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Abstract

The qualityproperties of andesitéJfit Volume Weight, Uniaxial Compression Strength, Los500, are)
required to determine the exploitable blocks and their sequence of extraction. Hathevarmber of
samples that can be taken and analyzed is restramedthusthe quality properties should be estimated at
unknown locations. Cokriging has been traditionally used in the estimation of spatiallycanedated
variables.However it can faceunsolvable matrices in its algorithm. An alternative to cokriging is to
transform variables into spatially orthogonal factomed then to apply kriging to them. Independent
Component Analysis (ICA) is one of the methods that can be used to generatadteeseHowever, ICA is
applicable to zero lag distance so that using methods with distance parameter in their algorithms would be
advantageous. In thigork, Minimum Spatial Crossorrelation (MSC) was applied to six mechanical
properties of Cubuk andési quarry located in Ankara, Turkeyn order to transform them into
approximately orthogonal factors at several lag distances. The factors were estimated atni>48 ifn)

regular grid points using the kriging methahd the resultsvere backransformed into the original data
space. The efficiency of the MS&iging was comparedith Independent Component kriging (keiging)

and cokriging through crosalidation test. All methods were unbiased but the M#&@ing outperformed

the IC-kriging and cokriging because of having the lowest mean errors and the highest correlation
coefficients between the estimated and the observed values. The estimation results were used to determine
the most profitable blocks and the optimum directionxtfaetion.

Keywords: SpatialCrossCorrelation,Kriging, Variogram Building Stone.

1. Introduction

Selective atraction of natural building stone
which maximizes theprofit and minimizesthe

environmental effects of miningperation canbe

done consideing its important physical and
mechanical  properties such as uniaxial

compression strength porosity and tensile

strength At the planning stage, due to its
expensesa limited number of samplecan be

testedso thatthe researchersiave used different
methods to estimate the required values of
unsampled locations

Taboa& et al. [1] have used geostatisal
techniques to estimathe quality of slate deposits
as a function of depth. They developed a quality
index thatindicated the percentage of material
that could be extractedTaboadaet al. [2] have
used fuzzy krigingin resourceevaluation of a
granite deposjtand Tutmezand Tercar[3] have
applied fuzzy modelingo the spatial estimation

of some mechanical properties of rockaizzy
kriging can account for the fact that a block may
contain different qualities and that the definition
of qualities in the fields subject to uncertaintyn|
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this method, it imecessaryo define merhership
functions to represent uncertainty ihe quality
variables under consideratioAyalew et al [4]
and Exadaktylos and Stavropoulfi] haveused
the kriging method to determinethe spatial
variability of rock quality designation anack
massparametersSaavedra et a[6] haveuseda
compositional kriging technique to determitine
value of quality attributes in a granite deppaitd
Taboada etl. [7] haveappliedit in determiring
the spatial distribution andhe volume of four
commercialquartz grades, namely silicon metal,
ferrosilicon, aggregateand kaolin in a quartz
seam.

Kriging is appropriate for univariatstudies and
in the presence of spatially cressrrelated
variables it would be betteto apply multivariate
estinetion methods such as the traditional
cokriging approach.However in the cokriging
method, the semivariogram analysis igedious
due to  simultaneously modding n
autovariograms and p3(p 4/2

crossvariograms to guarantee the positive
definitenessof covariance matricesvhere p is

the number of variabld8-9]. Although the linear
model of coregionalization guaranteas positive
definitenessof matrices its imposedrestrictions
may result inpoor variogram fitting that deprives
cokriging from some of itspossibleadvantages
over the kriging systenf{10-11]. In order to
guarantee the positive definiteness of matrigies
the cokriging systemand also to reduce the
number of auxiliaryariables,Taboada et a[12]
and Martinez et al[13] have usedthe Principd
Component Aalysis (PCA) to find afactor that
approximately represemntthe properties of all
original variabls due to thehighest variancet
has Then theyused this factor as an auxiliary
variablein the cokrigingmethod

There arealso other works for transforning
spatially crosscorrelated random variablésto a
set of orthogonafactorsthat couldbe separately
estimatel using univariate technigse and the
resultscould be backtransfornedinto the original
data space[14-17]. The Stepwise Conditional
Transformation (SCT) is one of thee
orthogonaization mehods that aims to produce
normally distributed uncorrelated scores at zero
lag distance Although SCT has the advantage of
producing Gaussianfactors, it suffers from
orderingissues associated witlthe transformation
sequence ofariables[18]. The next methods
Min/Max Autocorrelation Factors (MAF)which
has been used iseveralresearch worksuch as
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Tercan and Ozcelik[19], Desbarats [20],
VargasGuzman and Dimitrakopoulos[21],
Rondon [22], Sohrabian and Ozcelik[23],
Shakiba [24], and De Freitas Silva and
Dimitrakopoulos [25] to produce uncorrelated
factors at two lag distancesSome otherworks
such asRuessink et al[26], Nielsen[27], Liu et
al. [28], and Musafer and ThompsdR9] take
advantage of natinear PCAthat is capable of
remoning nortlinear relationships

Sohrabian and Ozcelij30] have introduced
Independent ComponentAnalysis (ICA) to
generate independent factors from some
mechanicahttributes ofanandesié quarry.It has
beenused in severalvorks such asTercanand
Sohrabian [31], Boluwade and Madramootoo
[32], and Minniakhmetov and Dimitrakopoulos
[33].

The general purpose of orthogonaliion
techniques is to develoglgorithns that produce
spatially independent factorddowever in most
real dataset it is practically impossible to
generatefactors that are orthogonal at allag
distances[34]. Therefore methodsthat look for
factors withapproximateorthogonaty at several
lag distanceshave gained popularityXie and
Myers [35] have suggestd a version of
simultaneous diagonalization thatinimizes the
crossvariogram modelsThe main drawbackof
this approachs its smoothingfeatureimposed by
model variogramutilization. A method proposed
by Cardoso and Souloumi§86] and Cardoso and
Souloumiad37] has replacea high-dimensional
minimization problem with a set of simple
problems in2-D subspaces and consequently
applies Cholesky decompositionn each sub
space Despite being fast and convenient this
methodis applicableto positive definite matrices
and it would not be operablin the presence of
nortinvertible subspacematrices[38]. Another
algorithmintroduced by Joho and Rahbar J2@&d
used in Johd40] appliesthe Newton method to
minimize a seconeébrder Taylor series
approximation of a&ost functionthat containsoff-
diagonal elements of matricethat should be
orthogonalized simultaneously This method
which is mathematicallydifficult, has a significant
handicap ofsubstituing the cost function with its
approximation Mueller and Ferreira 41] and
Tichavsky and Yeredor4p] have proposed an
efficient diagonalization methasameduniformly
weighted exhaustive diagonalisation with Gauss
iterations (U-WEDGE), which has a good
convergence speed but is complicated and
practicable to positive definite matrices.
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Sohrabian and Tercaf#3] have introducedthe

Minimum  Spatial Crossorrelation (MSC)

method which uses the samesubspaces
presented if36]. However insteadof runningthe

Chokesky decomposition,MSC applies the

gradient descentmethod in the minimization
process ofa univariatecost function. Then it is

simple and can beapplied in the approximate
orthogonalization of any kind of matrices
including those with noimvertible subspaces

In this work, we applied the MSC methodto

produce factors that were approximately
orthogonal at several lag distanced.he dita

consised of six spatially crossorrelated
mechanical attributes of an andesite quar
located in Ankara, TurkeyVariograms of the
generated factorswere analyzed and the
parametersobtainedwere usedto estimateeach

factor, separatelyysing the kriging method.The

me t h oeffidemcy was compared with the

Independen€omponerg kriging (IC-kriging) and

cokriging using their crossvalidation results.

Then the same procedun@s executed to predict
the unknown values ofsix mechanical attributes
of 1544 5m3 5m blocks Then theestimations
were used to classify the andesite blocks as

exploitable and noexploitable

This paper is structured awhat follows. The

second section presentsa factor approachfor

multivariate geostatisticabstimation The third

section briefly explains the ICA and MSC

decomposition methods.The fourth section

presents a casstudy including the quarry and
data descriptionfactor generation anefficiency

test of the MSC-kriging, and evaluation ofthe

Cubuk andesite quarnAt last, a conclusion is
presented.

2. Factor approach for multivariate

geostatisticalestimation

Suppose that there arepstationary random

variablesthat are isotopically sampledat X data

locations. These vailes can be shown ithe
matrix form adollows:

ry
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Z(x)=8Z,(X), .., @

where eachelementof Z includesone of the
variables The variogranmatrix of these variables
can be written as

20, =E{[ 2) - & W[ @ 2 bF}

Z, (x)

(2)

where 20, (h) represents a variogram matrix at

lag distanceh, E is the expectatignand T is
transpodion. The dagonal and oftdiagonal
elements of thisp® p matrix present direct and
crossvariograms of variables at each lag distance
hh respectively When h- © | the vaiogram
matrix equals varianeeovariance matrii .

If there is a linear transformationVV that
transforms the given variables into factors

F(x)=gR(x), .., F(X) whose  cross

variogramsare 0O for all lags, then the factors can
be independentlyestimated and theestimations
can be backransformed intothe original data
spaceusingW *.

In our previouswork [23], we appliedthe fast
ICA algorithm [44] to generatetransformation
matrix W and factorsthat wereindependent at
zero lag distance. In thisork, we used the MSC
method to findthe appropriate W matrix that
gives factors withthe lowest possible cross
correlatiors at several lag distanceA.flow chart
of the estimation processusing orthogonalized
factorsis shown inFigure 1

3. Decomposition methods

We assumed that before running the ICA and
MSC algorithms, the multivariate data were
whitened with PCA. Without whitening, it was

necessary to find an arbitrary transformation

matrix with p2 parameters. However, after
whitening, tle number of parameters reduced to
p3(p 4)/2 and then it could be said that

whitening decreased the complexity and solved
half of the problem [4314].
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v

Set mean values of variables to zero and then whiten them ‘

v

‘ Run orthogonalization method to find a transformation matrix ‘

v

Generate spatially un-correlated factors by multiplying
white data to the transformation matrix

v

Estimate each factor independently using
kriging method

v

Back-transform the estimation
results into the data space

v

Figure 1. Flow chart of estimation process using orthogonalized factors.

3.1.Independentcomponent analysi{ICA)

ICA, which tries to find mutually indemeent
factors from a linear combination of original
variables is among theblind source separation
methodsIn blind sourceseparatiorproblems the
transformation andthe resuling matrices are
unknown and the number of equations dslite
smaller than the number of unknown&or this
reason statistical properties of thiactorsshould
be considered as criteria For example, the
negentropy of independent factorstlie highest
and then it can be iteratively maximized
Therefore, ICA usesnegentropy in its algorithm
searching for factors with superGaussian or
hyperGaussian distributionsin the presence of
one normally distributedunderlying factor, ICA
finds all the mn-Gaussian componentand then
the Gaussian factorwould be automatically
explored For two or more normally distributed
independentactors, ICA loses its efficiengyand
it camotfind all the independerdirectiors so that
some of the resulting componentaould be a
mixture of the normally distributed factors.
Indep@dent componentgan be achieved using
severallCA algorithms Due toits accuracy and
speedof convergencg44], we usedthe FastiCA
algorithm with deflationaryorthogonalizaitonas
follows:

1. Centralizethe datao zeromean.

2. Whiten the centralizeddataby generatinghe
principal componentsind seing their variance
to 1to obtainZ .
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3. Choosec, the number ofICs to be estimate.
Setthecounter p « 1.

In ourwork, c is equal to the number of variable
4. Choose a randomly generatéttial vector of
unit norm foer, which isthe pth column of the

transformation matri}V .

5. let W,« E{zdzW)}- & d 2y} |
where grepresents the hyperbolic tangent
function for smootling, and zis the rows of data

matrix Z (expectationis taken with respect to
Z).
6. Do the following orthogonalization:

p-1
W, « W, - a(W;VVJ)W 3)
j=1

7. 1etW, « W,/ nom(W).
8. If the innerproduct oftwo consequenW, is

greater thamnassignedralue go back to step 5.
9. &t p« p+1lif p¢ c,go back to step 4.

3.2.Minimum spatial crosscorrelation method

In this section a brief explanation of the MSC
method and its algorithm are presentEdeory of

the MSC method is presented in detail§4i5] .

The MSC methodis capable of handing linear
relationships and notthe nonlinear ones The
average distance of adjacent samples can be
selected as thoptimum lag distanc&he number
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of lagscan bechosen bydividing the maximum & is the number of lags that should be regarded.

range of auto/crosgariogramgo the lag distance. Now the objective is to find a 232
The MSC factors are a linear combination thfe transformation matri}V .

original variables. These factors can be generated _

by finding an appropriate rthogonal :é,COS% - Sing 5)
transformation matri¥V . In the MSC method, gsinq12 cos g

the p3 p minimization problem is replaced by
p3 (p )/2 2D problems which are easier to

handle. Atfirst, we presemd the problem in one
of the 2D spacesonsistingof two variablesand
after that we generalizd it to several variables.
Assume that there are two spatially
crosscorrelated variableswith a scatter plot
shown inFigure2. The variogram matrix of these

variablesat lagdistanceh, is:

which generatesthe F, and F, factors with
minimum sum of absoluterossvariograns over
several lagsg,, is the angle that the direction of
the first component F, makes with the

horizontal axis ina 2D space(Figure 2). The
variogram matrix of the produced factors can be
written as follows:

i1 ég.l(hm) Q(hm)

G,(h,))=¢ 4
M) =g ) g “)

0. (h )= 005 sing o0, ) .0,) cesg g sing, o
F\lm g- Sinqlz Cos ¢ H 2%(1m ) 22 bm ) S‘]}] g gcos ,,

COSy, Sinlg (22h(-|q )' glh(n )) +@?OS 12 Sin 12 QJInO
cds 12 22|"(WQ)QS?n 12 um )q 2g0312 Siléglz(hnq

:é, CO§q12 gmm )+ S”f

1g22 bm ) +ZCOS 12 S‘T‘lZ 124\1 g
11 @m )) +(CO§ 12 $Ih 12 )lmm g

2. Whiten the centralized data to obtdin
3. Give the number of variablesp and the

number of lagam that should be considered

4. Choose random initial values for g
1=1..,p -land j=i 4,..p.

5. Minimize the spatial crosorrelationof each
pair of variables i and . Spatial cross

Then for each 2D case the objective function
that contains the off-diagonal element of
variogram matrix ofthe new factors can be
written as follows

J(P=a..lgh) =
)

4! lcosq sing( dy, > ; @ ) +Hcod, ein, ) 4 B

where i and j show the variableshat are
considered at each steg F (h,) representshe

crossvariogram ofthefactors F and F;.

Algorithm of the MSC methodan be showras
follows:
1. Centralize the data to zer®an.

g=py - 49
“qij g=4
W () _H8 @ ()
MG,

2K, (codg, + sif g -6 o5, gsih; 9 hg )]
Where Km:gjj(hm) - dhn)
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A lmzl[(00§¢7u sing sifi ; gcog IR,

correlation of each pair of variables is a function
of g;, and has a global minimum that repeats
every 1.57 radian@~igure 2). Therefore, it can be
easily minimized using the gradient descent
algorithmwith the step size ot , asfollows:

(8)
$ hg )

6. Find the total p® p transformationmatrix,
W
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_A P11 AP
W, =0, O, f‘pap(qii) Apn( @) AL -
ecosg, -sing O .. e )
gsinq12 cosg O .. :g
é 0 0 1 .. é
e . : Do ne -
é . . . ‘:'é
e 0 0 0 .. e
é ué
g 0 0 0 .. 8
el 0 0 0 a
: u
0 1 0 0 3
& : :
é u
eo 0 0 0 N
20 0 0%7,,, - Sing,, 3
g 0 INFp.1p  COSHap

Cardoso and Souloumigd86] have presentéd a
similar way of approximately orthogonalizing
several matrices using 2D sapaces.In their
method the Cholesky decompogion, whichis
adecompositiorof aHermitian positivedefinite
matrix into the product ofthe eigenvaluesand
eigenvector matricesis used. It is rare but
possible to face neimvertible covariance
matrices in subspaces Wwile the total p3 p

covariance matrix is positive definitdhen the
MSC method has the advantage of being
applicableto all kinds of matrices and it does not
have the imposed restriction of the Cholesky
decomposibn and is free of any assumption
about the distributiotype of the produced factors.
Although the MSC method convergeto the
absolute minimum without being trapped in the

2 0018

AT

8

(9)

oo oo o on
w

possible localminima of p- D space(p>2),

this method isa little slow andrequires an
appropriatechoice of thestep size Another issue

is that the MSC method can be appliedthe
isotopically sampled data. If some variables are
unsample at some locations, MSC can be
implemented based on the completse analysis
using the isotopic subpace of thedata [16.
However this approach reduces theumber of
sampls, and results inthe loss of information
Another approach is to applthe imputation
methods to complete data by assigning the
missing observationdmputationapproachesary
from thesimplestone that takean aveage ofthe
nearby values to the complicated cases of multiple
imputation which can be found irLittle and
Rubin[46].
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Figure 2. a) Direction of original variables and produced factors, by shown as a function ofg,., .
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4. Casestudy

4.1.Quarry and datadescriptions

The studiedarea is an andesite quarry located in
the western side of Menekse Hill, 3 km south of
Susuz village in th€ubukdistrict, and 60 km NE
of Ankara, the capital of TurkeyThe location
map of thestudiedareais given in Figure 3 It
occurs in the Tertiary Mamak Formatjowhich

consists of volcanic units such as andesite, dacite,
rhyolitic lava, and tuff. Lava flow orientationis
between N30D35E and 2645SE in the centre of
the quarry and on the northern part. In the
southern part, a significant difference is observed
in lava flow orientation The strike is between
E-W and N63W. The dip is between 37° and 55°
towardsthenorth and northea$t7].
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Figure 3. Location map of studied area and regular grid of size 20 m20 m used for sampling. Sample locations
are shown with red squares. UTM coordinate system was used in this work, and 36 UTM is valid for this area.

In this work, 108 (20cm3 20cm 320cm, rock

sampleswere collectedn a 20m3 20m regular
grid shown in Figure 3Then5 coreswere taken
from each of these samples atas$ted forUnit
Volume Weight(UW), WaterAbsorption capacity
by mass(WA), Uniaxial CompressionStrength
(UCS), Tensile Strength (TS), Los50Q and
Porosity (P) based on the guidelines ¢8RM
[48]. After discardingheoutliers,for each sample
location, the amountof attributes was calculated
by taking the average of the remained values.
Regardingthis procedure andalso applying a
regularsampling gridwith an acceptable density
over the studied area, it can be said that the
samples are representatiVéie simmary statistics
of variables and'S 10835 standardg9], which
are used to classify andesite as facing and building
stonesare presented in Table The scatteplots
of variables demonstraté in Figure 4,do not
showa considerable clusteng issue.

Using the following equation, the patial
crosscorrelationsof variables can be calculatedl
different lag distanced;.
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e 9

i = Ww p

Crosscorrelation value,r;’,

experimental crosgariogramof the ith andjth
variablesto thdr perfect spatial crosgariogram
valug and can vary betweerl and 1[50-51].
Spatially uncorrelated variables have values
equal to zero at all lag distancésraphs ofthe
gpatial crosscorrelatiors of attributes were
calculated anghown n Figure 5 Moreover,the
crosscorrelation matrix of variables is presented
in Table 2. All variables were spatially cross
correlated so that they should be transformed into
spatelly  uncorrelated factors using the
orthogonalization algorithex Then each factor
can beestimaedthroughthe univariate estimation
method such as krigingand the resultg€an be
backtransforned intothe originaldataspace.

—_

(10)

is the ratio of the
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Table 1. Summary statistics of data and estimations together withS 10835 standards (TSE, 1993)sed to classify andesite as facing and building stones.

Variable

Water Absorption capacity

Uniaxial Compression

Unit Weight Porosit Tensile Strength
(UW)g by mass Strength Los500 P) y (TS) 9
(WA) (ucs)
Min  Max Mean a Min Max Mean a Min Max Mean a Min Max Mean a Min Max Mean a Min Max Mean a
Data 217 272 262 0.007| 0.16 0.80 0.41 0.013 25 131.25 79.15 588 | 11.20 16.20 14.31 1.48| 081 441 196 0.25| 509 1345 876 5.30
IC-
kriging 235 271 262 - 0.29 065 0.41 - 37.33 11410 79.32 - 12.15 16.04 1432 - 140 333 1.96 - | 547 12,01 878 -
results
MSC-
kriging | 239 273 262 - 030 065 041 - 16.02 107.35 79.26 - | 1282 17.30 1432 - | 147 285 196 - |3.07 1121 877 -
results
TS10835
>2.55 (g/cm <0.7 (% > 60 (MPa < 15.10 (% <2 (% > 7 (MPa
standards (g/cm) (%) (MPa) (%) (%) (MPa)
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Figure 4. Scatter plots of variables.
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Figure 5. Graphs of spatial crosscorrelations of variables. For being clear, the pair of variables are shown itwo
different graphs. UCSLos500 denotes the pair of UCS and Los500.

Table 2. Matrix of variablesd correlati on
POR Los500 TS UCS WA UW

POR 1

Los500 0.45 1

TS -0.44 -0.93 1

UCS -0.46 -0.87 0.94 1

WA -0.96 0.46 -0.46 -0.48 1

uw -0.58 -0.32 031 034 -061 1

4.2 Factor generationand efficiency test of maximum range of variogramend the minimum
MSC-kriging sampling distancevereequal to 100n and20 m,
Prior to runningthe MSC algorithm,the datawas respectively Therefore we choseb as the number
centered t@eromeanand whitened using PC# of lags and20 m, 40 m, 60 m, 80 m, and 100m
reduce the complexity of the problem to be sdlve as distances thatwould be approximately
and also to restrict the norm of vectorsw to 1. orthogonalized Considering the mentioned lag
Lag distance selectipwhich is the firsimportant distances the final transformation matrix
step was done  considering the including the whitening process and the MSC step
autdcrossvariograns of the variables The was calculated as below
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2562 - 8158 -1710 -11.206 -4.969 11.7:
§0.249 7.187 0850 - 0.811 - 1.404 0.50
60118 0.000 0.048 - 0011 0.015 - 0.0¢
T§1724 - 0234 0614 - 0101 -0.023 -0.1!
21.099 - 0.470 2035 0.106 0.482 0.39
61.836 -35.84 2242 1.496 5317 403

The MSC factors were generatdy multiplying
this matrix by the zero centered originatlata
matrix. Crossvariograms of the MSC factors and
those of IC components calated by Sohrabian
and Ozcelik [30] are presented inFigure 6.
Crossvariograms of the MSC factorsvarying
between-0.19 and 0.1lare in a tighter interval
than those of the IC factors which lie
between-0.21 and 0.23This demonstrates the
efficiency of MSC over ICA in producing
spatially uncorrelated factorsFor the MSC
factors, the largest remnaatosscorrelations are
at 40m, andthen come&20 mand 60m lags

While crossvariograms of the MSC factors have
small crosscorrelations, their autevariograms
thatshowa high degree of spatial dependertan

be modeled using standard theoretical models.

Except for MSC6 which has erraticvariogram
values at 60 m and 80 m, all variogramsare
appropriatelymodeled (Figure 7 regardingthe
crossvalidation results Unlike the principal
componentsthe MSC and ICA factors do not
have anyrderrelated importang and all of them
are equally iformative. The nodel parameters of
the MSC factors includingthe nugget effec,
contributions and variogram rangeare presented
in Table 3 The MSC4 and MSCévith 69 m and
38 m have consequently the highest and the
lowest variogram rangedNugget effed of the
factors vary between 0.25 and 0.55

y(h) MsC

0.2

01 -

02 -

03 - -
w0 1z0 h(m) 130

a0 40 =1} a0

After producingthe MSC factors andanalyzing
their variograns, a crossvalidationtest using 108
sampls was performed 6r the efficiency
comparison ofthe MSC-kriging, 1C-kriging, and
cokriging. Crossvalidatiors were carried out by
temporarilyremoving eactsamplevaluefrom the
dataand estimatingts valuesusing the remained
samples. Cokriging was performedusing all
variables with the variogram models fitted
regarding the Cauchy Schwarz inequality
Figures 8 and 9resentthe autc and cross
variogramsof variables togethewith the fitted
models. All variogramswere modeled usinga
nugge effect and one spherical structure with a
range of 75m. The nodel variogramparameters
are given in Table .4The minimum and maximum
number of samples used in the estimations were
chosen to be 3 and Atespectively.For the
MSC-kriging and the IC-kriging, the estimated
values were backarsformed into theoriginal
data spacel hen thecorrelaton mefficientsof the
estimatedand observed valueshe Mean Errors
(ME), andthe minimum and maximum errors of
the estimations were calculated (Table 5).
ConsequentlyME andthe correlation coefficient
of a perfecestimator would be 0 and The nean
values ofestimatiors are very closefor all the
estimation methodsand tere isno considerable
difference among tme so that they are not shown
here.Since he MSC-kriging has thdowest ME
values it is the bestunbiased estimatpand after
thatcomes thdC-kriging. The highest arrelation
coefficients betweenthe estimated and observed
values are fothe MSC-kriging, andthe cokriging
has the lowest oned.he MSC-kriging and the
IC-kriging are more efficient than Cokriging
Thus in the next suisection, evaluation ofthe
andesitequarrywill be done usinghese methods.

20 4 &0 80 100 120 h(m) 140

Figure 6. Crossvariograms of MSC and IC factors. Each color represents one of the fifteesrossvariograms of
factors. For simplicity and also preventing ambiguity, legends are not shown.
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Figure 7. Auto-variograms of MSC factors together with fitted models. Varlograms of MSC1, MSC2, and MSC6
are fitted by spherical model. Exponential nodel is used for MSC3, MSC4, and MSC5.

Table 3. Model variogram parameters fitted to MSC factors.
Factor Variogram model Nugget effect Contribution Variogram range (m)

MSC1 Spherical 0.47 0.53 50
MSC2 Spherical 0.50 0.50 39
MSC3 Exponential 0.20 0.80 49
MSC4 Exponential 0.25 0.75 69
MSC5 Exponential 0.55 0.45 39
MSC6 Spherical 0.50 0.50 38
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Figure 8. Auto-variograms of data (red dots) together with fitted models (black solid line).
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