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Abstract 

The quality properties of andesite (Unit Volume Weight, Uniaxial Compression Strength, Los500, etc.) are 

required to determine the exploitable blocks and their sequence of extraction. However, the number of 

samples that can be taken and analyzed is restricted, and thus the quality properties should be estimated at 

unknown locations. Cokriging has been traditionally used in the estimation of spatially cross-correlated 

variables. However, it can face unsolvable matrices in its algorithm. An alternative to cokriging is to 

transform variables into spatially orthogonal factors, and then to apply kriging to them. Independent 

Component Analysis (ICA) is one of the methods that can be used to generate these factors. However, ICA is 

applicable to zero lag distance so that using methods with distance parameter in their algorithms would be 

advantageous. In this work, Minimum Spatial Cross-correlation (MSC) was applied to six mechanical 

properties of Cubuk andesite quarry located in Ankara, Turkey, in order to transform them into 

approximately orthogonal factors at several lag distances. The factors were estimated at 1544 (5 m × 5 m) 

regular grid points using the kriging method, and the results were back-transformed into the original data 

space. The efficiency of the MSC-kriging was compared with Independent Component kriging (IC-kriging) 

and cokriging through cross-validation test. All methods were unbiased but the MSC-kriging outperformed 

the IC-kriging and cokriging because of having the lowest mean errors and the highest correlation 

coefficients between the estimated and the observed values. The estimation results were used to determine 

the most profitable blocks and the optimum direction of extraction. 

   

Keywords: Spatial Cross-Correlation, Kriging, Variogram, Building Stone. 

1. Introduction 

Selective extraction of natural building stone, 

which maximizes the profit and minimizes the 

environmental effects of mining operation, can be 

done considering its important physical and 

mechanical properties such as uniaxial 

compression strength, porosity, and tensile 

strength. At the planning stage, due to its 

expenses, a limited number of samples can be 

tested so that the researchers have used different 

methods to estimate the required values of 

unsampled locations. 

Taboada et al. [1] have used geostatistical 

techniques to estimate the quality of slate deposits 

as a function of depth. They developed a quality 

index that indicated the percentage of material 

that could be extracted. Taboada et al. [2] have 

used fuzzy kriging in resource evaluation of a 

granite deposit, and Tutmez and Tercan [3] have 

applied fuzzy modeling to the spatial estimation 

of some mechanical properties of rocks. Fuzzy 

kriging can account for the fact that a block may 

contain different qualities and that the definition 

of qualities in the field is subject to uncertainty. In 
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this method, it is necessary to define membership 

functions to represent uncertainty in the quality 

variables under consideration. Ayalew et al. [4] 

and Exadaktylos and Stavropoulou [5] have used 

the kriging method to determine the spatial 

variability of rock quality designation and rock 

mass parameters. Saavedra et al. [6] have used a 

compositional kriging technique to determine the 

value of quality attributes in a granite deposit, and 

Taboada et al. [7] have applied it in determining 

the spatial distribution and the volume of four 

commercial quartz grades, namely silicon metal, 

ferrosilicon, aggregate, and kaolin in a quartz 

seam. 

Kriging is appropriate for univariate studies, and 

in the presence of spatially cross-correlated 

variables, it would be better to apply multivariate 

estimation methods such as the traditional 

cokriging approach. However, in the cokriging 

method, the semi-variogram analysis is tedious 

due to simultaneously modeling    

auto-variograms and ( 1) / 2 p p   

cross-variograms to guarantee the positive 

definiteness of covariance matrices, where p  is 

the number of variables [8-9]. Although the linear 

model of coregionalization guarantees the positive 

definiteness of matrices, its imposed restrictions 

may result in poor variogram fitting that deprives 

cokriging from some of its possible advantages 

over the kriging system [10-11]. In order to 

guarantee the positive definiteness of matrices of 

the cokriging system, and also to reduce the 

number of auxiliary variables, Taboada et al. [12] 

and Martinez et al. [13] have used the Principal 

Component Analysis (PCA) to find a factor that 

approximately represents the properties of all 

original variables due to the highest variance it 

has. Then they used this factor as an auxiliary 

variable in the cokriging method.   

There are also other works for transforming 

spatially cross-correlated random variables into a 

set of orthogonal factors that could be separately 

estimated using univariate techniques, and the 

results could be back-transformed into the original 

data space [14-17]. The Stepwise Conditional 

Transformation (SCT) is one of these 

orthogonalization methods that aims to produce 

normally distributed uncorrelated scores at zero 

lag distance. Although SCT has the advantage of 

producing Gaussian factors, it suffers from 

ordering issues associated with the transformation 

sequence of variables [18]. The next method is 

Min/Max Autocorrelation Factors (MAF), which 

has been used in several research works such as 

Tercan and Ozcelik [19], Desbarats [20],  

Vargas-Guzmán and Dimitrakopoulos [21], 

Rondon [22], Sohrabian and Ozcelik [23], 

Shakiba [24], and De Freitas Silva and 

Dimitrakopoulos [25] to produce uncorrelated 

factors at two lag distances. Some other works 

such as Ruessink et al. [26], Nielsen [27], Liu et 

al. [28], and Musafer and Thompson [29] take 

advantage of non-linear PCA that is capable of 

removing non-linear relationships. 

Sohrabian and Ozcelik [30] have introduced 

Independent Components Analysis (ICA) to 

generate independent factors from some 

mechanical attributes of an andesite quarry. It has 

been used in several works such as Tercan and 

Sohrabian [31], Boluwade and Madramootoo 

[32], and Minniakhmetov and Dimitrakopoulos 

[33]. 

The general purpose of orthogonalization 

techniques is to develop algorithms that produce 

spatially independent factors. However, in most 

real datasets, it is practically impossible to 

generate factors that are orthogonal at all lag 

distances [34]. Therefore, methods that look for 

factors with approximate orthogonality at several 

lag distances have gained popularity. Xie and 

Myers [35] have suggested a version of 

simultaneous diagonalization that minimizes the 

cross-variogram models. The main drawback of 

this approach is its smoothing feature imposed by 

model variogram utilization. A method proposed 

by Cardoso and Souloumiac [36] and Cardoso and 

Souloumiac [37] has replaced a high-dimensional 

minimization problem with a set of simple 

problems in 2-D sub-spaces, and consequently, 

applies Cholesky decomposition in each sub-

space. Despite being fast and convenient, this 

method is applicable to positive definite matrices, 

and it would not be operable in the presence of 

non-invertible sub-space matrices [38]. Another 

algorithm introduced by Joho and Rahbar [39] and 

used in Joho [40] applies the Newton method to 

minimize a second-order Taylor series 

approximation of a cost function that contains off-

diagonal elements of matrices that should be 

orthogonalized simultaneously. This method, 

which is mathematically difficult, has a significant 

handicap of substituting the cost function with its 

approximation. Mueller and Ferreira [41] and 

Tichavsky and Yeredor [42] have proposed an 

efficient diagonalization method named uniformly 

weighted exhaustive diagonalisation with Gauss 

iterations (U-WEDGE), which has a good 

convergence speed but is complicated and 

practicable to positive definite matrices. 
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Sohrabian and Tercan [43] have introduced the 

Minimum Spatial Cross-correlation (MSC) 

method, which uses the same sub-spaces 

presented in [36]. However, instead of running the 

Chokesky decomposition, MSC applies the 

gradient descent method in the minimization 

process of a univariate cost function. Then it is 

simple and can be applied in the approximate 

orthogonalization of any kind of matrices 

including those with non-invertible sub-spaces. 

In this work, we applied the MSC method to 

produce factors that were approximately 

orthogonal at several lag distances. The data 

consisted of six spatially cross-correlated 

mechanical attributes of an andesite quarry, 

located in Ankara, Turkey. Variograms of the 

generated factors were analyzed, and the 

parameters obtained were used to estimate each 

factor, separately, using the kriging method. The 

method’s efficiency was compared with the 

Independent Components kriging (IC-kriging) and 

cokriging using their cross-validation results. 

Then the same procedure was executed to predict 

the unknown values of six mechanical attributes 

of 1544 5 5m m  blocks. Then the estimations 

were used to classify the andesite blocks as 

exploitable and non-exploitable. 

This paper is structured as what follows. The 

second section presents a factor approach for 

multivariate geostatistical estimation. The third 

section briefly explains the ICA and MSC 

decomposition methods. The fourth section 

presents a case study including the quarry and 

data description, factor generation and efficiency 

test of the MSC-kriging, and evaluation of the 

Cubuk andesite quarry. At last, a conclusion is 

presented. 

2. Factor approach for multivariate 

geostatistical estimation 

Suppose that there are p stationary random 

variables that are isotopically sampled at x  data 

locations. These variables can be shown in the 

matrix form as follows: 

1( ) ( ), ..., ( )px Z x Z x   Z  (1) 

where each element of Z  includes one of the 

variables. The variogram matrix of these variables 

can be written as: 

   2 ( ) ( ) ( ) ( ) ( )
T

h E x x h x x h    Γ Z Z Z Zz  (2) 

where 2 ( )hzΓ  represents a variogram matrix at 

lag distance h , E  is the expectation, and T  is 

transposition. The diagonal and off-diagonal 

elements of this p p  matrix present direct and 

cross-variograms of variables at each lag distance 

h   respectively. When h , the variogram 

matrix equals variance-covariance matrix B . 

If there is a linear transformation W  that 

transforms the given variables into factors 

1( ) ( ), ..., ( )px F x F x   F  whose cross-

variograms are 0 for all lags, then the factors can 

be independently estimated, and the estimations 

can be back-transformed into the original data 

space using
1

W . 

In our previous work [23], we applied the fast 

ICA algorithm [44] to generate transformation 

matrix W  and factors that were independent at 

zero lag distance. In this work, we used the MSC 

method to find the appropriate W matrix that 

gives factors with the lowest possible cross-

correlations at several lag distances. A flow chart 

of the estimation process using orthogonalized 

factors is shown in Figure 1. 

3. Decomposition methods 

We assumed that before running the ICA and 

MSC algorithms, the multivariate data were 

whitened with PCA. Without whitening, it was 

necessary to find an arbitrary transformation 

matrix with 
2p  parameters. However, after 

whitening, the number of parameters reduced to 

( 1) / 2p p   and then it could be said that 

whitening decreased the complexity and solved 

half of the problem [43-44]. 
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Figure 1. Flow chart of estimation process using orthogonalized factors. 

 

3.1. Independent component analysis (ICA) 

ICA, which tries to find mutually independent 

factors from a linear combination of original 

variables, is among the blind source separation 

methods. In blind source separation problems, the 

transformation and the resulting matrices are 

unknown, and the number of equations is quite 

smaller than the number of unknowns. For this 

reason, statistical properties of the factors should 

be considered as criteria. For example, the 

negentropy of independent factors is the highest, 

and then it can be iteratively maximized. 

Therefore, ICA uses negentropy in its algorithm 

searching for factors with super-Gaussian or 

hyper-Gaussian distributions. In the presence of 

one normally distributed underlying factor, ICA 

finds all the non-Gaussian components, and then 

the Gaussian factor would be automatically 

explored. For two or more normally distributed 

independent factors, ICA loses its efficiency, and 

it cannot find all the independent directions so that 

some of the resulting components would be a 

mixture of the normally distributed factors. 

Independent components can be achieved using 

several ICA algorithms. Due to its accuracy and 

speed of convergence [44], we used the FastICA 

algorithm with deflationary orthogonalizaiton, as 

follows: 

1. Centralize the data to zero mean. 

2. Whiten the centralized data by generating the 

principal components and setting their variances 

to 1 to obtain Z . 

3. Choose c, the number of ICs to be estimated. 

Set the counter 1p  . 

 In our work, c is equal to the number of variables. 

4. Choose a randomly generated initial vector of 

unit norm for 
pW , which is the pth column of the 

transformation matrix W . 

5. let    '( ) ( ) p p p pW E zg zW E g zW W , 

where g represents the hyperbolic tangent 

function for smoothing, and z is the rows of data 

matrix Z  (expectation is taken with respect to 

z ). 

6. Do the following orthogonalization: 

1

1

( )




 
p

T

p p p j j

j

W W W W W  (3) 

7. let / ( )p p pW W norm W . 

8. If the inner product of two consequent pW  is 

greater than an assigned value, go back to step 5. 

9. Set 1p p  if p c , go back to step 4. 

3.2. Minimum spatial cross-correlation method 

In this section, a brief explanation of the MSC 

method and its algorithm are presented. Theory of 

the MSC method is presented in details in [45]. 

The MSC method is capable of handing linear 

relationships, and not the non-linear ones. The 

average distance of adjacent samples can be 

selected as the optimum lag distance. The number 
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of lags can be chosen by dividing the maximum 

range of auto/cross-variograms to the lag distance. 

The MSC factors are a linear combination of the 

original variables. These factors can be generated 

by finding an appropriate orthogonal 

transformation matrix W . In the MSC method, 

the p p  minimization problem is replaced by 

( 1) / 2p p   2D problems, which are easier to 

handle. At first, we presented the problem in one 

of the 2D spaces consisting of two variables, and 

after that, we generalized it to several variables. 

Assume that there are two spatially  

cross-correlated variables with a scatter plot 

shown in Figure 2. The variogram matrix of these 

variables at lag distance mh  is: 

11 12

21 22

( ) ( )
( )

( ) ( )

m m

m

m m

h h
h

h h

 

 

 
  
 

ZΓ  (4) 

  is the number of lags that should be regarded. 

Now the objective is to find a 2 2  

transformation matrix W . 

12 12

12 12

cos sin

sin cos

 

 

 
  
 

W  (5) 

which generates the 
1F  and 

2F  factors with 

minimum sum of absolute cross-variograms over 

several lags. 12  is the angle that the direction of 

the first component, 1F , makes with the 

horizontal axis in a 2D space (Figure 2). The 

variogram matrix of the produced factors can be 

written as follows: 

12 12 11 12 12 12

12 12 21 22 12 12

cos sin ( ) ( ) cos sin
( )

sin cos ( ) ( ) sin cos

m m

m

m m

h h
h

h h

     

     

     
      

     
FΓ  (6) 

2 2 2 2

12 11 12 22 12 12 12 12 12 22 11 12 12 12

2 2 2 2

12 12 22 11 12 12 12 12 22 12 11 12

cos ( ) sin ( ) 2cos sin ( ) cos sin ( ( ) ( )) (cos sin ) ( )

cos sin ( ( ) ( )) (cos sin ) ( ) cos ( ) sin ( ) 2cos sin

    


    

m m m m m m

m m m m m

h h h h h h

h h h h h

             

            12 12 ( )

 
 
 mh

 

 

Then for each 2-D case, the objective function 

that contains the off-diagonal element of 

variogram matrix of the new factors can be 

written as follows: 

2

1
( ) [ ( )]

i j

l

ij F F mm
h  


   

2 2 2

1
[cos sin ( ( ) ( )) (cos sin ) ( )]

l

ij ij ii m jj m ij ij ij mm
h h h      


    

(7) 

where i  and j  show the variables that are 

considered at each step. ( )
i jF F mh  represents the 

cross-variogram of the factors iF  and 
jF . 

Algorithm of the MSC method can be shown as 

follows: 

1. Centralize the data to zero mean. 

2. Whiten the centralized data to obtain Z . 

3. Give the number of variables p  and the 

number of lags m  that should be considered. 

4. Choose random initial values for 
ij , 

1,..., 1i p   and 1,...,j i p  . 

5. Minimize the spatial cross-correlation of each 

pair of variables i  and j . Spatial cross-

correlation of each pair of variables is a function 

of 
ij , and has a global minimum that repeats 

every 1.57 radians (Figure 2). Therefore, it can be 

easily minimized using the gradient descent 

algorithm with the step size of  , as follows: 

1

1
( )








  


t

ij ij

ijt t

ij ij

ij  

 
 


 

2

1 3 3 2 2

1

4 4 2 2

( ( ))( )
[(cos sin sin cos )(2 8 ( ))

2 (cos sin 6 cos sin ) ( )]






    

 

  




i j

l

F F m lij m

ij ij ij ij m ij mm
ij ij

m ij ij ij ij ij m

h
K h

K h

 
    

 

    

 

(8) 

Where ( ) ( )m jj m ii mK h h   .  6. Find the total p p  transformation matrix, 

W : 
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1

12 13 11 1

12 12 13 13

12 12

13 13

( ) ( ) ( ) ... ( )

cos sin 0 0 0 cos 0 sin 0 0

sin cos 0 0 0 0 1 0 0 0

0 0 1 0 0 sin 0 cos 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1 0 0 0 0 1

p p

p p ij p p p p p p p pi j i p p
   

   

 

 



       
     

  
 
 
 

 
 
 
 
  

 W A A A A

1 1

1 1

...

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 cos sin

0 0 0 sin cos

p p p p

p p p p

 

 

 

 

 
 
 
 

  
 
 
 
  

 
 
 
 
 
 
 
 
  

 

(9) 

 

Cardoso and Souloumiac [36] have presented a 

similar way of approximately orthogonalizing 

several matrices using 2D sub-spaces. In their 

method, the Cholesky decomposition, which is 

a decomposition of a Hermitian, positive-definite 

matrix into the product of the eigenvalues, and 

eigenvector matrices, is used. It is rare but 

possible to face non-invertible covariance 

matrices in sub-spaces while the total p p  

covariance matrix is positive definite. Then the 

MSC method has the advantage of being 

applicable to all kinds of matrices, and it does not 

have the imposed restriction of the Cholesky 

decomposition and is free of any assumption 

about the distribution type of the produced factors. 

Although the MSC method converges to the 

absolute minimum without being trapped in the 

possible local minima of p D  space ( 2)p , 

this method is a little slow and requires an 

appropriate choice of the step size. Another issue 

is that the MSC method can be applied to the 

isotopically sampled data. If some variables are 

unsample at some locations, MSC can be 

implemented based on the complete-case analysis 

using the isotopic sub-space of the data [16]. 

However, this approach reduces the number of 

samples, and results in the loss of information. 

Another approach is to apply the imputation 

methods to complete data by assigning the 

missing observations. Imputation approaches vary 

from the simplest one that takes an average of the 

nearby values to the complicated cases of multiple 

imputation, which can be found in Little and 

Rubin [46]. 
  

 

Figure 2. a) Direction of original variables and produced factors, b)   shown as a function of 12 . 

https://en.wikipedia.org/wiki/Matrix_decomposition
https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Positive-definite_matrix
https://en.wikipedia.org/wiki/Positive-definite_matrix
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4. Case study 

4.1. Quarry and data descriptions 

The studied area is an andesite quarry located in 

the western side of Menekse Hill, 3 km south of 

Susuz village in the Cubuk district, and 60 km NE 

of Ankara, the capital of Turkey. The location 

map of the studied area is given in Figure 3. It 

occurs in the Tertiary Mamak Formation, which 

consists of volcanic units such as andesite, dacite, 

rhyolitic lava, and tuff. Lava flow orientation is 

between N30–35E and 26–45SE in the centre of 

the quarry and on the northern part. In the 

southern part, a significant difference is observed 

in lava flow orientation. The strike is between  

E-W and N63W. The dip is between 37° and 55° 

towards the north and northeast [47]. 

 

 
Figure 3. Location map of studied area and regular grid of size 20 m × 20 m used for sampling. Sample locations 

are shown with red squares. UTM coordinate system was used in this work, and 36 UTM is valid for this area. 

 

In this work, 108 (20 20 20 ) cm cm cm  rock 

samples were collected in a 20 20m m  regular 

grid shown in Figure 3. Then 5 cores were taken 

from each of these samples and tested for Unit 

Volume Weight (UW), Water Absorption capacity 

by mass (WA), Uniaxial Compression Strength 

(UCS), Tensile Strength (TS), Los500, and 

Porosity (P) based on the guidelines of ISRM 

[48]. After discarding the outliers, for each sample 

location, the amount of attributes was calculated 

by taking the average of the remained values. 

Regarding this procedure and also applying a 

regular sampling grid with an acceptable density 

over the studied area, it can be said that the 

samples are representative. The summary statistics 

of variables and TS 10835 standards [49], which 

are used to classify andesite as facing and building 

stones, are presented in Table 1. The scatter plots 

of variables, demonstrated in Figure 4, do not 

show a considerable clustering issue. 

Using the following equation, the spatial  

cross-correlations of variables can be calculated at 

different lag distances, h . 




h

ijh

ij
h h

ii jj

r


 
 (10) 

Cross-correlation value, 
h

ijr , is the ratio of the 

experimental cross-variogram of the ith and jth 

variables to their perfect spatial cross-variogram 

value, and can vary between -1 and 1 [50-51]. 

Spatially uncorrelated variables have r  values 

equal to zero at all lag distances. Graphs of the 

spatial cross-correlations of attributes were 

calculated and shown in Figure 5. Moreover, the 

cross-correlation matrix of variables is presented 

in Table 2. All variables were spatially cross-

correlated so that they should be transformed into 

spatially uncorrelated factors using the 

orthogonalization algorithms. Then each factor 

can be estimated through the univariate estimation 

methods such as kriging, and the results can be 

back-transformed into the original data space. 
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Table 1. Summary statistics of data and estimations together with TS 10835 standards (TSE, 1993) used to classify andesite as facing and building stones. 

 

Variable 

Unit Weight  

(UW) 

Water Absorption capacity 

by mass  

(WA) 

Uniaxial Compression 

Strength 

(UCS) 

Los500 
Porosity  

(P) 

Tensile Strength 

 (TS) 

Min Max Mean    Min Max Mean    Min Max Mean    Min Max Mean    Min Max Mean    Min Max Mean    

Data 2.17 2.72 2.62 0.007 0.16 0.80 0.41 0.013 25 131.25 79.15 588 11.20 16.20 14.31 1.48 0.81 4.41 1.96 0.25 5.09 13.45 8.76 5.30 

IC-

kriging 

results 

2.35 2.71 2.62 - 0.29 0.65 0.41 - 37.33 114.10 79.32 - 12.15 16.04 14.32 - 1.40 3.33 1.96 - 5.47 12.01 8.78 - 

MSC-

kriging 

results 

2.39 2.73 2.62 - 0.30 0.65 0.41 - 16.02 107.35 79.26 - 12.82 17.30 14.32 - 1.47 2.85 1.96 - 3.07 11.21 8.77 - 

TS10835 

standards 
>2.55 (g/cm3) < 0.7 (%) > 60 (MPa) < 15.10 (%) < 2 (%) > 7 (MPa) 
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Figure 4. Scatter plots of variables. 
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Figure 5. Graphs of spatial cross-correlations of variables. For being clear, the pair of variables are shown in two 

different graphs. UCS-Los500 denotes the pair of UCS and Los500. 

 
Table 2. Matrix of variables’ correlation coefficients. 

 POR Los500 TS UCS WA UW 

POR 1      

Los500  0.45 1     

TS -0.44 -0.93 1    

UCS -0.46 -0.87 0.94 1   

WA -0.96 0.46 -0.46 -0.48 1  

UW -0.58 -0.32 0.31 0.34 -0.61 1 

 

4.2. Factor generation and efficiency test of 

MSC-kriging 

Prior to running the MSC algorithm, the data was 

centered to zero mean and whitened using PCA to 

reduce the complexity of the problem to be solved 

and also to restrict the norm of vectors   to 1. 

Lag distance selection, which is the first important 

step, was done considering the  

auto/cross-variograms of the variables. The 

maximum range of variograms and the minimum 

sampling distance were equal to 100 m and 20 m, 

respectively. Therefore, we chose 5 as the number 

of lags, and 20 m, 40 m, 60 m, 80 m, and 100 m 

as distances that would be approximately 

orthogonalized. Considering the mentioned lag 

distances, the final transformation matrix 

including the whitening process and the MSC step 

was calculated as below:  
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2.562 8.158 1.710 11.206 4.969 11.724

0.249 7.187 0.850 0.811 1.404 0.501

0.118 0.000 0.048 0.011 0.015 0.005

1.724 0.234 0.614 0.101 0.023 0.151

1.099 0.470 2.035 0.106 0.482 0.391

1.836 35.84 2.242 1.496 5.317 0.

   

 

  


   



    

W

403

 
 
 
 
 
 
 
 
  

 

The MSC factors were generated by multiplying 

this matrix by the zero centered original data 

matrix. Cross-variograms of the MSC factors and 

those of IC components calculated by Sohrabian 

and Ozcelik [30] are presented in Figure 6.  

Cross-variograms of the MSC factors, varying 

between -0.19 and 0.11, are in a tighter interval 

than those of the IC factors, which lie  

between -0.21 and 0.23. This demonstrates the 

efficiency of MSC over ICA in producing 

spatially uncorrelated factors. For the MSC 

factors, the largest remnant cross-correlations are 

at 40 m, and then come 20 m and 60 m lags. 

While cross-variograms of the MSC factors have 

small cross-correlations, their auto-variograms 

that show a high degree of spatial dependency can 

be modeled using standard theoretical models. 

Except for MSC6, which has erratic variogram 

values at 60 m and 80 m, all variograms are 

appropriately modeled (Figure 7) regarding the 

cross-validation results. Unlike the principal 

components, the MSC and ICA factors do not 

have any order-related importance, and all of them 

are equally informative. The model parameters of 

the MSC factors including the nugget effects, 

contributions, and variogram ranges are presented 

in Table 3. The MSC4 and MSC6 with 69 m and 

38 m have, consequently, the highest and the 

lowest variogram ranges. Nugget effects of the 

factors vary between 0.25 and 0.55. 

After producing the MSC factors and analyzing 

their variograms, a cross-validation test using 108 

samples was performed for the efficiency 

comparison of the MSC-kriging, IC-kriging, and 

cokriging. Cross-validations were carried out by 

temporarily removing each sample value from the 

data and estimating its values using the remained 

samples. Cokriging was performed using all 

variables with the variogram models fitted 

regarding the Cauchy–Schwarz inequality. 

Figures 8 and 9 present the auto- and cross-

variograms of variables together with the fitted 

models. All variograms were modeled using a 

nugget effect and one spherical structure with a 

range of 75 m. The model variogram parameters 

are given in Table 4. The minimum and maximum 

number of samples used in the estimations were 

chosen to be 3 and 17, respectively. For the  

MSC-kriging and the IC-kriging, the estimated 

values were back-transformed into the original 

data space. Then the correlation coefficients of the 

estimated and observed values, the Mean Errors 

(ME), and the minimum and maximum errors of 

the estimations were calculated (Table 5). 

Consequently, ME and the correlation coefficient 

of a perfect estimator would be 0 and 1. The mean 

values of estimations are very close for all the 

estimation methods, and there is no considerable 

difference among them so that they are not shown 

here. Since the MSC-kriging has the lowest ME 

values, it is the best unbiased estimator; and after 

that comes the IC-kriging. The highest correlation 

coefficients between the estimated and observed 

values are for the MSC-kriging, and the cokriging 

has the lowest ones. The MSC-kriging and the  

IC-kriging are more efficient than Cokriging. 

Thus in the next sub-section, evaluation of the 

andesite quarry will be done using these methods. 

        

 
Figure 6. Cross-variograms of MSC and IC factors. Each color represents one of the fifteen cross-variograms of 

factors. For simplicity and also preventing ambiguity, legends are not shown. 
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Figure 7. Auto-variograms of MSC factors together with fitted models. Variograms of MSC1, MSC2, and MSC6 

are fitted by spherical model. Exponential model is used for MSC3, MSC4, and MSC5. 
 

Table 3. Model variogram parameters fitted to MSC factors. 

Factor Variogram model Nugget effect Contribution Variogram range (m) 

MSC1 Spherical 0.47 0.53 50 

MSC2 Spherical 0.50 0.50 39 

MSC3 Exponential 0.20 0.80 49 

MSC4 Exponential 0.25 0.75 69 

MSC5 Exponential 0.55 0.45 39 

MSC6 Spherical 0.50 0.50 38 
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Figure 8. Auto-variograms of data (red dots) together with fitted models (black solid line). 
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Figure 9. Cross-variograms of data (red dots) together with fitted model (solid black line). 

 
Table 4. Model variogram parameters used in cokriging estimations. All variograms are of spherical type with a 

range of 75 m. 

Pair of variables C0
* 

C1
* 

Pair of variables C0 C1 Pair of variables C0 C1 

UCS-UCS 250 155 UCS-TS 28 15 TS-WA -0.36 -0.23 

TS-TS 3.5 1.8 UCS-Los500 -13.5 -8.5 TS-POR -0.8 -0.4 

Los500-Los500 1 0.48 UCS-UW 0.15 0.5 Los500-UW -0.005 -0.029 

UW-UW 0.0057 0.0026 UCS-WA -3 -2.5 Los500-WA 0.17 0.14 

WA-WA 0.9 0.09 UCS-POR -7 -3.5 Los500-POR 0.40 0.20 

POR-POR 0.92 0.38 TS-Los500 -1.75 -0.90 UW-WA -0.02 -0.01 

WA-POR 0.4 0.15 TS-UW 0.005 0.065 UW-POR -0.04 -0.02 
*
C0 and C1 are nugget effect and contribution, respectively. 
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Table 5. Comparison of cross-validation results of MSC-kriging, IC-kriging, and Cokriging. 

 
Correlation coefficient between estimated and 

observed values 
Mean error 

Variables 
UCS 

(MPa) 

TS 

(MPa) 

UW 

(g/cm3) 

WA 

(%) 

P 

(%) 
Los500 

UCS 

(MPa) 

TS 

(MPa) 

UW 

(g/cm3) 

WA 

(%) 

P 

(%) 
Los500 

MSC-

kriging 
0.56 0.57 0.45 0.31 0.32 0.58 0.17 0.045 0.0009 

-

0.0039 

-

0.008 

-

0.0095 

IC-kriging 0.53 0.51 0.41 0.27 0.22 0.52 0.64 0.074 0.0005 
-

0.0005 

-

0.001 
-0.03 

Cokriging 0.52 0.45 0.39 0.16 0.18 0.48 0.64 0.06 0.0016 
-

0.0032 

-

0.012 
-0.02 

 Minimum error value Maximum error value 

Variables 
UCS 

(MPa) 

TS 

(MPa) 

UW 

(g/cm3) 

WA 

(%) 

P 

(%) 
Los500 

UCS 

(MPa) 

TS 

(MPa) 

UW 

(g/cm3) 

WA 

(%) 

P 

(%) 
Los500 

MSC-

kriging 
-60.97 -5.29 -0.138 -0.38 -2.27 -2.42 53.85 4.28 0.42 0.32 1.17 2.74 

IC-kriging -42.6 -4.81 -0.129 -0.41 -2.42 -2.65 44.19 4.94 0.42 0.29 1.24 2.83 

Cokriging -40.62 -3.95 -0.188 -0.35 -2.20 -2.89 62.2 5.15 0.42 0.26 1.22 2.22 

 

4.3. Evaluation of Cubuk andesite quarry 

The MSC factors have negligible cross-variogram 

values at all lag distances (Figure 6) so that they 

can be estimated separately using the kriging 

method. 1544 blocks of equal sizes (5 m × 5 m) 

were considered in the prediction process. The 

sample dimension is very small in comparison to 

that of the blocks, and the estimation of attributes 

at a specific scale different from the sample 

support would cause support relative problems. In 

order to solve this problem, the blocks can be 

divided into the supports of finite size [52-53]. In 

this way, an enormous number of sub-divisions 

would be emerged, which may be intense to solve. 

Isaaks and Srivastava [9] and Journel and 

Huijbregts [10], respectively, have suggested 16 

and 36 as the number of sub-divisions in a 2D 

space. Thus in this work, we divided each 2D 

block into 25 sub-divisions and estimated the 

attributes of interest at each sub-division’s center, 

and then took their average to obtain the block 

estimations. After predicting the MSC block 

estimations, the results obtained were  

back-transformed into the data space and 

compared to those of the IC-kriging. A 

comparison was made by checking the summary 

statistics of the results including the minimum, 

maximum, and mean values (Table 1), and also 

drawing the quantile plots of the estimations 

against those of the data (Figure 10). The quantile 

plots indicate a better reproduction of the data 

distributions through the MSC-kriging. 

After back-transformation, the TS 10835 

standards of Table 1 were used to classify andesite 

as the facing and building stones. Figure 11 shows 

the interpolated maps of variables. Based upon the 

estimated values for variables, the blocks were 

classified as exploitable and non-exploitable in 

Figure 12. In this figure, the blocks that were 

classified by both methods as exploitable are 

demonstrated in blue. The block percentages 

classified as exploitable by the MSC-kriging and 

IC-kriging methods are %58 and %63, 

respectively. Most of the northwestern blocks that 

were determined by the IC-kriging as 

unexploitable were established as extractable by 

the MSC-kriging. At the eastern part of the 

quarry, the number of extractable blocks obtained 

from the IC-kriging is more than that of the  

MSC-kriging. 
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Figure 10. Quantiles of data against those of MS-kriging (red) and IC-kriging (blue) results. 
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Figure 11. MSC-kriging estimation maps for a) Los500, b) P (%), c) TS (MPa), d) UCS (MPa), e) UW 

(g/cm
3
), f) WA (%). 

a) 
b) 

c) 
d) 

e) f) 
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a)                                                                                 b) 

 
c) 

Figure 12. Exploitable blocks (blue colored) obtained using a) MSCK, b) ICK, and c) both methods considered 

together. 

  

5. Conclusions 
Multivariate geostatistical estimation can be 

performed using the conventional cokriging 

methods or kriging of the orthogonal factors. The 

kriging estimation of the orthogonalized factors 

eliminates the tedious procedure of  

auto/cross-variogram analysis, and avoids the 

probability of facing an unsolvable system of 

equations. 

In this work, at several lag distances, 

approximately orthogonal factors were produced 

through the Minimum Spatial Cross-correlation 

(MSC), and then the factors were estimated using 

the kriging method to be used in the selective 

extraction of andesite blocks. By running the 

cross-validation test, the method’s efficiency was 

proved against the Independent Components 

kriging (IC-kriging) and cokriging. 

The MSC factors have negligible  

cross-variograms that lie in a tighter interval than 

those of the IC factors so that the purpose of 

generating almost orthogonal factors was 

achieved. The MSC-kriging, IC-kriging, and 

cokriging cross-validation results reasonably 

reproduce variables’ means. Among these 

methods, the MSC-kriging demonstrates the 

lowest bias due to possessing the lowest ME’s. 

The MSC-kriging outperforms IC-kriging and 

cokriging for having the highest correlation 

coefficients of the estimated and observed values. 

The proportion of the exploitable blocks to the 

total number of blocks were obtained to be 58% 

and 63% for the MSC-kriging and the IC-kriging, 
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respectively. These blocks are mainly located 

around an imaginary N30°E oriented line, which 

intercepts the southwest corner of the studied area. 

The MSC-kriging is practical and user-friendly, 

and shows advantages over the cokriging and the 

IC-kriging; thus we recommend it for multivariate 

studies. 
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 سنگ یمورد مطالعه) ییفضا متقابل یهمبستگهای با حداقل  مؤلفه توسط رهیمتغچند یآمارنیزم نیتخم
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 3کیاوزجل لمازو یی 2پور الله حسن روح، *1لیکائیرضا م، 1انیبابک سهراب

رانیا ه،یاروم یمعدن و مواد، دانشگاه صنعت یگروه مهندس -1  
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 چکیده:

 نییی تع برایآنجلس و ... دور چرخش دستگاه لس ۰11در  یدگییمحوره، مقاومت در برابر ساتک یفشار وزن مخصوص، مقاومت لیاز قب تیآندز یفیک اتیخصوص

در نقیا    ن،یبنابرا ؛محدود است رد،یگ یمقرار  زیکه برداشت شده و مورد آنال ییهااما تعداد نمونه ؛است ازیمورد ن ها آن یبرداربهره یهای قابل استخراج و توال بلوک

روش  نیی . هرچنید، ا اسیت  بیوده  ییبا ارتبا  متقابل فضا یرهاین متغیتخم یروش سنت نگ،یجی. کوکرشود زده نیتخم دیسنگ با یفینشده، خواص ک یریگاندازه

 هیا  مؤلفه نیاز ا کیهر  نیو تخم مدمتعا یهابه مؤلفه رهایمتغ لیتبد نگ،یجیکوکر یبرا ینیگزید. جاشومواجه  شاتمیدر الگور نحلیلا یها سیماترممکن است با 

فقط در فاصیله   روش نیاما ا رد؛یگ ها مورد استفاده قرارمؤلفه نیا دیتواند در تول هایی است که می از جمله روش مستقل یهامؤلفه زیاست. آنال نگیجیکر لهیبه وس

، روش حیداقل همبسیتگی   پژوهش نیدر ا ها پارامتر فاصله لحاظ شده است، سودمند خواهد بود. هایی که در آن لذا استفاده از روش ؛گام برابر با صفر قابل اجرا بوده

ده گیام، میورد اسیتفا    ههای تقریباً متعامد در چند فاصل به مؤلفه هیجوبوک واقع در آنکارا، ترک تیسنگ معدن آندز یکیمکان یژگیشش و لیتبد برای ییمتقابل فضا

قیرار گرفتیه و    نیمیورد تخمی   نگیجیمورد اشاره با استفاده از روش کر یهامتر(، مؤلفه ۰)با ابعاد  یمربع منظم شبکه کینقطه واقع بر  6۰۱۱ درقرار گرفته است. 

 ییهای با حداقل همبستگی متقابل فضیا  با استفاده از مؤلفه نگیجیکر یمتقابل، کارآمد یبرگردانده شد. توسط اعتبار سنج یاصل یهاداده یبه فضا ینیتخم جینتا

هیای بیا    بیا اسیتفاده از مؤلفیه    نیگ یجیشیده، کر  ادیی  ینگرهایبودن تخم بیمستقل تست شد. با وجود ناار های مؤلفه نگیجیو کر نگیجیکوکر یها روشدر مقابل 

شیده، عملکیرد    یریی گ و اندازه ینیتخم ریمقاد انیم یهمبستگ بیضر نیشتریخطا و ب نیانگیمقدار م نیدارا بودن کمتر لیبه دل ،ییحداقل همبستگی متقابل فضا

 استخراج، مورد استفاده قرار گرفته است. یامتداد برا نیو بهتر ها بلوک نیسود آورتر نییتع برای ینیتخم جیاست. نتا داشته گرینسبت به دو روش د یبهتر

 .یساختمان سنگ وگرام،یوار نگ،یجیکر ،ییهمبستگی متقابل فضا کلمات کلیدی:

 

 

 

 


