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Keywords Abstract
One of the most significant and effective criteria in the process of cutting dimensional
Gang Saw rocks using the gang saw is the maximum energy consumption rate of the machine, and

its accurate prediction and estimation can help designers and owners of this industry to
achieve an optimal and economic process. In the present research work, it is attempted
to study and provide models for predicting the maximum energy consumption of the
gang saw during the process of soft dimensional rocks with the help of an intelligent

Maximum Energy
Consumption (MEC)

Cutting Rate optimization model such as random non-linear techniques, i.e. the Hybrid ANFIS-DE
and Hybrid ANFIS-PSO algorithms based upon 4 physical and mechanical parameters
ANFIS-DE including uniaxial compressive strength, Mohs hardness, Schimazek’s F-abrasiveness
factors, Young modulus, and an operational characteristic of the machine, i.e. production
ANFIS-PSO rate. During this research work, 120 samples are tested on 12 carbonate rocks. The

maximum energy consumption of the cutting machine during this work is measured and
used as a modeling output for evaluating the performance of cutting machine. Also
meta-heuristic algorithms including DE and PSO algorithms are used for training the
Adaptive Neural Fuzzy Inference System (ANFIS). In addition, the PSO algorithm has a
higher ability in terms of model output and performance indices and has a superiority
over the differential evolution algorithm. Furthermore, comparison between the
measured datasets with the ANFIS-DE and ANFIS-PSO models indicate the accuracy
and ability of the ANFIS-PSO model in predicting the performance of gang saw
considering the machine’s properties and the cut rock.

1. Introduction

The application of rock cutting instruments has
been dramatically increased in the dimensional
rock industry in two areas of mining and stone
cutting factories. Having a full knowledge of the
cutting process and the gang saw functions can
increase the effectiveness and quality of the
product. Two significant factors involved in this
area include the final cost and the product quality.
Generally, the cost of a rock plaque in rock
cutting industries is highly influenced by the
factors including instrumental costs (instruments’
abrasion) and maximum energy consumption
costs, and the purpose of optimization is to

4 Corresponding author: s.shaffiee@yahoo.com (S. Shaffiee Haghshenas).

increase the ratio of the production rate to the two
mentioned factors. There is a direct relationship
between the production rate and the two factors
diamond tools’ abrasion and maximum energy
consumption (MEC) so that not only the
production rate but also the tools’ abrasion and the
maximum energy consumption will increase. For
this reason, an ideal balance must be created
between the production rate and tools’ abrasion
and the maximum energy consumption in the
machine. There are different factors influencing
the amount and type of cutting machines’ function
and the cutting machine’s energy. Simultaneously,
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the most significant factors involved include the
properties of rock, type and form of instruments,
force or load being imposed, and other
environmental parameters. Today, the
development of technology and application of
new cutting machines such as saws has opened-up
a new path in the cutting process in stone
processing plants so it can be predicted that for
the next few years, these facilities (considering
their superiority over circular diamond saws) will
be totally replaced by circular diamond saws.
Until the present time, complete and
comprehensive studies have been conducted on
the disk cutting instruments and diamond wire
sawing. However, studies on the sawing
equipment are at the preliminary levels since they
are new to this area. In Lons’ research work
conducted in 1970, cutting forces and diamond
segments’ abrasion in the saw machine have been
completely investigated. In this work, it was
attempted to study the relationship between
diamond abrasion and cutting forces, and based
upon the results obtained, there was a weak
relationship between the mentioned parameters
[1]. Next, in the studies carried out by Wiemann
et al. in 1982, the saw machine has been assessed.
In their studies, it was found out that the diamond
blades’ tension significantly influenced the saw
machine’s cutting process. The results obtained
indicated that tensile stress of tip of blade moved
toward its bottom and its value varied in different
measurement situations (front, middle, and end).
At the end, in the sawing process, two significant
factors influencing the cutting performance are the
tension frequency change in diamond blades and
the effect of supply rate on the blades’ tensile
stress [2]. In the studies of Jansen conducted in
1977, it was found out that deformation of
diamond blades was a function of tension,
eccentricity, friction coefficient, and geometric
parameters of the blade [3]. Accordingly, the
deviation change and tension of blade were
investigated and calculated by Gerlach et al. in
1980 in a laboratory scale through a saw machine.
The results of studies showed that geometric
parameters, eccentricity, and tension of blade had
influences on the blade diversion. In practice, the
friction between segment and rock reduces the
effective tension of blade; therefore, in the sawing
process, the effective tension of blade can be a
function of vertical forces in the direction of
supply, which in the case of any change in the
properties of rock, it also changes under different
conditions [4]. In the research works conducted by
Wang and Clausen in 2002, a carbonate rock
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sample was evaluated through single-point
(single-segment) cutting instruments under
different cutting conditions. In such a study, an
analysis was conducted on the conditions of the
contact surfaces between the rock and the
diamond grain as well as the cutting mechanism
of brittle failure. A CNC milling machine was
used to conduct the cutting test. The cutting force
Fc in the direction of cutting and the cutting force
Ff perpendicular to the cutting direction have been
calculated and recorded wusing a Kislter
dynamometer (type-5019). During the test, two
carbonate rocks were tested under the dry and wet
cutting conditions. During the study, the cutting
surfaces (the groove made by the contact of
segment with the rock surface) were analyzed
through a microscope [5]. In 2003, a computer
simulation of this process was conducted by
Wang and Clausen on the saw cutting process.
The simulation of saw cutting is a practical
alternative for design, especially for computation
of the number of diamond grains and their
distribution on the saw blades’ segments.
Simulation was implemented by the two softwares
Visual Basic and Microsoft Access. In this
simulation, the cutting forces in the blade,
segment, and each diamond grain as well as the
effective cutting edges were measured under
different cutting conditions [6]. In the study of
Wang in 2003, the theory of rock cutting process
using the saw machine was evaluated. Thus the
cutting motion of the blade and diamond grain
was investigated. The studies indicate that the
efficient number of diamond grains and the
cutting depth depend on the status of segment and
the height of the raised part of diamond grain. The
cutting depth of diamond grain increases with
increase in the supply rate, and reduction of
crankshaft rotation per minute and the impact
length. The maximum cutting depth of diamond
grain depends on its status during the contact with
the rock in one cutting impact. In the process of
cutting, the contact surface between the blade and
rock block will change per moment. The most
important factors involved in the contact surface
versus the cutting time include the segments’
distribution, cutting length, and impact length [7].
Almasi et al. investigated 11 types of hard rock
for developing a new rock classification based on
the abrasiveness, hardness, and toughness of
rocks, and with the multiple curvilinear regression
analysis, the data was analyzed, and then
validation of the model was conducted by
considering the t-test, F-test, and coefficient of
determination. The results obtained showed that
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this model was a reliable one as a prediction
method in their case. [8]. The rock waste
percentages produced from cutting rock blocks
into slabs using gang saw machine were
investigated by Alhaj. The results obtained
showed an inverse relationship between the gang
saw thickness and the volume waste percentages
and productivity. In addition, the volume waste
percentages altered around the ideal values of
26% for 2 cm, 19% for 3 cm, and 22% for the
mixed 2 & 3 cm thicknesses [9]. Almasi et al.
developed statistical and M5P tree models for the
prediction of building stone cutting rate based on
rock properties and device pullback amperage.
The results obtained showed that in the
comparison between the MSP tree technique and
the statistical regression methods, the MSP tree
model was more reliable than the statistical model
in predicting the cutting rate [10].

The main objective of the present work was to
analyze the performance of the two hybrid
algorithms for the cutting process and the
performance of gang saw. In particular, the study
focuses on the carbonate rocks’ cutting process
based on some important properties of the rocks
and maximum energy consumption (MEC) of
gang saws under uncertain conditions.

2. Gang saw machine
In this work, the location of investigations was
Marble factories in the Mahallat area in Iran and
the sawing operations (maximum energy
consumption) of gang saws were calculated on
twelve various carbonate rocks. The studies were
conducted on the performance of machine
operating in the same conditions (Figure 1). In
Table 1, the machine operating properties during
performance studies are provided.

D = S

s

Figure 1. Gang saw machine used in this case.

Table 1. Machine operating properties.

Characteristic Value
Blade run mm 750
Cutting width mm 1440
Cutting length mm 3300
Cutting height mm 1950
Blade length mm 4400
Max. no. of blades n 50
Main engine power Kw 55
Total weight of machine ton 47

3. Methods and materials

In this section, in order to assess the performance
evaluation of gang saw, some mechanical and
physical  properties were collected. The
experimental studies and laboratory tests were
carried out on the rock block samples, and the
data was collected. Furthermore, two artificial
intelligence (AI) techniques, namely Hybrid
ANFIS-DE algorithm and Hybrid ANFIS- PSO
algorithm, were considered as methods; more
explanations are mentioned in the following
sub-sections.

3.1. Methods
3.1.1. Adaptive neural fuzzy inference system
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The artificial intelligence (AI) has provided a
wide spectrum of intelligent methods and
algorithms in the area of industrial developments
and scientific and industrial optimizations [11-15].
In the meantime, the Adaptive Neural Fuzzy
Inference System (ANFIS) is one of the special
and complex methods with an appropriate
capability in predicting complex, linear, and non-
linear phenomena. In fact, the structure of ANFIS
is the result of a complex combination of neural
network with fuzzy rules formed by the multi-
layer networks including nodes and directed
communication links. This system was first
provided by Jang, which turned to a powerful and
useful tool for estimating real continuous
functions in a limited range for each degree of
accuracy due to the application of the learning
power of artificial neural networks, on the one
hand, and the use of the rules and fuzzy inference
base, on the other hand [16-17]. It is also used as
an intelligent dynamic system, and by processing
the experimental data accurately, provides a very
appropriate map of the input-output data [18-19].
The structure of an ANFIS model with 5 layers is
shown in Figure 2.
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The Third layer
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Figure 2. An architecture of ANFIS model.

According to this figure, the first layer includes
input nodes, and in this layer, each node like i
determines the degree of membership based on
the membership functions (MFs) based on
Equation (1) [20, 21].

Q,,=ud, (x) for i =1,2
or (1)
Q,,=uB,(y) for i =3,4

where x and y are the inputs of the ith node, and
A; and B; are the linguistic labels relating to this
layer. Furthermore, Q,;and p are the membership
degrees of the fuzzy set and the membership
function, respectively.

In the second layer, a node is introduced under the
title [ whose output value is obtained from the
multiplication of input signals according to
Equation (2). In fact, the output of each node
indicates the firing strength of each rule.

QZ,iZWiZﬂAi(xi)'luBi(xi) (2)

In the third layer, the node is introduced with label
N, in which the ratio of firing strength rule for the
ith node to the total firing strength rules is
obtained according to Equation (3), which is
introduced with the output of this layer under the

1,2

i:

title of normalized firing strengths (VI_/;). Each

node (i) in the fourth layer is in accordance with
the node function according to Equation (3).

i=12
)
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In Equation (4), the values for r;, q;, and p; are a set
of parameters for this node that are identified as
inferential parameters [20-21].

O, ., =W, (px +q,y +1) 4)

In the fifth or last layer, there is only one node
that is defined under the label of >, and

according to Equation (5), all of the output signals
of the fourth layer’s nodes are introduced as the
network output. Furthermore, in this layer, the
fuzzy results produced are turned into a non-fuzzy
output through a defuzzification process.

Q5=ZVf’f _zwifi

W

In the ANFIS modelling, there are many classic
methods for training the model’s fuzzy inference
system. However, in this research work, in order
to improve the training process of the fuzzy
inference system, meta-heuristic algorithms were
used for optimizing the influential parameters in
the inference system. For this reason, two of the
most commonly used meta-heuristic algorithms
are used including Differential Evolution (DE)
algorithm and Particle Swarm Optimization (PSO)
algorithm, and coding is done in Matlab program
for creating hybrid algorithms of ANFIS-DE and
ANFIS-PSO in order to analyze the experimental
data [20-22].

)

3.1.2. Differential evolution algorithm

With increase in complexity and due to the
existing uncertainties in solving problems in
scientific and industrial areas, the need for using
new optimization methods is inevitable.
Meta-heuristic algorithms are one of the artificial
intelligent methods in dealing with such problems
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[23-27]. The DE algorithm is one of the meta-
heuristic algorithms with a high ability in solving
complex problems. This method was first
introduced by Storn and Price [28-29]. The DE
algorithm is one of the multi-purpose
meta-heuristic algorithms that have an acceptable
ability in engineering optimizations and
mathematical problems’ optimization. This
algorithm starts working by creating an initial
population and implements the algorithm by
imposing four operators including initialization,
mutation, cross-over and selection. The difference
between this algorithm and others such as the
genetic algorithm is how mutation and cross-over
operators are placed and implemented [30]. In this
way, in this algorithm, first the mutation operator
and next the cross-over operator are implemented.
The appropriate accuracy and speed in the
applications of the DE algorithm have made this
algorithm to be used in a wide range of problems.
In a case study on the Queens Water Tunnel in
New York City conducted by Yagiz and Karahan,
a set of optimization algorithms were used for
predicting the TBM penetration rate in rock mass.
DE algorithm was one of the methods under
investigation in this case study. The results
obtained showed the proper performance of the
optimization methods compared to other
introduced methods [31]. The blast-induced
fly-rock was analyzed by Dehghani and Shafaghi
using the DE algorithm. By collecting, analyzing,
and evaluating the parameters for approximately
300 blasting operations, they provided a
prediction model based on this meta-heuristic
algorithm, which showed a proper performance
compared to the results of the empirical
approaches [32]. The hybrid algorithms were used
by Chen et al. for landslide spatial modeling. They
used a combination of meta-heuristic algorithms
including Differential Evolution (DE) algorithm,
Genetic Algorithm (GA), and Particle Swarm
Optimization (PSO) with ANFIS. The results
obtained showed that these hybrid algorithms
could be successful and efficient methods in
managing and planning at regions with landslide
risk [33].

3.1.3. Particle
algorithm

PSO algorithm is a meta-heuristic one, which is
inspired by the collective intelligence and
behavior of birds and fish. This algorithm was
first provided by Kennedy and Eberhart based on
simple mathematical relations and considering the
movement pattern of birds for optimization of

swarm optimization (PSO)
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complex problems [34]. This algorithm starts to
work by randomly creating an initial population (a
group of particles). In fact, each particle shows a
possible response. Each particle starts to move
and search in the problem space in order to find
the most appropriate point. In each step, this
particle is fitted by its objective function and is
placed toward the most appropriate direction to
determine the most accurate and precise response.
Each particle continues its movement each time
using its experience and its neighbors in the
problem search space. Other particles move
toward a particle with the best position and correct
their directions. Therefore, the movement of
particles in the problem search space depends on
three factors including the present position of
particle X¥, the best location that a particle has
experienced (Pbest), and the best location that all
of the particles have experiences (Gbest). In fact,
in each cycle, the aim is to identify a particle that
finds the best momentary position in the problem
and enters the community with a new position,
and the other particles move toward it considering
the superiority of the most appropriate particle in
terms of location. This cycle continues until all
particles gather together at the best point [35-36].
These calculations are introduced based on
Equations (6) and (7).

VIS =wV e r.(pbest, =X F)+

6
c,1,.(gbest =X 1) (©)

xP=xl+rt (7)
In Equation (6), i = (1,2,3,...,N), N is the
population size (particle), and k = (1,2,3,...) is the
iteration number in the algorithm process. V;*"Vis
the new velocity vector for the ith particle. V¥
indicates the existing velocity vector for the ith
particle. pbest; is the best position that the ith
particle has experienced, and gbest is the best
position that all particles have experienced. In
Equation (7), X is the present position of the ith
particle and the new position of the ith particle. w
is the weight inertia, which is used in the class of
particles to ensure the convergence and is a
suggestion in the range of 0.4-0.9. r; and r, are
random numbers between 0 and 1. C, and C, are
two fixed and positive values that are introduced
as the personal learning factor and the global
learning factor, respectively, and have a
significant role in the algorithm’s convergence
controlling process. However, it is worth

mentioning that the condition ¢, +¢, <4 must
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always be met [37]. In the recent years, the PSO
algorithm, as a powerful tool, has been substituted
with traditional optimization methods. In a study,
a high-precision optimal model was provided by
Hasanipanah et al. to predict the blast-produced
ground vibration using the PSO algorithm. They
performed modelling by collecting approximately
80 datasets, and compared them with the results
obtained from other methods including the
multiple linear regression (MLR) model and the
United States Bureau of Mines (USBM) equation.
Finally, the provided model was more capable
than the other methods [38]. In a case study on
three quarry sites in Malaysia, a model was
provided by Hasanipanah et al. for predicting
flyrock due to blasting using a meta-heuristic
optimization technique. First, they studied and
determined 5 influential parameters by studying
and collecting data. Then by conducting enough
analyses using the PSO algorithm, a very
appropriate model was provided, which was better
than the other linear methods [39]. Two linear and
quadratic models were developed by Ghasemi
using the PSO algorithm and a set of data on
Sungun copper mine in Iran. The results obtained
from optimization of the PSO algorithm for the

quadratic model were better than those for the
linear one [40].

3.2. Data collection

As mentioned earlier, the maximum energy
consumption is a matter of concern for
performance evaluation of gang saw in this case
study; hence, MEC of any rock type from 12
different locations was recorded. Table 2 includes
the locations and the names of the sawed rocks
and the average of MEC.

Rock blocks were collected from the factories for
the purpose of laboratory tests. It was attempted to
collect the rock samples large enough to obtain all
of the test specimens of a given rock type from the
same piece. Each block sample was investigated
for macroscopic defects so that it would provide
test specimens free from fractures, partings or
alteration zones. Then the standard test samples
were prepared from these block samples, and
uniaxial compressive strength, Brazilian tensile
strength, Mohs hardness, grain size, equal quartz
content, Young modulus, and Schimazek’s
F-abrasiveness  factor were studied. The
summaries of the test results are provided in Table
3.

Table 2. The locations and names of studied rocks and maximum energy consumption.

Samples No. Commercial name Name of quarry Average of MEC (Ampere)
Al Hajiabad Travertine Hajiabad 98.3
A2 Darebokhari Travertine Kohbar 96.1
A3 Atashkoh Travertine Atashkoh 104
A4 Chocolate Travertine Kashan 86.9
A5 Abbas Abad Travertine Abbas Abad 97
A6 Takab Travertine Takab 93.7
A7 Azarshahr Travertine Azarshahr 88.1
A8 Khalkhal Travertine Khalkhal 85.5
A9 Harsin Marble Harsin 110.3

Al10 Kerman Marble Mirzaei 105.5
All Ghorveh Marble Ghorveh 104
Al2 Laybid Marble Laybid 105.5

Table 3. Information for studied rock properties in laboratory tests.

No. Samples UCS (MPa) Mh YM (GPa) SF-a (N/mm) Production rate (V) MEC (Ampere)
Al Tha 61.5 2.9 21 0.0361088 8 93
Al Tha 61.5 2.9 21 0.0361088 11 95
Al Tha 61.5 2.9 21 0.0361088 14 96
Al Tha 61.5 2.9 21 0.0361088 17 97
Al Tha 61.5 2.9 21 0.0361088 20 99
Al Tha 61.5 2.9 21 0.0361088 23 100
Al Tha 61.5 2.9 21 0.0361088 27 100
Al Tha 61.5 2.9 21 0.0361088 30 100
Al Tha 61.5 2.9 21 0.0361088 33 101
Al Tha 61.5 2.9 21 0.0361088 37 102
A2 TDb 63 2.95 23.5 0.083106 8 94
A2 TDb 63 2.95 23.5 0.083106 11 94
A2 TDb 63 2.95 23.5 0.083106 14 95

548



Dormishi et al./ Journal of Mining & Environment, Vol. 10, No. 2, 2019

Table 3. Continued.

A2 TDb 63 2.95 23.5 0.083106 17 95
A2 TDb 63 2.95 23.5 0.083106 20 96
A2 TDb 63 2.95 23.5 0.083106 23 96
A2 TDb 63 2.95 23.5 0.083106 27 97
A2 TDb 63 2.95 23.5 0.083106 30 97
A2 TDb 63 2.95 23.5 0.083106 33 98
A2 TDb 63 2.95 23.5 0.083106 37 99
A3 TAt 62.8 2.8 22.8 0.040651 8 98
A3 TAt 62.8 2.8 22.8 0.040651 11 100
A3 TAt 62.8 2.8 22.8 0.040651 14 103
A3 TAt 62.8 2.8 22.8 0.040651 17 103
A3 TAt 62.8 2.8 22.8 0.040651 20 103
A3 TAt 62.8 2.8 22.8 0.040651 23 103
A3 TAt 62.8 2.8 22.8 0.040651 27 105
A3 TAt 62.8 2.8 22.8 0.040651 30 106
A3 TAt 62.8 2.8 22.8 0.040651 33 109
A3 TAt 62.8 2.8 22.8 0.040651 37 110
A4 TShK 54.5 2.2 14.5 0.04788 8 85
A4 TShK 54.5 2.2 14.5 0.04788 11 85
A4 TShK 54.5 2.2 14.5 0.04788 14 85
A4 TShK 54.5 2.2 14.5 0.04788 17 86
A4 TShK 54.5 2.2 14.5 0.04788 20 86
A4 TShK 54.5 2.2 14.5 0.04788 23 87
A4 TShK 54.5 2.2 14.5 0.04788 27 87
A4 TShK 54.5 2.2 14.5 0.04788 30 89
A4 TShK 54.5 2.2 14.5 0.04788 33 89
A4 TShK 54.5 2.2 14.5 0.04788 37 90
A5 TAb 67 2.7 27 0.036432 8 94
A5 TAb 67 2.7 27 0.036432 11 94
A5 TAb 67 2.7 27 0.036432 14 95
A5 TAb 67 2.7 27 0.036432 17 96
A5 TAb 67 2.7 27 0.036432 20 96
A5 TAb 67 2.7 27 0.036432 23 97
A5 TAb 67 2.7 27 0.036432 27 99
A5 TAb 67 2.7 27 0.036432 30 99
A5 TAb 67 2.7 27 0.036432 33 100
A5 TAb 67 2.7 27 0.036432 37 100
A6 TTa 60 2.6 20 0.0196 8 90
A6 TTa 60 2.6 20 0.0196 11 90
A6 TTa 60 2.6 20 0.0196 14 91
A6 TTa 60 2.6 20 0.0196 17 92
A6 TTa 60 2.6 20 0.0196 20 92
A6 TTa 60 2.6 20 0.0196 23 95
A6 TTa 60 2.6 20 0.0196 27 95
A6 TTa 60 2.6 20 0.0196 30 96
A6 TTa 60 2.6 20 0.0196 33 98
A6 TTa 60 2.6 20 0.0196 37 98
A7 TAz 53 2.9 15 0.038528 8 85
A7 TAz 53 2.9 15 0.038528 11 86
A7 TAz 53 2.9 15 0.038528 14 86
A7 TAz 53 2.9 15 0.038528 17 86
A7 TAz 53 2.9 15 0.038528 20 87
A7 TAz 53 2.9 15 0.038528 23 88
A7 TAz 53 2.9 15 0.038528 27 90
A7 TAz 53 2.9 15 0.038528 30 90
A7 TAz 53 2.9 15 0.038528 33 91
A7 TAz 53 2.9 15 0.038528 37 92

549



Dormishi et al./ Journal of Mining & Environment, Vol. 10, No. 2, 2019

Table 3. Continued.

A8 TKh 50.5 2.6 16.4 0.0333504 8 81
A8 TKh 50.5 2.6 16.4 0.0333504 11 81
A8 TKh 50.5 2.6 16.4 0.0333504 14 &3
A8 TKh 50.5 2.6 16.4 0.0333504 17 &3
A8 TKh 50.5 2.6 16.4 0.0333504 20 85
A8 TKh 50.5 2.6 16.4 0.0333504 23 87
A8 TKh 50.5 2.6 16.4 0.0333504 27 87
A8 TKh 50.5 2.6 16.4 0.0333504 30 89
A8 TKh 50.5 2.6 16.4 0.0333504 33 89
A8 TKh 50.5 2.6 16.4 0.0333504 37 90
A9 MHa 71.5 43 26 0.0604656 8 103
A9 MHa 71.5 43 26 0.0604656 11 104
A9 MHa 71.5 43 26 0.0604656 14 105
A9 MHa 71.5 43 26 0.0604656 17 106
A9 MHa 71.5 43 26 0.0604656 20 110
A9 MHa 71.5 43 26 0.0604656 23 112
A9 MHa 71.5 43 26 0.0604656 27 114
A9 MHa 71.5 43 26 0.0604656 30 115
A9 MHa 71.5 43 26 0.0604656 33 116
A9 MHa 71.5 43 26 0.0604656 37 118
Al0 Mke 72 4 32 0.0550095 8 101
Al0 Mke 72 4 32 0.0550095 11 101
Al0 Mke 72 4 32 0.0550095 14 103
Al0 Mke 72 4 32 0.0550095 17 103
Al0 Mke 72 4 32 0.0550095 20 105
Al0 Mke 72 4 32 0.0550095 23 106
Al0 Mke 72 4 32 0.0550095 27 106
Al0 Mke 72 4 32 0.0550095 30 108
Al0 Mke 72 4 32 0.0550095 33 110
Al0 Mke 72 4 32 0.0550095 37 112
All CGh 65 3.8 25 0.1674 8 100
All CGh 65 3.8 25 0.1674 11 101
All CGh 65 3.8 25 0.1674 14 101
All CGh 65 3.8 25 0.1674 17 103
All CGh 65 3.8 25 0.1674 20 104
All CGh 65 3.8 25 0.1674 23 105
All CGh 65 3.8 25 0.1674 27 106
All CGh 65 3.8 25 0.1674 30 106
All CGh 65 3.8 25 0.1674 33 107
All CGh 65 3.8 25 0.1674 37 107
Al2 Cla 63.5 3.9 23.5 0.145796 8 101
Al2 Cla 63.5 3.9 23.5 0.145796 11 102
Al2 Cla 63.5 3.9 23.5 0.145796 14 103
Al2 Cla 63.5 3.9 23.5 0.145796 17 105
Al2 Cla 63.5 3.9 23.5 0.145796 20 105
Al2 Cla 63.5 3.9 23.5 0.145796 23 106
Al2 Cla 63.5 3.9 23.5 0.145796 27 106
Al2 Cla 63.5 3.9 23.5 0.145796 30 108
Al2 Cla 63.5 3.9 23.5 0.145796 33 109
Al2 Cla 63.5 3.9 23.5 0.145796 37 110

4. Modeling and discussion

In order to provide an intelligent optimization
model for estimating MEC in a rock cutting
machine, after conducting the experimental tests
on 120 rock samples, 5 important and influential

factors in the performance of cutting machine

were

selected,

which

included

uniaxial

compressive strength (UCS), Mohs hardness
(Mh), Schimazek’s F-abrasiveness factors (SF-a),
Young modulus (YM), and production rate (V),
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respectively, and were used as the modelling 1

inputs. In addition, MEC of the machine was RMSE =\/—Z(x ;=) )
measured during the required experiments i=l

conducted on 120 samples, and was used as a D IRCHES I o e DI A
modelling output for evaluating the performance R"= . 2

of the cutting machine. Then 84 samples (70%) [ZH X =% )]

were utilized for constructing the model as the
train data, and 36 samples (30%) were used as the

test data for evaluation of the degree of accuracy output model and the output model, respectively.

and rpbustness. ) The significant point in the study of performance
In this work, two modellings were used through indices is that the closer the VAF value to 100, the

randqm non-linear - techniques 'including the better the performance of the model. In addition,
Hybrid ANFIS-DE and Hybrid ANFIS-DE the closer the RMSE value to zero and the R’

algorithms. Similarly, in order to determine the
efficiency and ability of the prediction models,
three performance indices were used according to
Equations (8)-(10) including value account for
(VAF), root mean square error (RMSE), and
coefficient of determination (R?).

VAF= l_Var('xi _yl)
var(x,)

(10)

where n is the number of datasets in the model,
and x; and y; are the values predicted from the

value to 1, the better the performance of the
model. FIS type is Sugeno. Also the number of
fuzzy rules was determined using a trial-error
method; some models of the set of fuzzy rule
combinations were employed for dataset.
Accordingly, some characterizations used in the
} ANFIS structure are shown in Table 4.

)

Table 4. Characteristics of the best structure of ANFIS model.

ANFIS parameter Value
Input membership function Gaussianmf
Output membership function Linear
Inputs/outputs [51]
Rules [1* 10 struct]
Input [5 * 1 struct]
Output [1*1 struct]
Number of input MFs [10 101010 10]
Number of output MFs 10
And method prod
Or method probor
Defuzz method wtaver
4.1. Hybrid ANFIS-DE algorithm 25, 45, 65, 85, and 100 in different modellings
In this section, after determining the hybrid [33], [41]. Table 5 shows a comparison of
ANFIS-DE algorithm code in MATLAB software, modellings with different Max iterations and
the algorithm’s control parameters are required in initial populations. In these modellings, 70% and
order to implement an appropriate convergence 30% of datasets are used as the model training
process and provide an accurate high-efficient data and the model test data, respectively [42-43].
model. These parameters have a significant role in Considering the results of Table 5, although the
the convergence process and the ability to conducted modellings are acceptable, the model
estimate the proposed model. According to the No. 17 has been accepted as an optimization
past studies, some control parameters such as model due to the better performance indices such
cross-over probability are considered as 0.1 and as VAF = 93.29, RMSE = 2.31, and R* = 0.94
several modellings in different states are done to compared to the other models provided by the
determine an appropriate value for other control hybrid ANFIS-DE. Figure 3 shows the coefficient
parameters of the algorithm, for example, Max of determination (R?) for MEC obtained from the
iteration considered the values 150, 250, 350, 450, cutting machine and MEC obtained from the
550, and 750 in different models. In addition, the prediction model for the hybrid ANFIS-DE
initial population is implemented for the values of algorithm.
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Table 5. Comparison of performance indices of each ANFIS-DE model.

Model No. Max Iteration Initial Population VAF RMSE R’
1 150 25 86.63 2.84 0.88
2 150 45 87.72 2.76  0.89
3 150 65 46.23  8.11 0.46
4 150 85 86.71 2.83  0.89
5 150 100 90.67 2.82  0.89
6 250 25 84.57 2.83 0.86
7 250 45 91.34 244 091
8 250 65 87.42 2.84 0.86
9 250 85 87.34 2.84 0.89
10 250 100 87.8 2.83  0.87
11 350 25 87.23 2.84 0.89
12 350 45 86.23 2.84 0.88
13 350 65 86.81 2.87 0.88
14 350 85 87.13 2.83  0.89
15 350 100 88.63  2.58 0.9
16 450 25 86.87 2.85 0.88
17 450 45 93.29 231 0.94
18 450 65 87.18 2.83  0.89
19 450 85 86.75 2.82 0.89
20 450 100 87.23 277 0.89
21 550 25 86.54 2.84 0.88
22 550 45 88.82 2.76  0.89
23 550 65 87.78 2.81 0.89
24 550 85 87.98 2.77 0.89
25 550 100 88.4 2.73  0.89
26 750 25 86.7 2.86 0.88
27 750 45 88.53 2.78 0.89
28 750 65 87.59 2.78 0.89
29 750 85 86.26 2.85 0.89
30 750 100 88.66 2.71 0.9
125
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Figure 3. Predicted values versus actual values

4.2. Hybrid ANFIS-PSO algorithm

As mentioned above, in this work, in addition to
the hybrid ANFIS-DE algorithm, another hybrid
algorithm called “hybrid ANFIS-PSO algorithm”

for the 17" model using Hybrid ANFIS-DE algorithm.

was used as a random technique with a high
flexibility. For this reason, in order to build the
structure of the hybrid ANFIS-PSO algorithm,
after creating the required codes in MATLAB
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software for ANFIS, the PSO algorithm was used
for ANFIS training and obtaining a highly
accurate response. In the next step, the control
parameters were determined for this system. Some
of the control parameters including Inertia Weight
(w) = 1, Inertia Weight Damping Ratio (wdamp)
= 0.99, Personal Learning Coefficient (C1) = 1,
and Global Learning Coefficient (C2) = 2 were
considered according to the comments made by
experts and the previous studies [44-45]. They are
significantly important in the algorithm’s
convergence process. Furthermore, various
models were created based on Max Iteration =
150,250,350,450,550, and 750, and initial
population = 25,45,65,85, and 100, and the results
obtained from these models and their performance

indices were tabulated in Table 6. In these models,
the proportion of training and test models were
70% and 30% of the total dataset, respectively
[42, 43].

According to the data in Table 6, although the
provided models have acceptable accuracy and
proper ability for predicting the rate of MEC,
model No. 28 shows appropriate performance
indices with values VAF = 99.65, RMSE = 0.5,
and R*= 0.997, and is selected as a winner model
in these modellings. Figure 4 shows the diagram
of coefficient of determination (R*) for the MEC
obtained from the cutting machine and the MEC
obtained from the model obtained using the
hybrid ANFIS-PSO algorithm.

Table 6. Comparison of performance indices of each ANFIS-PSO model.

Model No. Max Iteration Initial Population VAF RMSE R’

1 150 25 98 0.99 0.97
2 150 45 95.88 1.71 0.95
3 150 65 98 1.16 0.98
4 150 85 9732 137 0.97
5 150 100 95.86 1.71 0.95
6 250 25 97.62 1.29 0.97
7 250 45 97.16  1.41 0.97
8 250 65 94.5 1.94 0.95
9 250 85 98.4 0.97 0.98
10 250 100 9745 133 0.97
11 350 25 95.2 1.86 0.95
12 350 45 98.6 0.86 0.98
13 350 65 99.1 0.77 0.99
14 350 85 98.8 0.94 0.98
15 350 100 98.31 1.08 0.98
16 450 25 97.05 1.44 0.97
17 450 45 99 0.93 0.99
18 450 65 9736  1.36 0.99
19 450 85 99.2 0.75  0.991
20 450 100 98.78 093 0.98
21 550 25 98.88  0.89 0.98
22 550 45 99.35 0.67 0.992
23 550 65 99.01 0.84 0.99
24 550 85 99.1 0.82 0.99
25 550 100 98.8 0.9 0.99
26 750 25 98.14 1.14 0.98
27 750 45 98.76  0.94 0.99
28 750 65 99.65 0.5 0.997
29 750 85 99.2 0.71  0.992
30 750 100 99.28 0.71  0.992
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Figure 4. Predicted values versus actual values for the 17" model using Hybrid ANFIS-PSO algorithm.

4.3. Discussion

Based upon the results obtained from the models
predicted based on Tables 5 and 6, it is obvious
that the meta-heuristic algorithms of Differential
Evolution (DE) algorithm and Particle Swarm
Optimization (PSO) algorithm are successful
algorithms for ANFIS training. Although the
results of analyses and competition between the

algorithm had a better ability in terms of the
model outputs and performance indices, indicating
its superiority over the DE algorithm. Similarly, a
comparison between the measured dataset with
ANFIS-DE predicted and ANFIS-PSO predicted
is shown in Figures 5 and 6, respectively,
indicating the precision and ability of the
ANFIS-PSO model.

two algorithms were very close, the PSO
120 T T T T T
—4—Measured
115 B —<—ANFIS-DE Predicted | |
- |
g ;
[¥ 3 ,’
4 i \ . 4
) , [ < f
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Figure 5. Comparison between measured and predicted MEC by ANFIS-DE model for dataset.
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Figure 6. Comparison between measured and predicted MEC by ANFIS-PSO model for dataset.
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As mentioned earlier, prediction and assessment
of MEC 1is very notable for performance
evaluation of gang saw during the process of
cutting soft dimensional rocks. Hence, the aim of
the present work was to develop a precise model
for predicting MEC by 120 samples from 12
carbonate rocks. In this regard, 120 samples were
monitored, and the values for MEC, UCS, Mh,
SF-a, YM, and production rate (V) were
measured. According to the results obtained, the
presented study can be discussed as follows:

- A variety of models were developed using
ANFIS-DE and ANFIS-PSO with different
control parameters. As it can be seen, the
performance indices for dataset describe its
high capability for predicting MEC.
Although all the proposed models and
datasets have the proper results, the model
No. 17 for ANFIS-DE and the model No.
28 for ANFIS-PSO obtained the maximum
value of performance indices among other
models.

- In comparison between the ANFIS-DE and
ANFIS-PSO models, the ANFIS-PSO
method can provide a higher performance
capability for prediction of MEC.

- These methods are the precise scientific
tools instead of statistical methods to deal
with uncertain systems.

- It should be noted that the proposed models
should be used only for Iranian carbonate
rocks with some particular properties,
namely UCS, Mh, SF-a, YM, and
production rate (V).

5. Conclusions

One of the most important steps in designing the
dimensional rock cutting process is the prediction
of the performance of cutting machines. The
accurate prediction of cutting machines in the
stone cutting factories leads the designers and
owners of this industry toward a desired process
with the maximum operational power. In the
present research work, it was attempted to study
and predict the maximum energy consumption
(MEC) of the gang saw during the process of
cutting soft dimensional rocks wusing soft
computing and considering the physical and
mechanical properties of the rock sample and the
production rate of gang saw. For this reason, after
conducting studies on the rock mechanics of 12
carbonate rock samples, 120 cutting tests were
conducted in the rock processing factory under
different operational conditions, and MEC of the
machines was recorded as a criterion for the
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performance of the gang saw. The results obtained
showed that meta-heuristic algorithms such as the
Differential Evolution (DE) and Particle Swarm
Optimization (PSO) algorithms had the ability for
ANFIS training. However, although these two
algorithms showed appropriate efficiencies in the
process of model training, the PSO algorithm had
much ability in terms of model outputs and
performance indices. The coefficient of
determination (R?) equal to 0.997, VAF = 99.65,
and RMSE = 0.5 for dataset suggests the
superiority of the ANFIS-PSO approach in
predicting MEC, while these values were obtained
as R?=0.94, VAF = 93.29, and RMSE = 2.31 for
the ANFIS-PSO method, respectively.
Furthermore, a comparison between the measured
dataset with ANFIS-DE predicted and ANFIS-
PSO predicted indicates the accuracy and ability
of the ANFIS-PSO model in predicting MEC of
the gang saw considering the production rate of
the gang saw and the physical and mechanical
properties of carbonate rocks including uniaxial
compressive strength (UCS), Mohs hardness
(Mh), Schimazek’s F-abrasiveness factors (SF-a),
and Young modulus (YM). Future research works
are required to focus on comparing the
ANFIS-DE and ANFIS-PSO models with other
hybrid algorithms and machine learning methods
within the framework of this application.
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