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Abstract

Immediate roof caving in longwall mining is a complex dynamic process, and it is the core of numerous
issues and challenges in this method. Hence, a reliable prediction of the strata behavior and its caving
potential is imperative in the planning stage of a longwall project. The span of the main caving is the
quantitative criterion that represents cavability. In this paper, two approaches are proposed in order to predict
the span of the main caving in longwall projects. Cavability index (CI) is introduced based on the hybrid
multi-criteria decision-making technique, combining the fuzzy analytical network processes (ANP) and the
fuzzy decision-making trial and evaluation laboratory (DEAMTEL). Subsequently, the relationship between
the new index and the caving span is determined. In addition, statistical relationships are developed,
incorporating the multivariate regression method. The real data for nine panels is used to develop the new
models. Accordingly, two models based on CI including the Gaussian and cubic models as well as the linear
and non-linear regression models are proposed. The performance of the proposed models is evaluated in
various actual cases. The results obtained indicate that the CI-Gaussian model possesses a higher
performance in the prediction of the main caving span in actual cases when compared to the other models.
These results confirm that it is not possible to consider all the effective parameters in an empirical
relationship due to a higher error in the prediction.

Keywords: Main Caving Span, Cavability Index, Longwall, Multi-Criteria Decision-Making, Regression
Analysis.

1. Introduction

In longwall mining, a part of the overburden loses
its natural support due to extraction and
advancement of the extraction face. Once a certain
unsupported span is reached, the nether strata of
the immediate roof fractures, and subsequently,
falls. This distance, which is from the barrier
pillar to the caving point, is the main caving span
(first weighting interval or main fall distance), as
shown by /; in Figure 1. After this step, as mining
processes further, the upper strata will break
periodically, leading to the periodic caving span
(periodic weighting interval or periodic fall
distance) (/, in Figure 1). Generally, the main
caving span is greater than the periodic distance.
In the caving process, caved rocks provide a

support for the upper layer and transfer their loads
to the floor. This reduces stresses at abutments
and ahead of the longwall face [1-2].

A proper caving guarantees the success of this
mining method, while delayed or/and poor caving
will lead to severe consequences such as face
jamming, rock burst on the face, and airburst [3].
A thorough understanding of strata mechanics and
caving mechanism is imperative in the planning
stage for subsidence and ground control design,
stability prediction of face, roadways and gates,
determination of the load capacity of longwall
shields, designing the pillars, and length of
longwall panels.
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In the literature, there are a number of empirical
and analytical models to predict the main caving
span. The empirical models have been developed
based on the field experiments and the actual field
data. A number of them have proposed a
quantitative relationship to predict the main
caving span [1, 4-8], and some others have
provided both options of the qualitative
assessment of cavability and predicted
relationship of the main span fall [7, 9-11].
Analytical models are typically based upon
theoretical approaches such as the plate-beam
theory for prediction of the main caving span [12-
15].

A critical review of different approaches in the
main caving span prediction has revealed that the
empirical methods which were developed on the
basis of databases are not practical for several
cases. On the other hand, the analytical methods
have various assumptions, leading to reduction in
their practical applications. In order to overcome
these drawbacks, this paper proposes two
approaches in order to predict the span of the
main caving in the form of the knowledge-based
and data-based models. In the first one, an
empirical index was introduced using the hybrid
fuzzy multi-criteria decision-making (MCDM)
technique. Statistical relationships were developed
via multivariate regression in the second
approach, incorporating databases of worldwide
longwall experiments. Finally, the performance of
the proposed models was evaluated in the

prediction of the main caving span for actual
cases.

I, I, I,

Figure 1. Main and periodic distance in caving
process [1].

2. Methods and materials

2.1. Methodology

Two approaches, namely hybrid fuzzy MCDM
and regression technique, were applied to predict
the span of the main fall. The flowchart of
developing and evaluating the proposed models is
shown in Figure 2.
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Figure 2. Flowchaft of developing new models for prediction of main caving span.
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In the first approach, the cavability index (CI) was
introduced using a combination of the fuzzy
analytical network process (ANP) and the fuzzy
decision-making trial and evaluation laboratory
(DEMATEL) methods. ANP is the general form
and extension of the AHP method that provides a
general framework to deal with complex real
problems in which there are independencies
within a cluster and among the different clusters
[16]. ANP forms a supermatrix of problem, in
which the inner and outer dependencies are
merged together to calculate the weight of each
parameter. DEMATEL is a robust method used in
formulating the sophisticated structures that
models the interdependent relationships within a
set of criteria under consideration [17]. In this
paper, the inner-dependence among parameters
was evaluated by the fuzzy DEMATEL.
Outer-dependencies as well as weighting of
clusters were determined using the fuzzy ANP
procedure through pairwise compression. Based
upon this hybrid method, a classification system
was developed, in which the parameters were
rated to calculate CI. Finally, the relationship
between the new index and the caving span of
actual cases was determined using the curve
fitting toolbox of the MATLAB software, and
accordingly, the best-fitted curve was selected. In
order to validate the model, the caving span and
performance of the proposed approach were
evaluated.

In the second approach, the statistical analysis was
used to develop the regression relationship for
predicting the caving span. The input variables
were selected based on the literature data, and the
main caving span was regarded as the output
variable. Using the data of actual panels, the linear
and non-linear multivariate regression
relationships were developed. For this purpose,
the package ‘‘Statistical Package for Social
Science (SPSS)’’ was used. Validation of the
proposed models in the train step was conducted
by considering 5 tests including t-test, F-test,
assumptions of errors independence, errors
normality, and linearity of independent variables.
The T-test is a univariate hypothesis test applied
when standard deviation is not known and the
sample size is small, while the F-test is a
statistical test that determines the equality of
variances of two normal populations. The error
independence is evaluated via the Durbin—Watson
test. Error normality is controlled through
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comparing the distribution of error with normal
distribution and scatter plot, in which the
regression standardized residual is the y-axis and
the regression standardized predicted value is the
x-axis. The linearity of independent variables in
regression is limited by controlling the variance
inflation factor (VIF) and tolerance [18-19].
Finally, performance of the new linear and
non-linear multivariate regression models was
evaluated by the actual field data. In the validation
step, for both approaches, their performances were
evaluated using three performance criteria
including coefficient of determination (R”), root
mean square error (RMSE), proportion of
variance accounted for (VAF), and mean absolute
percentage error (MAPE). These criteria are as
follow:

N 2
Z(ymeay =¥ meas )(J’pred _;pred)

i=1

2 _
R~ =100 =~ ~ (1)
JZ (Y meas —¥ meas )2z(ypred _ipred )2

i=1 i=1

RMSE :\/ Z(y meas ypred) (2)

Var
VAF —100| 1 Y mew =Y prea) 3)
N

MAPE—LZ Y meas yprcd %100 (4)
N i=1 ymem

where

Vmeas 18 the measured value,
Vprea 18 the predicted value,

Y meas 1 the mean of measured values,

)7pred is the means of predicted values, and

var 1s the variance.

2.2. Database

A database including the data for twelve longwall
panels around the world was collected. Among
them, nine panels were selected randomly as the
training cases to investigate the relationship
between CI and the main caving span as well as
for developing the regression relationships. The
rest were considered as the validation cases to
evaluate and to compare the performance of the
two approaches (Table 1).



Mohammadi et al./ Journal of Mining & Environment, Vol. 9, No. 3, 2018

Table 1. Relevant data of used longwall panels [3, 11, 20-25].

No. Continent Country Mine/Coalfield Panel

1 Iran Parvadeh 1 EO

2 India GDK 10A Incline mine 3D2

3 Asia India GDK 10A Incline mine No.14

4 India GDK 10A Incline mine 3A

5 India Moonidih A4

6 India PVK S’ 21

7 Europe Germany Ruhr mining district” -

8 Norway Svea Nord C6

9 South Africa Highveld Coalfield -

10 Africa South Africa Malta Colliery No.1

11 South Africa New Denmark Colliery” No.509

12 America USA CONSOL Central Appalachian 8-R
3. Proposed models determined on the basis of the literature, as shown
3.1. Cavability index (CI) in Figure 3. Then the supermatrix of problem was
In order to introduce CI, the most significant established as follows:

parameters involved in the caving process were

Cavability (goal) Categories ~ Parameters

Cavability (goal) 0 0 0

Categories Wy, W 0

Parameters 0 W3, Wi;
In this supermatrix, W5, and Wj; are the inner placing the matrices Wy, W33, W5, and W3, the
inner-dependency matrices that were evaluated weighted supermatrix was derived by equating the
using fuzzy DEMATEL. In addition, W;; and W3, normalized summation of each column to 1. The
are the outer-dependencies that were determined parameters weights in this process were
using fuzzy ANP. For this purpose, some determined after calculation of the limit
questionnaires were distributed among seventeen supermatrix. Thus the weighted supermatrix was
academics and industrial experts, and their raised to the limiting powers, calculating the

opinions and judgments were collected. After ultimate parameters weights as listed in Table 2.
Strata Thickness

Roof Strata (t)
Characteristics (RSC) Strata UCS

(o0

Number of joint

sets (jn)
Orientation (j,)
- Roof Discontinuities o
(Canallivy Properties (RDP) Dip G
Spacing (js)

Persistence ( jp)

Depth of seam

Local Features (he)
(LF) Grounwater

W)
Figure 3. Significant parameters of caving roof strata.
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Table 2. Parameters weights in cavability index.

No. Parameters Weight%
1 Strata thickness 12
2 Strata UCS 13
3 Number of joint set 12
4 Joint dip 10
5 Joint orientation 10
6 Joint spacing 11
7 Joint persistence 10
8 Depth 11
9 Groundwater flow 11

Sum 100

In order to introduce CI, all the parameters
involved were classified into five classes (with the
exception of joint persistence, which was
classified into three classes) in accordance with
their role in the caving on the basis of the
literature ~ and  standard  guidelines. A
corresponding rate from 0 to 4 was assigned to
each class. Table 3 shows the proposed rating
table of the effective parameters in caving. It is
noted that the coal strata are grouped into several
composite layers, which have different and
complex mechanical and caving behavior.
Different strata properties may influence the
immediate roof properties. Therefore, the
equivalent immediate roof strength (EIRS) was
defined as the thickness-weighted average of roof
the strata uniaxial compressive strength as:

n
Zti x O-C[

EIRS =L (5)

i=1

where
t; is the thickness of the ith stratum (m),

O, is the UCS of the ith stratum (MPa), and

C
n is the number of stratum within the immediate
roof.
It should be noted that the weight of EIRS is the
total weight of strata characteristics (i.e. the
weight of strata UCS plus strata thickness which
will be equal to 25).
Effects of joint orientation and dip in Table 3 are
determined based on Table 4.

Table 3. System classification parameters.

Rating
No. Parameters
0 1 2 3 4
1 EIRS (Mpa) > 250 250-100 100-50 50-25 <25
) Number of Massive Only bedding Beddmg planes plus Two joint sets Thre; or more
joint sets planes a joint set joint sets
Joint Ver
3 orientation and M Unfavorable Fair Favorable Very favorable
dip unfavorable
g4 Jomnt (ifl’)acmg >1.8 1.8-0.6 0.6-0.2 0.2-0.06 <0.06
5 Joint 0-1 13 >3
persistence (m)
6 Depth (m) <100 100-300 300-600 600-1000 > 1000
7 Groundwater None None visible nght' . Steady ' Heavy '
flow seepage/dripping seepage/flowing seepage/gushing
Table 4. Expression of joint orientation and dip.
Strike perpendicular to panel axis . . . )
- . - - ; : Strike parallel to panel axis Irrespective of strike
Drive with dip Drive against dip
Dip 45°-90° Dip 20°-45° Dip 45°-90° Dip 20°-45°  Dip 45°-90°  Dip 20°-45° Dip 0°-20°
Very unfavorable Unfavorable Fair Favorable = Very favorable = Favorable Fair
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The cavability index is defined as: The collected data related to training cases were
; p used to determine the associated CI for each case
Cl :zwi i (6) based on Eq. (2). Table 5 lists the main caving
il P span and calculated CI for training cases, while

their scatter plots are depicted in Figure 4.

In order to investigate the relationship between
; . the main caving span (L,) and CI, the curve
P "dlSPthe ?ateilofthe .lth paramete; (}(1) t(.);l‘)’ fitting approach was applied. For this purpose,
and Lpex 18 the maximum rate of the /th parameter several curves were fitted on the data, and their

(it. is 4 fgr all parameters with the exception of RMSE and R? were calculated as shown in Table
joint persistence that is 3). 6

where
w; is the weight of the ith parameter,

Table 5. Calculated CI for train cases.

Mine/Panel Main caving span (m) CI
Parvadeh1/EO 10.45 74.5
GDK 10A Incline mine/3D2 78.1 30.5
GDK 10A Incline mine/No.14 53 45
GDK 10A Incline mine/3A 64.9 46.83
Moonidih/A4 26 61.67
Svea Nord/C6 36 46.75
Highveld Coalfield 36.8 58.25
Malta Colliery/No.1 30 59
CONSOL Central Appalachian/8-R 85.34 14.5
90
<
80 o
_ 10 53
g 60
g o
& 50
g 40
o ©
30 <
£ <
= 20
10 Lod
0
0 10 20 30 40 50 60 70 80
CI
Figure 4. Scatter plot for main caving span vs. CL.
Table 6. Fitted curves and associated RMSE and R’
No. Model RMSE R’ Equation
1 Linear 9.51  0.87 L, =-141(CI)+116.53
2 Quadratic 9.03  0.89 L, =-0.012(CI)* —0.34(CI ) +95.8
3 Cubic 8.88 091 L =0.0006(CI )3 —-0.097(CI )2 +3.04(CI)+59.42
. —(C1-20.85)?
4 Gaussian 8.44  0.90 L, =86.88xe 140662
5 Exponential 12.96  0.75 L, =13591xe D
6  Power 1660 0.59 L, =582.07(CI )"
7 Logarithmic  12.38  0.73 L, =—-48.18xIn(CI)+231.1
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It can be inferred from Table 6 that the Gaussian
model has the lowest RMSE, whereas the cubic
model has the highest R*. Therefore, these models
were selected as the candidate models, and their
performances were evaluated in the validation
cases.

50%

3.2. Regression analysis

In this study, the independent variables were
chosen based on the parameters frequency as
reported in the literature. Accordingly, the
percentage of each parameter usage in the
previous empirical models was calculated, as
shown in Figure 5.

45%
40%
35%
30%
25%
20%
15%
10%

5%

Percentage

0%

Parameters

A: Strata UCS; B: Strata thickness;, C: ROD,; D: Height of immediate roof, Coal seam
thickness, E: Type of roof rock, Core data, Depth of coal seam; F: Height of main roof, Roof
density, Tensile strength of main roof, Presence of groundwater,; G: Miscellaneous parameters.
Figure 5. Percentage of parameter usage in the literature.

It may be noted in Figure 5 that the strata uniaxial
compressive strength, strata thickness, roof RQD,
height of immediate roof, and coal seam thickness
have had percentages more than 20% in the
previous studies. Therefore, these parameters
were considered as the input variables in the
regression analysis with the exception of RQD
because it was not available for all cases. In
addition, the strata UCS and thickness were
defined in terms of the equivalent immediate roof
strength (EIRS), as in Eq. (1).

3.2.1. Linear regression model

In a multivariate linear regression model, the
output is modeled as a function of independent
variables. The data for 9 panels (out of a total of
12 collected panels) were applied to develop a
linear regression model based on Table 1. Five
tests were executed to validate the proposed linear
regression function. The developed linear model
for the main caving span is as follows:

L, =32.07+0.32(EIRS ) —3.16(h,)+9.71(t,,,)

(7

where L, is the main caving span, and 4; and .,
are the height of immediate roof and the coal
seam thickness, respectively.

3.2.2. Non-linear regression model

723

The twin-logarithmic model was incorporated to
develop a non-linear multivariate regression
relationship. The equation representing this
relationship is as follows:

Y =aX ) x X2 x. . x XD ®)

where Y is the dependent variable (output); a is
the intercept; X;, X5, and X, are the independent
variables; and b;, b,, and b, are the regression
coefficients of X;, X5, and X, respectively.
Taking logarithms of both sides of Eq. (4):

log¥ =loga+b,logX, +b,logX, +..+b, logX , 9)

Eq. (5) can be rearranged as a linear regression
function as:

Y =c+aX,+aX,+..+a X,

(10)

The regression analysis was performed, and five
validation tests were carried out, following the
previously-stated  logic. The  non-linear
multivariate regression function that can be used
to predict the span of the main fall was obtained,
as shown in the following equation:

13,18 < EIRS **' xt 2]

coal

L

(11)

0.63
m hl-
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4. Results

Capabilities of the four proposed models (CI in
the Gaussian form, CI in the cubic form, and
linear and non-linear regressions) were evaluated
using three cases based on Table 1. In order to
investigate the capabilities of the proposed
models, the scatter graphs of the measured and
predicted values were plotted. Ideally, on such a
graph, the points are scattered around the 1:1
diagonal straight line. A point lying on the line

80 =

= 60 PR
8 o

5 40 B

Q 2

[l ’

Q 20 ’/ y

7 <. 3
0
0 20 40 60 80
Measured
a. CI-Gaussian
80 =

=) > »
2 60 2

6 o

ED 40 ® 7 ’

[ e

3 .

£ 20 o5

— h

0 7
0 20 40 60 80
Measured

c. Linear Regression

indicates an exact estimation. A larger deviation
from this line shows the larger errors in the
prediction. The scatter graph for each model is
depicted in Figure 6.

A comparison between the measured and
predicted main caving span values is shown in
Figure 7.
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Figure 6. Scatter graph of measured main caving span versus predicted values using developed models.
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Figure 7. Comparison between measured and predicted span values.
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Four criteria (Rz, RMSE, VAF, and MAPE), as
mentioned in the Section 2, were used for the sake
of quantitative comparison. Smaller RMSE values
produce higher coefficients of determination,
leading to more accurate fitted curves. In the same
direction, higher VAF values and smaller MPAE
values are desired for fitted relationships. The
calculated values of these indices for the proposed
models are given in Table 7.

According to the visual comparison (Figures 6
and 7) and performance criteria, it could be
deduced that the CI models were capable of
predicting the main caving span with a reasonable
accuracy. In addition, the Gaussian model
performed a higher accuracy when compared to
that of the cubic model.

Table 7. Calculated performance criteria for proposed models.

Models R’ RMSE VAF MAPE
CI-Gaussian 0.9976  6.88  93.25 14.59
CI-Cubic 09895 997 98.00 28.71
Linear regression ~ 0.8828 1823  66.77 73.95
Nonlinear regression 0.8354 13.86 66.47 55.82

5. Discussion

The performance of each model was determined
in the previous section. This section provides
detailed discussion on the results.

The reason for the difference in the prediction
results for the CI models and the regression is
related to the parameters involved in each model.
There are effective parameters such as roof
discontinuities and ground water flow that cannot
be considered in a regression model.

The roof strength of coal mines is influenced by
the bedding plane or other discontinuities that
weakens the rock structure. Furthermore, the
stratified roof strata are cross-cut by sub-vertical
joints that are either original or mining-induced.
Therefore, the presence of these geological factors
reduce the strength of the roof layer rock mass.
Disregarding these features leads to an inaccurate
prediction. For instance, in the studied panel of
New Denmark colliery in Africa [24], the roof has
some discontinuities such as joint set and bedding
plane. Performance of the regression models in
this panel highlights the importance of
considering such properties. In contrast,
incorporating RQD increases the accuracy of
these models. Nevertheless, one may note that
RQD is an index for fracture spacing, and the
other discontinuity properties are not taken into
account through it.

On the other hand, groundwater movement
through rock mass redistributes stresses around
joints and discontinuities within the rock mass.
This reduces the normal stresses across the
fractures lowering the shear strength of the joints
based on the effective stress concept, confining
that stresses across a joint or a bedding plane may
be low in the proximity of excavations. In such
cases, the movement of groundwater may lead to
a large dilation of the joints/bedding planes,
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resulting in large inflows of water and instability
of strata.

In addition, when a relationship is developed
based on a database, the logical relationship
between the output variable and the input
variables may not be met. The relationships 3 and
7 show direct relations between the main caving
span and the coal seam thickness, while in reality
and based on the analytical model, this
relationship should be inverse. This shows that the
reliability of a data-based model is largely
dependent on the size, quality, and consistency of
the database. This is another disadvantage of the
data-based methods.

An effective solution for considering all the
effective parameters in a model to predict the
main caving span is to develop a classification
system, and consequently, an index. Also the level
of significance for each parameter is required to
be determined using the scientific methods.
Finally, using the best-fitted curves on the actual
data would result in the development of a reliable
model. The results obtained confirm this solution.

6. Conclusions

Two methods were proposed for the prediction of
the main caving span. Cavability index (CI) using
the hybrid fuzzy MCDM and two relations using
the regression analysis were developed. The
following main conclusions could be drawn from
this investigation:

e The Gaussian model, which defines the
relationship between CI and the main
caving span, was found to be superior in
comparison with the other models with the
coefficient of determination (R*) and root
mean squared error (RMSE) values of
0.9976 and 6.88, respectively.
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e C(lis a suitable approach to predict the main
caving span in longwall projects due to the
consideration of various types of effective
parameters on the caving.
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