value, r.%', is the ratio of the

g

(10)

experimental cross-variogram of the ith and jth
variables to their perfect spatial cross-variogram
value, and can vary between -1 and 1 [50-51].
Spatially uncorrelated variables have 7 values
equal to zero at all lag distances. Graphs of the
spatial cross-correlations of attributes were
calculated and shown in Figure 5. Moreover, the
cross-correlation matrix of variables is presented
in Table 2. All variables were spatially cross-
correlated so that they should be transformed into
spatially  uncorrelated factors using the
orthogonalization algorithms. Then each factor
can be estimated through the univariate estimation
methods such as kriging, and the results can be
back-transformed into the original data space.
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Table 1. Summary statistics of data and estimations together with TS 10835 standards (TSE, 1993) used to classify andesite as facing and building stones.

Variable
. . Water Absorption capacit Uniaxial Compression . .
Unit Weight P pacity P Porosity Tensile Strength
(UW) by mass Strength Los500 (P (TS)
(WA) (ucs)
Min Max Mean o? Min Max Mean o Min Max Mean o2 Min Max Mean o¢?> | Min Max Mean o¢%> | Min Max Mean o2
Data 217 272 2.62 0.007 0.16 0.80 0.41 0.013 25 131.25 79.15 588 11.20 16.20 14.31 1.48 | 0.81 441 1.96 0.25 | 5.09 1345 8.76 5.30
IC-
kriging 235 271 2.62 - 0.29 0.65 041 - 37.33 114.10 79.32 - 12.15 16.04 14.32 - 140 333 1.96 - 547 12.01 8.78 -
results
MSC-
kl‘iging 239 273 2.62 - 0.30 0.65 041 - 16.02 107.35 79.26 - 12.82  17.30 14.32 - 147 285 1.96 - 3.07 11.21 8.77 -
results
TS10835 >2.55 (g/em’) <0.7 (%) > 60 (MPa) <15.10 (%) <2(%) > 7 (MPa)
standards
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Figure 4. Scatter plots of variables.
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Figure 5. Graphs of spatial cross-correlations of variables. For being clear, the pair of variables are shown in two
different graphs. UCS-Los500 denotes the pair of UCS and Los500.

Table 2. Matrix of variables’ correlation coefficients.

TS

UCS WA UW

POR  Los500
POR 1
Los500 0.45 1
TS -0.44  -0.93
ucs -046 -0.87
WA 096 046
Uw 058 -0.32

0.94 1
-0.46 -0.48 1
031 034 -0.61 1

4.2. Factor generation and efficiency test of
MSC-kriging

Prior to running the MSC algorithm, the data was
centered to zero mean and whitened using PCA to
reduce the complexity of the problem to be solved
and also to restrict the norm of vectors W to 1.
Lag distance selection, which is the first important
step, was done considering the
auto/cross-variograms of the variables. The
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maximum range of variograms and the minimum
sampling distance were equal to 100 m and 20 m,
respectively. Therefore, we chose 5 as the number
of lags, and 20 m, 40 m, 60 m, 80 m, and 100 m
as distances that would be approximately
orthogonalized. Considering the mentioned lag
distances, the final transformation matrix
including the whitening process and the MSC step
was calculated as below:
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(2562 -8.158 —1.710 —11.206 —4.969 11.724]
0249 7.187 0.850 —0.811 —1.404 0.501
—0.118 0.000 0.048 -0.011 0.015 —0.005
1.724 —0234 0614 —0.101 -0.023 —-0.151
1.099 —0.470 2.035 0.106 0482 0.391

|—1.836 -35.84 2242 -1.496 -5.317 0.403 |

The MSC factors were generated by multiplying
this matrix by the zero centered original data
matrix. Cross-variograms of the MSC factors and
those of IC components calculated by Sohrabian
and Ozcelik [30] are presented in Figure 6.
Cross-variograms of the MSC factors, varying
between -0.19 and 0.11, are in a tighter interval
than those of the IC factors, which lie
between -0.21 and 0.23. This demonstrates the
efficiency of MSC over ICA in producing
spatially uncorrelated factors. For the MSC
factors, the largest remnant cross-correlations are
at 40 m, and then come 20 m and 60 m lags.

While cross-variograms of the MSC factors have
small cross-correlations, their auto-variograms
that show a high degree of spatial dependency can
be modeled using standard theoretical models.
Except for MSC6, which has erratic variogram
values at 60 m and 80 m, all variograms are
appropriately modeled (Figure 7) regarding the
cross-validation results. Unlike the principal
components, the MSC and ICA factors do not
have any order-related importance, and all of them
are equally informative. The model parameters of
the MSC factors including the nugget effects,
contributions, and variogram ranges are presented
in Table 3. The MSC4 and MSC6 with 69 m and
38 m have, consequently, the highest and the
lowest variogram ranges. Nugget effects of the
factors vary between 0.25 and 0.55.

After producing the MSC factors and analyzing
their variograms, a cross-validation test using 108
samples was performed for the efficiency
comparison of the MSC-kriging, IC-kriging, and
cokriging. Cross-validations were carried out by
temporarily removing each sample value from the
data and estimating its values using the remained
samples. Cokriging was performed using all
variables with the variogram models fitted
regarding the Cauchy—-Schwarz inequality.
Figures 8 and 9 present the auto- and cross-
variograms of variables together with the fitted
models. All variograms were modeled using a
nugget effect and one spherical structure with a
range of 75 m. The model variogram parameters
are given in Table 4. The minimum and maximum
number of samples used in the estimations were
chosen to be 3 and 17, respectively. For the
MSC-kriging and the IC-kriging, the estimated
values were back-transformed into the original
data space. Then the correlation coefficients of the
estimated and observed values, the Mean Errors
(ME), and the minimum and maximum errors of
the estimations were calculated (Table 5).
Consequently, ME and the correlation coefficient
of a perfect estimator would be 0 and 1. The mean
values of estimations are very close for all the
estimation methods, and there is no considerable
difference among them so that they are not shown
here. Since the MSC-kriging has the lowest ME
values, it is the best unbiased estimator; and after
that comes the IC-kriging. The highest correlation
coefficients between the estimated and observed
values are for the MSC-kriging, and the cokriging
has the lowest ones. The MSC-kriging and the
IC-kriging are more efficient than Cokriging.
Thus in the next sub-section, evaluation of the
andesite quarry will be done using these methods.

v(R) MSC v(h) ic

a2 t t $ T t 02

01 -

02 -

0 40 s 80 100 120 h(n) 190 20 4 &0 80 fo0 1zo h(m) 140

Figure 6. Cross-variograms of MSC and IC factors. Each color represents one of the fifteen cross-variograms of
factors. For simplicity and also preventing ambiguity, legends are not shown.
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Figure 7. Auto-variograms of MSC factors together with fitted models. Variograms of MSC1, MSC2, and MSC6
are fitted by spherical model. Exponential model is used for MSC3, MSC4, and MSCS.

Table 3. Model variogram parameters fitted to MSC factors.
Factor Variogram model Nugget effect Contribution Variogram range (m)

MSCI1 Spherical 0.47 0.53 50
MSC2 Spherical 0.50 0.50 39
MSC3 Exponential 0.20 0.80 49
MSC4 Exponential 0.25 0.75 69
MSC5 Exponential 0.55 0.45 39
MSC6 Spherical 0.50 0.50 38
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Figure 8. Auto-variograms of data (red dots) together with fitted models (black solid line).
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Figure 9. Cross-variograms of data (red dots) together with fitted model (solid black line).

Table 4. Model variogram parameters used in cokriging estimations. All variograms are of spherical type with a

range of 75 m.

Pair of variables Cco’ ctr Pair of variables Co C1 Pair of variables Co C1
UCS-UCS 250 155 UCS-TS 28 15 TS-WA -0.36 -0.23
TS-TS 35 1.8 UCS-Los500 -13.5 -85 TS-POR -0.8 -0.4
Los500-Los500 1 0.48 UCS-UW 0.15 0.5 Los500-UW -0.005 -0.029

UW-UW 0.0057 0.0026 UCS-WA -3 2.5 Los500-WA 0.17 0.14
WA-WA 09 0.09 UCS-POR -7 -3.5 Los500-POR 0.40 0.20
POR-POR 0.92 0.38 TS-Los500 -1.75 -0.90 UW-WA -0.02 -0.01
WA-POR 0.4 0.15 TS-UW 0.005 0.065 UW-POR -0.04 -0.02

'C0 and C1 are nugget effect and contribution, respectively.
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Table 5. Comparison of cross-validation results of MSC-kriging, IC-kriging, and Cokriging.

Correlation coefficient between estimated and
Mean error
observed values
. UCS TS UW WA P UCS TS UW WA P
Variables  nrpo)  MPa)  (gem®) (%) (%) PO | (MPa)y (MPa) (gem®) (%) (%) oS00
MSC- 056 057 045 031 032 058 | 017 0045 00009 . - - -
kriging ’ ’ ’ ’ ’ ’ ’ ’ ’ 0.0039  0.008 0.0095
IC-kriging 0.53 0.51 0.41 027 0.22 0.52 0.64 0.074  0.0005 00005 0.001 -0.03
Cokriging 0.52 0.45 0.39 0.16 0.18 0.48 0.64 0.06 0.0016 00032 0012 -0.02
Minimum error value Maximum error value
. UCS TS Uw WA P UCsS TS Uw WA P
Variables  (vipay  MPa)  @em) (%) (%) O | (MPa) (MPa) (glemd) (%) (%)
M.S.C_ -60.97 -5.29 -0.138  -0.38 -2.27 -2.42 53.85 4.28 0.42 0.32 1.17 2.74
kriging
IC-kriging -42.6 -4.81 -0.129  -041 -2.42 -2.65 44.19 4.94 0.42 0.29 1.24 2.83
Cokriging -40.62 -3.95 -0.188  -0.35 -2.20 -2.89 62.2 5.15 0.42 0.26 1.22 2.22

4.3. Evaluation of Cubuk andesite quarry

The MSC factors have negligible cross-variogram
values at all lag distances (Figure 6) so that they
can be estimated separately using the kriging
method. 1544 blocks of equal sizes (5 m X 5 m)
were considered in the prediction process. The
sample dimension is very small in comparison to
that of the blocks, and the estimation of attributes
at a specific scale different from the sample
support would cause support relative problems. In
order to solve this problem, the blocks can be
divided into the supports of finite size [52-53]. In
this way, an enormous number of sub-divisions
would be emerged, which may be intense to solve.
Isaaks and Srivastava [9] and Journel and
Huijbregts [10], respectively, have suggested 16
and 36 as the number of sub-divisions in a 2D
space. Thus in this work, we divided each 2D
block into 25 sub-divisions and estimated the
attributes of interest at each sub-division’s center,
and then took their average to obtain the block
estimations. After predicting the MSC block

estimations, the results obtained were
back-transformed into the data space and
compared to those of the IC-kriging. A
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comparison was made by checking the summary
statistics of the results including the minimum,
maximum, and mean values (Table 1), and also
drawing the quantile plots of the estimations
against those of the data (Figure 10). The quantile
plots indicate a better reproduction of the data
distributions through the MSC-kriging.

After back-transformation, the TS 10835
standards of Table 1 were used to classify andesite
as the facing and building stones. Figure 11 shows
the interpolated maps of variables. Based upon the
estimated values for variables, the blocks were
classified as exploitable and non-exploitable in
Figure 12. In this figure, the blocks that were
classified by both methods as exploitable are
demonstrated in blue. The block percentages
classified as exploitable by the MSC-kriging and
IC-kriging methods are %58 and %063,
respectively. Most of the northwestern blocks that
were determined by the IC-kriging as
unexploitable were established as extractable by
the MSC-kriging. At the eastern part of the
quarry, the number of extractable blocks obtained
from the IC-kriging is more than that of the
MSC-kriging.
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5. Conclusions

Multivariate geostatistical estimation can be
performed using the conventional cokriging
methods or kriging of the orthogonal factors. The
kriging estimation of the orthogonalized factors
eliminates the  tedious procedure of
auto/cross-variogram analysis, and avoids the
probability of facing an unsolvable system of
equations.

In this work, at several lag distances,
approximately orthogonal factors were produced
through the Minimum Spatial Cross-correlation
(MSC), and then the factors were estimated using
the kriging method to be used in the selective
extraction of andesite blocks. By running the
cross-validation test, the method’s efficiency was

7658.5

)

Figure 12. Exploitable blocks (blue colored) obtained using a) MSCK, b) ICK, and c) both methods considered
together.
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7753.5

proved against the Independent Components
kriging (IC-kriging) and cokriging.

The MSC factors have negligible
cross-variograms that lie in a tighter interval than
those of the IC factors so that the purpose of
generating almost orthogonal factors was
achieved. The MSC-kriging, IC-kriging, and
cokriging cross-validation results reasonably
reproduce variables’ means. Among these
methods, the MSC-kriging demonstrates the
lowest bias due to possessing the lowest ME’s.
The MSC-kriging outperforms IC-kriging and
cokriging for having the highest correlation
coefficients of the estimated and observed values.

The proportion of the exploitable blocks to the
total number of blocks were obtained to be 58%
and 63% for the MSC-kriging and the IC-kriging,
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respectively. These blocks are mainly located
around an imaginary N30°E oriented line, which
intercepts the southwest corner of the studied area.
The MSC-kriging is practical and user-friendly,
and shows advantages over the cokriging and the
IC-kriging; thus we recommend it for multivariate
studies.
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