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Abstract 
One of the most significant and effective criteria in the process of cutting dimensional 
rocks using the gang saw is the maximum energy consumption rate of the machine, and 
its accurate prediction and estimation can help designers and owners of this industry to 
achieve an optimal and economic process. In the present research work, it is attempted 
to study and provide models for predicting the maximum energy consumption of the 
gang saw during the process of soft dimensional rocks with the help of an intelligent 
optimization model such as random non-linear techniques, i.e. the Hybrid ANFIS-DE 
and Hybrid ANFIS-PSO algorithms based upon 4 physical and mechanical parameters 
including uniaxial compressive strength, Mohs hardness, Schimazek’s F-abrasiveness 
factors, Young modulus, and an operational characteristic of the machine, i.e. production 
rate. During this research work, 120 samples are tested on 12 carbonate rocks. The 
maximum energy consumption of the cutting machine during this work is measured and 
used as a modeling output for evaluating the performance of cutting machine. Also 
meta-heuristic algorithms including DE and PSO algorithms are used for training the 
Adaptive Neural Fuzzy Inference System (ANFIS). In addition, the PSO algorithm has a 
higher ability in terms of model output and performance indices and has a superiority 
over the differential evolution algorithm. Furthermore, comparison between the 
measured datasets with the ANFIS-DE and ANFIS-PSO models indicate the accuracy 
and ability of the ANFIS-PSO model in predicting the performance of gang saw 
considering the machine’s properties and the cut rock. 

1. Introduction 
The application of rock cutting instruments has 
been dramatically increased in the dimensional 
rock industry in two areas of mining and stone 
cutting factories. Having a full knowledge of the 
cutting process and the gang saw functions can 
increase the effectiveness and quality of the 
product. Two significant factors involved in this 
area include the final cost and the product quality. 
Generally, the cost of a rock plaque in rock 
cutting industries is highly influenced by the 
factors including instrumental costs (instruments’ 
abrasion) and maximum energy consumption 
costs, and the purpose of optimization is to 

increase the ratio of the production rate to the two 
mentioned factors. There is a direct relationship 
between the production rate and the two factors 
diamond tools’ abrasion and maximum energy 
consumption (MEC) so that not only the 
production rate but also the tools’ abrasion and the 
maximum energy consumption will increase. For 
this reason, an ideal balance must be created 
between the production rate and tools’ abrasion 
and the maximum energy consumption in the 
machine. There are different factors influencing 
the amount and type of cutting machines’ function 
and the cutting machine’s energy. Simultaneously, 
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the most significant factors involved include the 
properties of rock, type and form of instruments, 
force or load being imposed, and other 
environmental parameters. Today, the 
development of technology and application of 
new cutting machines such as saws has opened-up 
a new path in the cutting process in stone 
processing plants so it can be predicted that for 
the next few years, these facilities (considering 
their superiority over circular diamond saws) will 
be totally replaced by circular diamond saws. 
Until the present time, complete and 
comprehensive studies have been conducted on 
the disk cutting instruments and diamond wire 
sawing. However, studies on the sawing 
equipment are at the preliminary levels since they 
are new to this area. In Lons’ research work 
conducted in 1970, cutting forces and diamond 
segments’ abrasion in the saw machine have been 
completely investigated. In this work, it was 
attempted to study the relationship between 
diamond abrasion and cutting forces, and based 
upon the results obtained, there was a weak 
relationship between the mentioned parameters 
[1]. Next, in the studies carried out by Wiemann 
et al. in 1982, the saw machine has been assessed. 
In their studies, it was found out that the diamond 
blades’ tension significantly influenced the saw 
machine’s cutting process. The results obtained 
indicated that tensile stress of tip of blade moved 
toward its bottom and its value varied in different 
measurement situations (front, middle, and end). 
At the end, in the sawing process, two significant 
factors influencing the cutting performance are the 
tension frequency change in diamond blades and 
the effect of supply rate on the blades’ tensile 
stress [2]. In the studies of Jansen conducted in 
1977, it was found out that deformation of 
diamond blades was a function of tension, 
eccentricity, friction coefficient, and geometric 
parameters of the blade [3]. Accordingly, the 
deviation change and tension of blade were 
investigated and calculated by Gerlach et al. in 
1980 in a laboratory scale through a saw machine. 
The results of studies showed that geometric 
parameters, eccentricity, and tension of blade had 
influences on the blade diversion. In practice, the 
friction between segment and rock reduces the 
effective tension of blade; therefore, in the sawing 
process, the effective tension of blade can be a 
function of vertical forces in the direction of 
supply, which in the case of any change in the 
properties of rock, it also changes under different 
conditions [4]. In the research works conducted by 
Wang and Clausen in 2002, a carbonate rock 

sample was evaluated through single-point 
(single-segment) cutting instruments under 
different cutting conditions. In such a study, an 
analysis was conducted on the conditions of the 
contact surfaces between the rock and the 
diamond grain as well as the cutting mechanism 
of brittle failure. A CNC milling machine was 
used to conduct the cutting test. The cutting force 
Fc in the direction of cutting and the cutting force 
Ff perpendicular to the cutting direction have been 
calculated and recorded using a Kislter 
dynamometer (type-5019). During the test, two 
carbonate rocks were tested under the dry and wet 
cutting conditions. During the study, the cutting 
surfaces (the groove made by the contact of 
segment with the rock surface) were analyzed 
through a microscope [5]. In 2003, a computer 
simulation of this process was conducted by 
Wang and Clausen on the saw cutting process. 
The simulation of saw cutting is a practical 
alternative for design, especially for computation 
of the number of diamond grains and their 
distribution on the saw blades’ segments. 
Simulation was implemented by the two softwares 
Visual Basic and Microsoft Access. In this 
simulation, the cutting forces in the blade, 
segment, and each diamond grain as well as the 
effective cutting edges were measured under 
different cutting conditions [6]. In the study of 
Wang in 2003, the theory of rock cutting process 
using the saw machine was evaluated. Thus the 
cutting motion of the blade and diamond grain 
was investigated. The studies indicate that the 
efficient number of diamond grains and the 
cutting depth depend on the status of segment and 
the height of the raised part of diamond grain. The 
cutting depth of diamond grain increases with 
increase in the supply rate, and reduction of 
crankshaft rotation per minute and the impact 
length. The maximum cutting depth of diamond 
grain depends on its status during the contact with 
the rock in one cutting impact. In the process of 
cutting, the contact surface between the blade and 
rock block will change per moment. The most 
important factors involved in the contact surface 
versus the cutting time include the segments’ 
distribution, cutting length, and impact length [7]. 
Almasi et al. investigated 11 types of hard rock 
for developing a new rock classification based on 
the abrasiveness, hardness, and toughness of 
rocks, and with the multiple curvilinear regression 
analysis, the data was analyzed, and then 
validation of the model was conducted by 
considering the t-test, F-test, and coefficient of 
determination. The results obtained showed that 
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this model was a reliable one as a prediction 
method in their case. [8]. The rock waste 
percentages produced from cutting rock blocks 
into slabs using gang saw machine were 
investigated by Alhaj. The results obtained 
showed an inverse relationship between the gang 
saw thickness and the volume waste percentages 
and productivity. In addition, the volume waste 
percentages altered around the ideal values of 
26% for 2 cm, 19% for 3 cm, and 22% for the 
mixed 2 & 3 cm thicknesses [9]. Almasi et al. 
developed statistical and M5P tree models for the 
prediction of building stone cutting rate based on 
rock properties and device pullback amperage. 
The results obtained showed that in the 
comparison between the M5P tree technique and 
the statistical regression methods, the M5P tree 
model was more reliable than the statistical model 
in predicting the cutting rate [10]. 

The main objective of the present work was to 
analyze the performance of the two hybrid 
algorithms for the cutting process and the 
performance of gang saw. In particular, the study 
focuses on the carbonate rocks’ cutting process 
based on some important properties of the rocks 
and maximum energy consumption (MEC) of 
gang saws under uncertain conditions. 

2. Gang saw machine 
In this work, the location of investigations was 
Marble factories in the Mahallat area in Iran and 
the sawing operations (maximum energy 
consumption) of gang saws were calculated on 
twelve various carbonate rocks. The studies were 
conducted on the performance of machine 
operating in the same conditions (Figure 1). In 
Table 1, the machine operating properties during 
performance studies are provided. 

 

  
Figure 1. Gang saw machine used in this case. 

 

Table 1. Machine operating properties. 
Characteristic Value 
Blade run mm 750 
Cutting width mm 1440 
Cutting length mm 3300 
Cutting height mm 1950 
Blade length mm 4400 
Max. no. of blades n 50 
Main engine power Kw 55 
Total weight of machine ton 47 
 
3. Methods and materials 
In this section, in order to assess the performance 
evaluation of gang saw, some mechanical and 
physical properties were collected. The 
experimental studies and laboratory tests were 
carried out on the rock block samples, and the 
data was collected. Furthermore, two artificial 
intelligence (AI) techniques, namely Hybrid 
ANFIS-DE algorithm and Hybrid ANFIS- PSO 
algorithm, were considered as methods; more 
explanations are mentioned in the following  
sub-sections. 

3.1. Methods 
3.1.1. Adaptive neural fuzzy inference system 

The artificial intelligence (AI) has provided a 
wide spectrum of intelligent methods and 
algorithms in the area of industrial developments 
and scientific and industrial optimizations [11-15]. 
In the meantime, the Adaptive Neural Fuzzy 
Inference System (ANFIS) is one of the special 
and complex methods with an appropriate 
capability in predicting complex, linear, and non-
linear phenomena. In fact, the structure of ANFIS 
is the result of a complex combination of neural 
network with fuzzy rules formed by the multi-
layer networks including nodes and directed 
communication links. This system was first 
provided by Jang, which turned to a powerful and 
useful tool for estimating real continuous 
functions in a limited range for each degree of 
accuracy due to the application of the learning 
power of artificial neural networks, on the one 
hand, and the use of the rules and fuzzy inference 
base, on the other hand [16-17]. It is also used as 
an intelligent dynamic system, and by processing 
the experimental data accurately, provides a very 
appropriate map of the input-output data [18-19]. 
The structure of an ANFIS model with 5 layers is 
shown in Figure 2. 
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Figure 2. An architecture of ANFIS model. 

 
According to this figure, the first layer includes 
input nodes, and in this layer, each node like i 
determines the degree of membership based on 
the membership functions (MFs) based on 
Equation (1) [20, 21]. 
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where x and y are the inputs of the ith node, and 
Ai and Bi are the linguistic labels relating to this 
layer. Furthermore, Q1,I and µ are the membership 
degrees of the fuzzy set and the membership 
function, respectively. 
In the second layer, a node is introduced under the 
title   whose output value is obtained from the 
multiplication of input signals according to 
Equation (2). In fact, the output of each node 
indicates the firing strength of each rule. 

2 , ( ). ( ) 1, 2  i i i i i iQ w A x B x i   (2) 

In the third layer, the node is introduced with label 
N, in which the ratio of firing strength rule for the 
ith node to the total firing strength rules is 
obtained according to Equation (3), which is 
introduced with the output of this layer under the 

title of normalized firing strengths ( iW


). Each 
node (i) in the fourth layer is in accordance with 
the node function according to Equation (3). 
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In Equation (4), the values for ri, qi, and pi are a set 
of parameters for this node that are identified as 
inferential parameters [20-21]. 

4, . ( )
 

   i i i i i i iQ W f W p x q y r  (4) 

In the fifth or last layer, there is only one node 
that is defined under the label of  , and 
according to Equation (5), all of the output signals 
of the fourth layer’s nodes are introduced as the 
network output. Furthermore, in this layer, the 
fuzzy results produced are turned into a non-fuzzy 
output through a defuzzification process. 
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In the ANFIS modelling, there are many classic 
methods for training the model’s fuzzy inference 
system. However, in this research work, in order 
to improve the training process of the fuzzy 
inference system, meta-heuristic algorithms were 
used for optimizing the influential parameters in 
the inference system. For this reason, two of the 
most commonly used meta-heuristic algorithms 
are used including Differential Evolution (DE) 
algorithm and Particle Swarm Optimization (PSO) 
algorithm, and coding is done in Matlab program 
for creating hybrid algorithms of ANFIS-DE and 
ANFIS-PSO in order to analyze the experimental 
data [20-22]. 

3.1.2. Differential evolution algorithm 
With increase in complexity and due to the 
existing uncertainties in solving problems in 
scientific and industrial areas, the need for using 
new optimization methods is inevitable.  
Meta-heuristic algorithms are one of the artificial 
intelligent methods in dealing with such problems 
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[23-27]. The DE algorithm is one of the meta-
heuristic algorithms with a high ability in solving 
complex problems. This method was first 
introduced by Storn and Price [28-29]. The DE 
algorithm is one of the multi-purpose  
meta-heuristic algorithms that have an acceptable 
ability in engineering optimizations and 
mathematical problems’ optimization. This 
algorithm starts working by creating an initial 
population and implements the algorithm by 
imposing four operators including initialization, 
mutation, cross-over and selection. The difference 
between this algorithm and others such as the 
genetic algorithm is how mutation and cross-over 
operators are placed and implemented [30]. In this 
way, in this algorithm, first the mutation operator 
and next the cross-over operator are implemented. 
The appropriate accuracy and speed in the 
applications of the DE algorithm have made this 
algorithm to be used in a wide range of problems. 
In a case study on the Queens Water Tunnel in 
New York City conducted by Yagiz and Karahan, 
a set of optimization algorithms were used for 
predicting the TBM penetration rate in rock mass. 
DE algorithm was one of the methods under 
investigation in this case study. The results 
obtained showed the proper performance of the 
optimization methods compared to other 
introduced methods [31]. The blast-induced  
fly-rock was analyzed by Dehghani and Shafaghi 
using the DE algorithm. By collecting, analyzing, 
and evaluating the parameters for approximately 
300 blasting operations, they provided a 
prediction model based on this meta-heuristic 
algorithm, which showed a proper performance 
compared to the results of the empirical 
approaches [32]. The hybrid algorithms were used 
by Chen et al. for landslide spatial modeling. They 
used a combination of meta-heuristic algorithms 
including Differential Evolution (DE) algorithm, 
Genetic Algorithm (GA), and Particle Swarm 
Optimization (PSO) with ANFIS. The results 
obtained showed that these hybrid algorithms 
could be successful and efficient methods in 
managing and planning at regions with landslide 
risk [33]. 

3.1.3. Particle swarm optimization (PSO) 
algorithm 
PSO algorithm is a meta-heuristic one, which is 
inspired by the collective intelligence and 
behavior of birds and fish. This algorithm was 
first provided by Kennedy and Eberhart based on 
simple mathematical relations and considering the 
movement pattern of birds for optimization of 

complex problems [34]. This algorithm starts to 
work by randomly creating an initial population (a 
group of particles). In fact, each particle shows a 
possible response. Each particle starts to move 
and search in the problem space in order to find 
the most appropriate point. In each step, this 
particle is fitted by its objective function and is 
placed toward the most appropriate direction to 
determine the most accurate and precise response. 
Each particle continues its movement each time 
using its experience and its neighbors in the 
problem search space. Other particles move 
toward a particle with the best position and correct 
their directions. Therefore, the movement of 
particles in the problem search space depends on 
three factors including the present position of 
particle Xk

i, the best location that a particle has 
experienced (Pbest), and the best location that all 
of the particles have experiences (Gbest). In fact, 
in each cycle, the aim is to identify a particle that 
finds the best momentary position in the problem 
and enters the community with a new position, 
and the other particles move toward it considering 
the superiority of the most appropriate particle in 
terms of location. This cycle continues until all 
particles gather together at the best point [35-36]. 
These calculations are introduced based on 
Equations (6) and (7). 

( 1)
1 1

2 2

.( )

.( )

    



k k k
i i i i

k
i

V w V c r pbest X

c r gbest X  
(6) 

( )  k k k
i i iX X V  (7) 

In Equation (6), i = (1,2,3,…,N), N is the 
population size (particle), and k = (1,2,3,…) is the 
iteration number in the algorithm process. Vi

(k+1) is 
the new velocity vector for the ith particle. Vk

i 
indicates the existing velocity vector for the ith 
particle. pbesti is the best position that the ith 
particle has experienced, and gbest is the best 
position that all particles have experienced. In 
Equation (7), Xk

i is the present position of the ith 
particle and the new position of the ith particle. w 
is the weight inertia, which is used in the class of 
particles to ensure the convergence and is a 
suggestion in the range of 0.4-0.9. r1 and r2 are 
random numbers between 0 and 1. C1 and C2 are 
two fixed and positive values that are introduced 
as the personal learning factor and the global 
learning factor, respectively, and have a 
significant role in the algorithm’s convergence 
controlling process. However, it is worth 
mentioning that the condition 1 2 4c c   must 
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always be met [37]. In the recent years, the PSO 
algorithm, as a powerful tool, has been substituted 
with traditional optimization methods. In a study, 
a high-precision optimal model was provided by 
Hasanipanah et al. to predict the blast‑produced 
ground vibration using the PSO algorithm. They 
performed modelling by collecting approximately 
80 datasets, and compared them with the results 
obtained from other methods including the 
multiple linear regression (MLR) model and the 
United States Bureau of Mines (USBM) equation. 
Finally, the provided model was more capable 
than the other methods [38]. In a case study on 
three quarry sites in Malaysia, a model was 
provided by Hasanipanah et al. for predicting 
flyrock due to blasting using a meta-heuristic 
optimization technique. First, they studied and 
determined 5 influential parameters by studying 
and collecting data. Then by conducting enough 
analyses using the PSO algorithm, a very 
appropriate model was provided, which was better 
than the other linear methods [39]. Two linear and 
quadratic models were developed by Ghasemi 
using the PSO algorithm and a set of data on 
Sungun copper mine in Iran. The results obtained 
from optimization of the PSO algorithm for the 

quadratic model were better than those for the 
linear one [40]. 

3.2. Data collection 
As mentioned earlier, the maximum energy 
consumption is a matter of concern for 
performance evaluation of gang saw in this case 
study; hence, MEC of any rock type from 12 
different locations was recorded. Table 2 includes 
the locations and the names of the sawed rocks 
and the average of MEC. 
Rock blocks were collected from the factories for 
the purpose of laboratory tests. It was attempted to 
collect the rock samples large enough to obtain all 
of the test specimens of a given rock type from the 
same piece. Each block sample was investigated 
for macroscopic defects so that it would provide 
test specimens free from fractures, partings or 
alteration zones. Then the standard test samples 
were prepared from these block samples, and 
uniaxial compressive strength, Brazilian tensile 
strength, Mohs hardness, grain size, equal quartz 
content, Young modulus, and Schimazek’s  
F-abrasiveness factor were studied. The 
summaries of the test results are provided in Table 
3. 

 
Table 2. The locations and names of studied rocks and maximum energy consumption. 
Samples No. Commercial name Name of quarry Average of MEC (Ampere) 

A1 Hajiabad Travertine Hajiabad 98.3 
A2 Darebokhari Travertine Kohbar 96.1 
A3 Atashkoh Travertine Atashkoh 104 
A4 Chocolate Travertine Kashan 86.9 
A5 Abbas Abad Travertine Abbas Abad 97 
A6 Takab Travertine Takab 93.7 
A7 Azarshahr Travertine Azarshahr 88.1 
A8 Khalkhal Travertine Khalkhal 85.5 
A9 Harsin Marble Harsin 110.3 
A10 Kerman Marble Mirzaei 105.5 
A11 Ghorveh Marble Ghorveh 104 
A12 Laybid Marble Laybid 105.5 

 
Table 3. Information for studied rock properties in laboratory tests. 

No. Samples UCS (MPa) Mh YM (GPa) SF-a (N/mm) Production rate (V) MEC (Ampere) 
A1 Tha 61.5 2.9 21 0.0361088 8 93 
A1 Tha 61.5 2.9 21 0.0361088 11 95 
A1 Tha 61.5 2.9 21 0.0361088 14 96 
A1 Tha 61.5 2.9 21 0.0361088 17 97 
A1 Tha 61.5 2.9 21 0.0361088 20 99 
A1 Tha 61.5 2.9 21 0.0361088 23 100 
A1 Tha 61.5 2.9 21 0.0361088 27 100 
A1 Tha 61.5 2.9 21 0.0361088 30 100 
A1 Tha 61.5 2.9 21 0.0361088 33 101 
A1 Tha 61.5 2.9 21 0.0361088 37 102 
A2 TDb 63 2.95 23.5 0.083106 8 94 
A2 TDb 63 2.95 23.5 0.083106 11 94 
A2 TDb 63 2.95 23.5 0.083106 14 95 
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Table 3. Continued. 
A2 TDb 63 2.95 23.5 0.083106 17 95 
A2 TDb 63 2.95 23.5 0.083106 20 96 
A2 TDb 63 2.95 23.5 0.083106 23 96 
A2 TDb 63 2.95 23.5 0.083106 27 97 
A2 TDb 63 2.95 23.5 0.083106 30 97 
A2 TDb 63 2.95 23.5 0.083106 33 98 
A2 TDb 63 2.95 23.5 0.083106 37 99 
A3 TAt 62.8 2.8 22.8 0.040651 8 98 
A3 TAt 62.8 2.8 22.8 0.040651 11 100 
A3 TAt 62.8 2.8 22.8 0.040651 14 103 
A3 TAt 62.8 2.8 22.8 0.040651 17 103 
A3 TAt 62.8 2.8 22.8 0.040651 20 103 
A3 TAt 62.8 2.8 22.8 0.040651 23 103 
A3 TAt 62.8 2.8 22.8 0.040651 27 105 
A3 TAt 62.8 2.8 22.8 0.040651 30 106 
A3 TAt 62.8 2.8 22.8 0.040651 33 109 
A3 TAt 62.8 2.8 22.8 0.040651 37 110 
A4 TShK 54.5 2.2 14.5 0.04788 8 85 
A4 TShK 54.5 2.2 14.5 0.04788 11 85 
A4 TShK 54.5 2.2 14.5 0.04788 14 85 
A4 TShK 54.5 2.2 14.5 0.04788 17 86 
A4 TShK 54.5 2.2 14.5 0.04788 20 86 
A4 TShK 54.5 2.2 14.5 0.04788 23 87 
A4 TShK 54.5 2.2 14.5 0.04788 27 87 
A4 TShK 54.5 2.2 14.5 0.04788 30 89 
A4 TShK 54.5 2.2 14.5 0.04788 33 89 
A4 TShK 54.5 2.2 14.5 0.04788 37 90 
A5 TAb 67 2.7 27 0.036432 8 94 
A5 TAb 67 2.7 27 0.036432 11 94 
A5 TAb 67 2.7 27 0.036432 14 95 
A5 TAb 67 2.7 27 0.036432 17 96 
A5 TAb 67 2.7 27 0.036432 20 96 
A5 TAb 67 2.7 27 0.036432 23 97 
A5 TAb 67 2.7 27 0.036432 27 99 
A5 TAb 67 2.7 27 0.036432 30 99 
A5 TAb 67 2.7 27 0.036432 33 100 
A5 TAb 67 2.7 27 0.036432 37 100 
A6 TTa 60 2.6 20 0.0196 8 90 
A6 TTa 60 2.6 20 0.0196 11 90 
A6 TTa 60 2.6 20 0.0196 14 91 
A6 TTa 60 2.6 20 0.0196 17 92 
A6 TTa 60 2.6 20 0.0196 20 92 
A6 TTa 60 2.6 20 0.0196 23 95 
A6 TTa 60 2.6 20 0.0196 27 95 
A6 TTa 60 2.6 20 0.0196 30 96 
A6 TTa 60 2.6 20 0.0196 33 98 
A6 TTa 60 2.6 20 0.0196 37 98 
A7 TAz 53 2.9 15 0.038528 8 85 
A7 TAz 53 2.9 15 0.038528 11 86 
A7 TAz 53 2.9 15 0.038528 14 86 
A7 TAz 53 2.9 15 0.038528 17 86 
A7 TAz 53 2.9 15 0.038528 20 87 
A7 TAz 53 2.9 15 0.038528 23 88 
A7 TAz 53 2.9 15 0.038528 27 90 
A7 TAz 53 2.9 15 0.038528 30 90 
A7 TAz 53 2.9 15 0.038528 33 91 
A7 TAz 53 2.9 15 0.038528 37 92 
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Table 3. Continued. 
A8 TKh 50.5 2.6 16.4 0.0333504 8 81 
A8 TKh 50.5 2.6 16.4 0.0333504 11 81 
A8 TKh 50.5 2.6 16.4 0.0333504 14 83 
A8 TKh 50.5 2.6 16.4 0.0333504 17 83 
A8 TKh 50.5 2.6 16.4 0.0333504 20 85 
A8 TKh 50.5 2.6 16.4 0.0333504 23 87 
A8 TKh 50.5 2.6 16.4 0.0333504 27 87 
A8 TKh 50.5 2.6 16.4 0.0333504 30 89 
A8 TKh 50.5 2.6 16.4 0.0333504 33 89 
A8 TKh 50.5 2.6 16.4 0.0333504 37 90 
A9 MHa 71.5 4.3 26 0.0604656 8 103 
A9 MHa 71.5 4.3 26 0.0604656 11 104 
A9 MHa 71.5 4.3 26 0.0604656 14 105 
A9 MHa 71.5 4.3 26 0.0604656 17 106 
A9 MHa 71.5 4.3 26 0.0604656 20 110 
A9 MHa 71.5 4.3 26 0.0604656 23 112 
A9 MHa 71.5 4.3 26 0.0604656 27 114 
A9 MHa 71.5 4.3 26 0.0604656 30 115 
A9 MHa 71.5 4.3 26 0.0604656 33 116 
A9 MHa 71.5 4.3 26 0.0604656 37 118 
A10 Mke 72 4 32 0.0550095 8 101 
A10 Mke 72 4 32 0.0550095 11 101 
A10 Mke 72 4 32 0.0550095 14 103 
A10 Mke 72 4 32 0.0550095 17 103 
A10 Mke 72 4 32 0.0550095 20 105 
A10 Mke 72 4 32 0.0550095 23 106 
A10 Mke 72 4 32 0.0550095 27 106 
A10 Mke 72 4 32 0.0550095 30 108 
A10 Mke 72 4 32 0.0550095 33 110 
A10 Mke 72 4 32 0.0550095 37 112 
A11 CGh 65 3.8 25 0.1674 8 100 
A11 CGh 65 3.8 25 0.1674 11 101 
A11 CGh 65 3.8 25 0.1674 14 101 
A11 CGh 65 3.8 25 0.1674 17 103 
A11 CGh 65 3.8 25 0.1674 20 104 
A11 CGh 65 3.8 25 0.1674 23 105 
A11 CGh 65 3.8 25 0.1674 27 106 
A11 CGh 65 3.8 25 0.1674 30 106 
A11 CGh 65 3.8 25 0.1674 33 107 
A11 CGh 65 3.8 25 0.1674 37 107 
A12 CLa 63.5 3.9 23.5 0.145796 8 101 
A12 CLa 63.5 3.9 23.5 0.145796 11 102 
A12 CLa 63.5 3.9 23.5 0.145796 14 103 
A12 CLa 63.5 3.9 23.5 0.145796 17 105 
A12 CLa 63.5 3.9 23.5 0.145796 20 105 
A12 CLa 63.5 3.9 23.5 0.145796 23 106 
A12 CLa 63.5 3.9 23.5 0.145796 27 106 
A12 CLa 63.5 3.9 23.5 0.145796 30 108 
A12 CLa 63.5 3.9 23.5 0.145796 33 109 
A12 CLa 63.5 3.9 23.5 0.145796 37 110 

 
4. Modeling and discussion 
In order to provide an intelligent optimization 
model for estimating MEC in a rock cutting 
machine, after conducting the experimental tests 
on 120 rock samples, 5 important and influential 

factors in the performance of cutting machine 
were selected, which included uniaxial 
compressive strength (UCS), Mohs hardness 
(Mh), Schimazek’s F-abrasiveness factors (SF-a), 
Young modulus (YM), and production rate (V), 
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respectively, and were used as the modelling 
inputs. In addition, MEC of the machine was 
measured during the required experiments 
conducted on 120 samples, and was used as a 
modelling output for evaluating the performance 
of the cutting machine. Then 84 samples (70%) 
were utilized for constructing the model as the 
train data, and 36 samples (30%) were used as the 
test data for evaluation of the degree of accuracy 
and robustness. 
In this work, two modellings were used through 
random non-linear techniques including the 
Hybrid ANFIS-DE and Hybrid ANFIS-DE 
algorithms. Similarly, in order to determine the 
efficiency and ability of the prediction models, 
three performance indices were used according to 
Equations (8)-(10) including value account for 
(VAF), root mean square error (RMSE), and 
coefficient of determination (R2). 
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where n is the number of datasets in the model, 
and xi and yi are the values predicted from the 
output model and the output model, respectively. 
The significant point in the study of performance 
indices is that the closer the VAF value to 100, the 
better the performance of the model. In addition, 
the closer the RMSE value to zero and the R2 
value to 1, the better the performance of the 
model. FIS type is Sugeno. Also the number of 
fuzzy rules was determined using a trial-error 
method; some models of the set of fuzzy rule 
combinations were employed for dataset. 
Accordingly, some characterizations used in the 
ANFIS structure are shown in Table 4. 

 
Table 4. Characteristics of the best structure of ANFIS model. 

ANFIS parameter Value 
Input membership function Gaussianmf 

Output membership function Linear 
Inputs/outputs [5 1] 

Rules [1 * 10 struct] 
Input [5 * 1 struct] 

Output [1 * 1 struct] 
Number of input MFs [10 10 10 10 10] 
Number of output MFs 10 

And method prod 
Or method probor 

Defuzz method wtaver 
 
4.1. Hybrid ANFIS-DE algorithm 
In this section, after determining the hybrid 
ANFIS-DE algorithm code in MATLAB software, 
the algorithm’s control parameters are required in 
order to implement an appropriate convergence 
process and provide an accurate high-efficient 
model. These parameters have a significant role in 
the convergence process and the ability to 
estimate the proposed model. According to the 
past studies, some control parameters such as 
cross-over probability are considered as 0.1 and 
several modellings in different states are done to 
determine an appropriate value for other control 
parameters of the algorithm, for example, Max 
iteration considered the values 150, 250, 350, 450, 
550, and 750 in different models. In addition, the 
initial population is implemented for the values of 

25, 45, 65, 85, and 100 in different modellings 
[33], [41]. Table 5 shows a comparison of 
modellings with different Max iterations and 
initial populations. In these modellings, 70% and 
30% of datasets are used as the model training 
data and the model test data, respectively [42-43]. 
Considering the results of Table 5, although the 
conducted modellings are acceptable, the model 
No. 17 has been accepted as an optimization 
model due to the better performance indices such 
as VAF = 93.29, RMSE = 2.31, and R2 = 0.94 
compared to the other models provided by the 
hybrid ANFIS-DE. Figure 3 shows the coefficient 
of determination (R2) for MEC obtained from the 
cutting machine and MEC obtained from the 
prediction model for the hybrid ANFIS-DE 
algorithm. 
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Table 5. Comparison of performance indices of each ANFIS-DE model. 
Model No.  Max Iteration  Initial Population  VAF  RMSE  R2  

1  150  25 86.63  2.84  0.88  
2  150  45  87.72  2.76  0.89  
3  150  65  46.23  8.11  0.46  
4  150  85  86.71  2.83  0.89  
5  150  100  90.67  2.82  0.89  
6  250  25  84.57  2.83  0.86  
7  250  45  91.34  2.44  0.91  
8  250  65  87.42  2.84  0.86  
9  250  85  87.34  2.84  0.89  
10  250  100  87.8  2.83  0.87  
11  350  25  87.23  2.84  0.89  
12  350  45  86.23  2.84  0.88  
13  350  65  86.81  2.87  0.88  
14  350  85  87.13  2.83  0.89  
15  350  100  88.63  2.58  0.9  
16  450  25  86.87  2.85  0.88  
17  450  45  93.29  2.31  0.94  
18  450  65  87.18  2.83  0.89  
19  450  85  86.75  2.82  0.89  
20  450  100  87.23  2.77  0.89  
21  550  25  86.54  2.84  0.88  
22  550  45  88.82  2.76  0.89  
23  550  65  87.78  2.81  0.89  
24  550  85  87.98  2.77  0.89  
25  550  100  88.4  2.73  0.89  
26  750 25  86.7  2.86  0.88  
27  750  45  88.53  2.78  0.89  
28  750  65  87.59  2.78  0.89  
29  750  85  86.26  2.85  0.89  
30 750  100  88.66  2.71  0.9  

 

 
Figure 3. Predicted values versus actual values for the 17th model using Hybrid ANFIS-DE algorithm. 

 
4.2. Hybrid ANFIS-PSO algorithm 
As mentioned above, in this work, in addition to 
the hybrid ANFIS-DE algorithm, another hybrid 
algorithm called “hybrid ANFIS-PSO algorithm” 

was used as a random technique with a high 
flexibility. For this reason, in order to build the 
structure of the hybrid ANFIS-PSO algorithm, 
after creating the required codes in MATLAB 
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software for ANFIS, the PSO algorithm was used 
for ANFIS training and obtaining a highly 
accurate response. In the next step, the control 
parameters were determined for this system. Some 
of the control parameters including Inertia Weight 
(w) = 1, Inertia Weight Damping Ratio (wdamp) 
= 0.99, Personal Learning Coefficient (C1) = 1, 
and Global Learning Coefficient (C2) = 2 were 
considered according to the comments made by 
experts and the previous studies [44-45]. They are 
significantly important in the algorithm’s 
convergence process. Furthermore, various 
models were created based on Max Iteration = 
150,250,350,450,550, and 750, and initial 
population = 25,45,65,85, and 100, and the results 
obtained from these models and their performance 

indices were tabulated in Table 6. In these models, 
the proportion of training and test models were 
70% and 30% of the total dataset, respectively 
[42, 43]. 
According to the data in Table 6, although the 
provided models have acceptable accuracy and 
proper ability for predicting the rate of MEC, 
model No. 28 shows appropriate performance 
indices with values VAF = 99.65, RMSE = 0.5, 
and R2 = 0.997, and is selected as a winner model 
in these modellings. Figure 4 shows the diagram 
of coefficient of determination (R2) for the MEC 
obtained from the cutting machine and the MEC 
obtained from the model obtained using the 
hybrid ANFIS-PSO algorithm. 

 
Table 6. Comparison of performance indices of each ANFIS-PSO model. 
Model No.  Max Iteration  Initial Population  VAF  RMSE  R2  

1  150  25 98  0.99  0.97  
2  150  45  95.88  1.71  0.95  
3  150  65  98  1.16  0.98  
4  150  85  97.32  1.37  0.97  
5  150  100  95.86  1.71  0.95  
6  250  25  97.62  1.29  0.97  
7  250  45  97.16  1.41  0.97 
8  250  65  94.5  1.94  0.95  
9  250  85  98.4  0.97  0.98  
10  250  100  97.45  1.33  0.97  
11  350  25  95.2  1.86  0.95 
12  350  45  98.6  0.86  0.98  
13  350  65  99.1  0.77  0.99 
14  350  85  98.8  0.94  0.98 
15  350  100  98.31  1.08  0.98 
16  450  25  97.05  1.44  0.97 
17  450  45  99  0.93  0.99 
18  450  65  97.36  1.36  0.99  
19  450  85  99.2  0.75  0.991 
20  450  100  98.78  0.93  0.98  
21  550  25  98.88  0.89  0.98  
22  550  45  99.35  0.67  0.992  
23  550  65  99.01  0.84  0.99  
24  550  85  99.1  0.82  0.99  
25  550  100  98.8  0.9  0.99  
26  750 25  98.14  1.14  0.98  
27  750  45  98.76  0.94  0.99  
28  750  65  99.65  0.5  0.997  
29  750  85  99.2  0.71  0.992  
30 750  100  99.28  0.71  0.992  

 



Dormishi et al./ Journal of Mining & Environment, Vol. 10, No. 2, 2019 

554 
 

 
Figure 4. Predicted values versus actual values for the 17th model using Hybrid ANFIS-PSO algorithm. 

 

4.3. Discussion 
Based upon the results obtained from the models 
predicted based on Tables 5 and 6, it is obvious 
that the meta-heuristic algorithms of Differential 
Evolution (DE) algorithm and Particle Swarm 
Optimization (PSO) algorithm are successful 
algorithms for ANFIS training. Although the 
results of analyses and competition between the 
two algorithms were very close, the PSO 

algorithm had a better ability in terms of the 
model outputs and performance indices, indicating 
its superiority over the DE algorithm. Similarly, a 
comparison between the measured dataset with 
ANFIS-DE predicted and ANFIS-PSO predicted 
is shown in Figures 5 and 6, respectively, 
indicating the precision and ability of the  
ANFIS-PSO model. 

 

 
Figure 5. Comparison between measured and predicted MEC by ANFIS-DE model for dataset. 

 

 
Figure 6. Comparison between measured and predicted MEC by ANFIS-PSO model for dataset. 
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As mentioned earlier, prediction and assessment 
of MEC is very notable for performance 
evaluation of gang saw during the process of 
cutting soft dimensional rocks. Hence, the aim of 
the present work was to develop a precise model 
for predicting MEC by 120 samples from 12 
carbonate rocks. In this regard, 120 samples were 
monitored, and the values for MEC, UCS, Mh, 
SF-a, YM, and production rate (V) were 
measured. According to the results obtained, the 
presented study can be discussed as follows: 

- A variety of models were developed using 
ANFIS-DE and ANFIS-PSO with different 
control parameters. As it can be seen, the 
performance indices for dataset describe its 
high capability for predicting MEC. 
Although all the proposed models and 
datasets have the proper results, the model 
No. 17 for ANFIS-DE and the model No. 
28 for ANFIS-PSO obtained the maximum 
value of performance indices among other 
models. 

- In comparison between the ANFIS-DE and 
ANFIS-PSO models, the ANFIS-PSO 
method can provide a higher performance 
capability for prediction of MEC. 

- These methods are the precise scientific 
tools instead of statistical methods to deal 
with uncertain systems. 

- It should be noted that the proposed models 
should be used only for Iranian carbonate 
rocks with some particular properties, 
namely UCS, Mh, SF-a, YM, and 
production rate (V). 

5. Conclusions 
One of the most important steps in designing the 
dimensional rock cutting process is the prediction 
of the performance of cutting machines. The 
accurate prediction of cutting machines in the 
stone cutting factories leads the designers and 
owners of this industry toward a desired process 
with the maximum operational power. In the 
present research work, it was attempted to study 
and predict the maximum energy consumption 
(MEC) of the gang saw during the process of 
cutting soft dimensional rocks using soft 
computing and considering the physical and 
mechanical properties of the rock sample and the 
production rate of gang saw. For this reason, after 
conducting studies on the rock mechanics of 12 
carbonate rock samples, 120 cutting tests were 
conducted in the rock processing factory under 
different operational conditions, and MEC of the 
machines was recorded as a criterion for the 

performance of the gang saw. The results obtained 
showed that meta-heuristic algorithms such as the 
Differential Evolution (DE) and Particle Swarm 
Optimization (PSO) algorithms had the ability for 
ANFIS training. However, although these two 
algorithms showed appropriate efficiencies in the 
process of model training, the PSO algorithm had 
much ability in terms of model outputs and 
performance indices. The coefficient of 
determination (R2) equal to 0.997, VAF = 99.65, 
and RMSE = 0.5 for dataset suggests the 
superiority of the ANFIS-PSO approach in 
predicting MEC, while these values were obtained 
as R2 = 0.94, VAF = 93.29, and RMSE = 2.31 for 
the ANFIS-PSO method, respectively. 
Furthermore, a comparison between the measured 
dataset with ANFIS-DE predicted and ANFIS-
PSO predicted indicates the accuracy and ability 
of the ANFIS-PSO model in predicting MEC of 
the gang saw considering the production rate of 
the gang saw and the physical and mechanical 
properties of carbonate rocks including uniaxial 
compressive strength (UCS), Mohs hardness 
(Mh), Schimazek’s F-abrasiveness factors (SF-a), 
and Young modulus (YM). Future research works 
are required to focus on comparing the  
ANFIS-DE and ANFIS-PSO models with other 
hybrid algorithms and machine learning methods 
within the framework of this application. 
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  چکیده:

تواند به طراحان و  ی صحیح از این معیار مینیب شیپ. تخمین و استها  معیارها در روند برش سنگ نیمؤثرترو  نیتر مهمنرخ شدت جریان مصرفی بیشینه یکی از 
ی نیب شیپیی براي ها مدلآوردن یک روند بهینه و اقتصادي کمک کند. در پژوهش حاضر، سعی شده است تا به بررسی و مطالعه  دست بهصاحبان این صنعت در 

  ي هیبریـدي هـا  تمیالگـور ی یعنـی  رخط ـیغ یتصـادف  يهـا  کی ـتکني هوشمند نظیـر  ساز نهیبهرش اره به کمک یک مدل شدت جریان مصرفی بیشینه دستگاه ب
ANFIS-DE  وANFIS-PSO  مـدول  ،مازكیش ـ یندگیسـا  مـوهس،  یسـخت  ،يمحـور  تـک  يفشـار  مقاومتپارامتر فیزیکی و مکانیکی شامل:  4بر اساس 

ي ها نوع سنگ کربناته مورد آزمایش 12نمونه از  120یعنی نرخ تولید پرداخته شود. در طی این پژوهش یک مشخصه عملیاتی ماشین برش سنگ  و تهیسیالاست
ي بـراي ارزیـابی   ساز مدلي شده و به عنوان خروجی ریگ اندازه. همچنین در طی این پژوهش، شدت جریان مصرفی بیشینه دستگاه برش گرفت قرارآزمایشگاهی 

 یعصـب  يفـاز  اسـتنتاج  سـتم یس بـراي آمـوزش   PSOو  DEي فرا ابتکاري شامل ها تمیالگورتفاده قرار گرفته است. همچنین عملکرد دستگاه برش اره مورد اس
 تمیالگـور  نسبت به عملکرد يها شاخص و ي مدلها یخروج بر اساس يبالاتر ییتوانااز  PSO تمیالگور ،به علاوه مورد استفاده قرار گرفتند. )ANFIS( تطبیقی

DE مدل با شده يریگ اندازه يها داده نیب سهیمقا ن،یا بر علاوه. داشت ANFIS-DE مـدل  و ANFIS-PSO،  مـدل  ییتوانـا  و دقـت ANFIS-PSO در را 
 .داد نشان سنگ برش و دستگاه يها مشخصه به توجه با دستگاه برش اره عملکرد ینیب شیپ

  .ANFIS-DE ،ANFIS-PSOدستگاه برش اره، جریان مصرفی بیشینه، نرخ برش،  کلمات کلیدي:

 

 

 

 


