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Abstract 

Immediate roof caving in longwall mining is a complex dynamic process, and it is the core of numerous 

issues and challenges in this method. Hence, a reliable prediction of the strata behavior and its caving 

potential is imperative in the planning stage of a longwall project. The span of the main caving is the 

quantitative criterion that represents cavability. In this paper, two approaches are proposed in order to predict 

the span of the main caving in longwall projects. Cavability index (CI) is introduced based on the hybrid 

multi-criteria decision-making technique, combining the fuzzy analytical network processes (ANP) and the 

fuzzy decision-making trial and evaluation laboratory (DEAMTEL). Subsequently, the relationship between 

the new index and the caving span is determined. In addition, statistical relationships are developed, 

incorporating the multivariate regression method. The real data for nine panels is used to develop the new 

models. Accordingly, two models based on CI including the Gaussian and cubic models as well as the linear 

and non-linear regression models are proposed. The performance of the proposed models is evaluated in 

various actual cases. The results obtained indicate that the CI-Gaussian model possesses a higher 

performance in the prediction of the main caving span in actual cases when compared to the other models. 

These results confirm that it is not possible to consider all the effective parameters in an empirical 

relationship due to a higher error in the prediction. 

 

Keywords: Main Caving Span, Cavability Index, Longwall, Multi-Criteria Decision-Making, Regression 

Analysis. 

1. Introduction 

In longwall mining, a part of the overburden loses 

its natural support due to extraction and 

advancement of the extraction face. Once a certain 

unsupported span is reached, the nether strata of 

the immediate roof fractures, and subsequently, 

falls. This distance, which is from the barrier 

pillar to the caving point, is the main caving span 

(first weighting interval or main fall distance), as 

shown by ls in Figure 1. After this step, as mining 

processes further, the upper strata will break 

periodically, leading to the periodic caving span 

(periodic weighting interval or periodic fall 

distance) (lp in Figure 1). Generally, the main 

caving span is greater than the periodic distance. 

In the caving process, caved rocks provide a 

support for the upper layer and transfer their loads 

to the floor. This reduces stresses at abutments 

and ahead of the longwall face [1-2]. 

A proper caving guarantees the success of this 

mining method, while delayed or/and poor caving 

will lead to severe consequences such as face 

jamming, rock burst on the face, and airburst [3]. 

A thorough understanding of strata mechanics and 

caving mechanism is imperative in the planning 

stage for subsidence and ground control design, 

stability prediction of face, roadways and gates, 

determination of the load capacity of longwall 

shields, designing the pillars, and length of 

longwall panels. 
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In the literature, there are a number of empirical 

and analytical models to predict the main caving 

span. The empirical models have been developed 

based on the field experiments and the actual field 

data. A number of them have proposed a 

quantitative relationship to predict the main 

caving span [1, 4-8], and some others have 

provided both options of the qualitative 

assessment of cavability and predicted 

relationship of the main span fall [7, 9-11]. 

Analytical models are typically based upon 

theoretical approaches such as the plate-beam 

theory for prediction of the main caving span [12-

15]. 

A critical review of different approaches in the 

main caving span prediction has revealed that the 

empirical methods which were developed on the 

basis of databases are not practical for several 

cases. On the other hand, the analytical methods 

have various assumptions, leading to reduction in 

their practical applications. In order to overcome 

these drawbacks, this paper proposes two 

approaches in order to predict the span of the 

main caving in the form of the knowledge-based 

and data-based models. In the first one, an 

empirical index was introduced using the hybrid 

fuzzy multi-criteria decision-making (MCDM) 

technique. Statistical relationships were developed 

via multivariate regression in the second 

approach, incorporating databases of worldwide 

longwall experiments. Finally, the performance of 

the proposed models was evaluated in the 

prediction of the main caving span for actual 

cases. 

 

 
Figure 1. Main and periodic distance in caving 

process [1]. 

2. Methods and materials 

2.1. Methodology 

Two approaches, namely hybrid fuzzy MCDM 

and regression technique, were applied to predict 

the span of the main fall. The flowchart of 

developing and evaluating the proposed models is 

shown in Figure 2. 

 

Prediction of main 

caving span

Introducing the CI

Developing the linear and 

nonlinear regression 

models

Curve fitting between CI 

and main caving span

Model performance 

evaluation

Selecting best fitted 

curve using 

R2 and RMSE

Collecting Data

Train Data
Validation 

Data

Introducing the 

best model
 

Figure 2. Flowchart of developing new models for prediction of main caving span. 
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In the first approach, the cavability index (CI) was 

introduced using a combination of the fuzzy 

analytical network process (ANP) and the fuzzy 

decision-making trial and evaluation laboratory 

(DEMATEL) methods. ANP is the general form 

and extension of the AHP method that provides a 

general framework to deal with complex real 

problems in which there are independencies 

within a cluster and among the different clusters 

[16]. ANP forms a supermatrix of problem, in 

which the inner and outer dependencies are 

merged together to calculate the weight of each 

parameter. DEMATEL is a robust method used in 

formulating the sophisticated structures that 

models the interdependent relationships within a 

set of criteria under consideration [17]. In this 

paper, the inner-dependence among parameters 

was evaluated by the fuzzy DEMATEL.  

Outer-dependencies as well as weighting of 

clusters were determined using the fuzzy ANP 

procedure through pairwise compression. Based 

upon this hybrid method, a classification system 

was developed, in which the parameters were 

rated to calculate CI. Finally, the relationship 

between the new index and the caving span of 

actual cases was determined using the curve 

fitting toolbox of the MATLAB software, and 

accordingly, the best-fitted curve was selected. In 

order to validate the model, the caving span and 

performance of the proposed approach were 

evaluated. 

In the second approach, the statistical analysis was 

used to develop the regression relationship for 

predicting the caving span. The input variables 

were selected based on the literature data, and the 

main caving span was regarded as the output 

variable. Using the data of actual panels, the linear 

and non-linear multivariate regression 

relationships were developed. For this purpose, 

the package ‘‘Statistical Package for Social 

Science (SPSS)’’ was used. Validation of the 

proposed models in the train step was conducted 

by considering 5 tests including t-test, F-test, 

assumptions of errors independence, errors 

normality, and linearity of independent variables. 

The T-test is a univariate hypothesis test applied 

when standard deviation is not known and the 

sample size is small, while the F-test is a 

statistical test that determines the equality of 

variances of two normal populations. The error 

independence is evaluated via the Durbin–Watson 

test. Error normality is controlled through 

comparing the distribution of error with normal 

distribution and scatter plot, in which the 

regression standardized residual is the y-axis and 

the regression standardized predicted value is the 

x-axis. The linearity of independent variables in 

regression is limited by controlling the variance 

inflation factor (VIF) and tolerance [18-19]. 

Finally, performance of the new linear and  

non-linear multivariate regression models was 

evaluated by the actual field data. In the validation 

step, for both approaches, their performances were 

evaluated using three performance criteria 

including coefficient of determination (R
2
), root 

mean square error (RMSE), proportion of 

variance accounted for (VAF), and mean absolute 

percentage error (MAPE). These criteria are as 

follow: 
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where 

 ymeas is the measured value, 

 ypred is the predicted value, 

measy  is the mean of measured values, 

predy  is the means of predicted values, and 

var is the variance. 

2.2. Database 

A database including the data for twelve longwall 

panels around the world was collected. Among 

them, nine panels were selected randomly as the 

training cases to investigate the relationship 

between CI and the main caving span as well as 

for developing the regression relationships. The 

rest were considered as the validation cases to 

evaluate and to compare the performance of the 

two approaches (Table 1). 
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Table 1. Relevant data of used longwall panels [3, 11, 20-25]. 

No. Continent Country Mine/Coalfield Panel 

1 

Asia 

Iran Parvadeh 1 E0 

2 India GDK 10A Incline mine 3D2 

3 India GDK 10A Incline mine No.14 

4 India GDK 10A Incline mine 3A 

5 India Moonidih A4 

6 India PVK 5
* 

21 

7 
Europe 

Germany Ruhr mining district
* 

- 

8 Norway Svea Nord C6 

9 

Africa 

South Africa Highveld Coalfield - 

10 South Africa Malta Colliery No.1 

11 South Africa New Denmark Colliery
* 

No.509 

12 America USA CONSOL Central Appalachian 8-R 

 

3. Proposed models 

3.1. Cavability index (CI) 

In order to introduce CI, the most significant 

parameters involved in the caving process were 

determined on the basis of the literature, as shown 

in Figure 3. Then the supermatrix of problem was 

established as follows: 

 
 Parameters Categories Cavability (goal)   

 0 0 0  Cavability (goal) 

 0 W22 W21  Categories 

 W33 W32 0  Parameters 

 

In this supermatrix, W22 and W33 are the inner 

inner-dependency matrices that were evaluated 

using fuzzy DEMATEL. In addition, W21 and W32 

are the outer-dependencies that were determined 

using fuzzy ANP. For this purpose, some 

questionnaires were distributed among seventeen 

academics and industrial experts, and their 

opinions and judgments were collected. After 

placing the matrices W22, W33, W21, and W32, the 

weighted supermatrix was derived by equating the 

normalized summation of each column to 1. The 

parameters weights in this process were 

determined after calculation of the limit 

supermatrix. Thus the weighted supermatrix was 

raised to the limiting powers, calculating the 

ultimate parameters weights as listed in Table 2. 
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Characteristics (RSC)

Roof Discontinuities 

Properties (RDP)
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(w)
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Spacing (js)

Dip (jd)

Orientation (jo)

Number of joint 

sets (jn)

Strata Thickness 

(ti)

 Strata UCS

(σc)

 
Figure 3. Significant parameters of caving roof strata. 
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Table 2. Parameters weights in cavability index. 

No. Parameters Weight% 

1 Strata thickness 12 

2 Strata UCS 13 

3 Number of joint set 12 

4 Joint dip 10 

5 Joint orientation 10 

6 Joint spacing 11 

7 Joint persistence 10 

8 Depth 11 

9 Groundwater flow 11 

Sum 100 

 

In order to introduce CI, all the parameters 

involved were classified into five classes (with the 

exception of joint persistence, which was 

classified into three classes) in accordance with 

their role in the caving on the basis of the 

literature and standard guidelines. A 

corresponding rate from 0 to 4 was assigned to 

each class. Table 3 shows the proposed rating 

table of the effective parameters in caving. It is 

noted that the coal strata are grouped into several 

composite layers, which have different and 

complex mechanical and caving behavior. 

Different strata properties may influence the 

immediate roof properties. Therefore, the 

equivalent immediate roof strength (EIRS) was 

defined as the thickness-weighted average of roof 

the strata uniaxial compressive strength as: 

1
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where 

ti is the thickness of the ith stratum (m), 

ic is the UCS of the ith stratum (MPa), and 

n is the number of stratum within the immediate 

roof. 

It should be noted that the weight of EIRS is the 

total weight of strata characteristics (i.e. the 

weight of strata UCS plus strata thickness which 

will be equal to 25). 

Effects of joint orientation and dip in Table 3 are 

determined based on Table 4. 

 
Table 3. System classification parameters. 

No. Parameters 
Rating 

0 1 2 3 4 

1 EIRS (Mpa) > 250 250-100 100-50 50-25 < 25 

2 
Number of 

joint sets 
Massive 

Only bedding 

planes 

Bedding planes plus 

a joint set 
Two joint sets 

Three or more 

joint sets 

3 

Joint 

orientation and 

dip
 

Very 

unfavorable 
Unfavorable Fair Favorable Very favorable 

4 
Joint Spacing 

(m) 
> 1.8 1.8-0.6 0.6-0.2 0.2-0.06 < 0.06 

5 
Joint 

persistence (m) 
 0-1 1-3 > 3  

6 Depth (m) < 100 100-300 300-600 600-1000 > 1000 

7 
Groundwater 

flow 
None None visible 

Light 

seepage/dripping 

Steady 

seepage/flowing 

Heavy 

seepage/gushing 

 
Table 4. Expression of joint orientation and dip. 

Strike perpendicular to panel axis 
Strike parallel to panel axis Irrespective of strike 

Drive with dip Drive against dip 

Dip 45°-90° Dip 20°-45° Dip 45°-90° Dip 20°-45° Dip 45°-90° Dip 20°-45° Dip 0°-20° 

Very unfavorable Unfavorable Fair Favorable Very favorable Favorable Fair 
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The cavability index is defined as: 

7

1 max

  i
i

i

P
CI w

P
 (6) 

where 

wi is the weight of the ith parameter, 

 Pi is the rate of the ith parameter (0 to 4), 

and Pmax is the maximum rate of the ith parameter 

(it is 4 for all parameters with the exception of 

joint persistence that is 3). 

The collected data related to training cases were 

used to determine the associated CI for each case 

based on Eq. (2). Table 5 lists the main caving 

span and calculated CI for training cases, while 

their scatter plots are depicted in Figure 4. 

In order to investigate the relationship between 

the main caving span (Lm) and CI, the curve 

fitting approach was applied. For this purpose, 

several curves were fitted on the data, and their 

RMSE and R
2
 were calculated as shown in Table 

6. 

 
Table 5. Calculated CI for train cases. 

Mine/Panel Main caving span (m) CI 

Parvadeh1/E0 10.45 74.5 

GDK 10A Incline mine/3D2 78.1 30.5 

GDK 10A Incline mine/No.14 53 45 

GDK 10A Incline mine/3A 64.9 46.83 

Moonidih/A4 26 61.67 

Svea Nord/C6 36 46.75 

Highveld Coalfield 36.8 58.25 

Malta Colliery/No.1 30 59 

CONSOL Central Appalachian/8-R 85.34 14.5 

 

 
Figure 4. Scatter plot for main caving span vs. CI. 

 
Table 6. Fitted curves and associated RMSE and R

2
. 

No. Model RMSE R
2 

Equation 

1 Linear 9.51 0.87 1.41( ) 116.53  mL CI  

2 Quadratic 9.03 0.89 
20.012( ) 0.34( ) 95.8   mL CI CI  

3 Cubic 8.88 0.91 
3 20.0006( ) 0.097( ) 3.04( ) 59.42   mL CI CI CI  

4 Gaussian 8.44 0.90 
2(CI 20.85)

1406.6286.88
 

 mL e  

5 Exponential 12.96 0.75 
( 0.023(CI))135.91  mL e  

6 Power 16.60 0.59 
0.67582.07( )mL CI  

7 Logarithmic 12.38 0.73 48.18 ln( ) 231.1   mL CI  
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It can be inferred from Table 6 that the Gaussian 

model has the lowest RMSE, whereas the cubic 

model has the highest R
2
. Therefore, these models 

were selected as the candidate models, and their 

performances were evaluated in the validation 

cases. 

 

3.2. Regression analysis 

In this study, the independent variables were 

chosen based on the parameters frequency as 

reported in the literature. Accordingly, the 

percentage of each parameter usage in the 

previous empirical models was calculated, as 

shown in Figure 5. 

 

 
A: Strata UCS; B: Strata thickness; C: RQD; D: Height of immediate roof, Coal seam 

thickness; E: Type of roof rock, Core data, Depth of coal seam; F: Height of main roof, Roof 

density, Tensile strength of main roof, Presence of groundwater; G: Miscellaneous parameters. 

Figure 5. Percentage of parameter usage in the literature. 

 

It may be noted in Figure 5 that the strata uniaxial 

compressive strength, strata thickness, roof RQD, 

height of immediate roof, and coal seam thickness 

have had percentages more than 20% in the 

previous studies. Therefore, these parameters 

were considered as the input variables in the 

regression analysis with the exception of RQD 

because it was not available for all cases. In 

addition, the strata UCS and thickness were 

defined in terms of the equivalent immediate roof 

strength (EIRS), as in Eq. (1). 

3.2.1. Linear regression model 

In a multivariate linear regression model, the 

output is modeled as a function of independent 

variables. The data for 9 panels (out of a total of 

12 collected panels) were applied to develop a 

linear regression model based on Table 1. Five 

tests were executed to validate the proposed linear 

regression function. The developed linear model 

for the main caving span is as follows: 

32.07 0.32( ) 3.16( ) 9.71( )   m i coalL EIRS h t  (7) 

where Lm is the main caving span, and hi and tcoal 

are the height of immediate roof and the coal 

seam thickness, respectively. 

3.2.2. Non-linear regression model 

The twin-logarithmic model was incorporated to 

develop a non-linear multivariate regression 

relationship. The equation representing this 

relationship is as follows: 

1 2

1 2 ...    nb b b

nY aX X X  (8) 

where Y is the dependent variable (output); a is 

the intercept; X1, X2, and Xn are the independent 

variables; and b1, b2, and bn are the regression 

coefficients of X1, X2, and Xn, respectively. 

Taking logarithms of both sides of Eq. (4): 

1 1 2 2log log log log ... log     n nY a b X b X b X  (9) 

Eq. (5) can be rearranged as a linear regression 

function as: 

* * * *

1 1 2 2 ...     n nY c a X a X a X  (10) 

The regression analysis was performed, and five 

validation tests were carried out, following the 

previously-stated logic. The non-linear 

multivariate regression function that can be used 

to predict the span of the main fall was obtained, 

as shown in the following equation: 

0.41 0.97
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 coal
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4. Results 

Capabilities of the four proposed models (CI in 

the Gaussian form, CI in the cubic form, and 

linear and non-linear regressions) were evaluated 

using three cases based on Table 1. In order to 

investigate the capabilities of the proposed 

models, the scatter graphs of the measured and 

predicted values were plotted. Ideally, on such a 

graph, the points are scattered around the 1:1 

diagonal straight line. A point lying on the line 

indicates an exact estimation. A larger deviation 

from this line shows the larger errors in the 

prediction. The scatter graph for each model is 

depicted in Figure 6. 

A comparison between the measured and 

predicted main caving span values is shown in 

Figure 7. 

 

  
a. CI-Gaussian b. CI-Cubic 

  
c. Linear Regression d. Nonlinear Regression 

Figure 6. Scatter graph of measured main caving span versus predicted values using developed models. 

 

 
Figure 7. Comparison between measured and predicted span values. 
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Four criteria (R
2
, RMSE, VAF, and MAPE), as 

mentioned in the Section 2, were used for the sake 

of quantitative comparison. Smaller RMSE values 

produce higher coefficients of determination, 

leading to more accurate fitted curves. In the same 

direction, higher VAF values and smaller MPAE 

values are desired for fitted relationships. The 

calculated values of these indices for the proposed 

models are given in Table 7. 

According to the visual comparison (Figures 6 

and 7) and performance criteria, it could be 

deduced that the CI models were capable of 

predicting the main caving span with a reasonable 

accuracy. In addition, the Gaussian model 

performed a higher accuracy when compared to 

that of the cubic model. 

 

Table 7. Calculated performance criteria for proposed models. 

Models R
2 

RMSE VAF MAPE 

CI-Gaussian 0.9976 6.88 93.25 14.59 

CI-Cubic 0.9895 9.97 98.00 28.71 

Linear regression 0.8828 18.23 66.77 73.95 

Nonlinear regression 0.8354 13.86 66.47 55.82 

 

5. Discussion 
The performance of each model was determined 

in the previous section. This section provides 

detailed discussion on the results. 

The reason for the difference in the prediction 

results for the CI models and the regression is 

related to the parameters involved in each model. 

There are effective parameters such as roof 

discontinuities and ground water flow that cannot 

be considered in a regression model. 

The roof strength of coal mines is influenced by 

the bedding plane or other discontinuities that 

weakens the rock structure. Furthermore, the 

stratified roof strata are cross-cut by sub-vertical 

joints that are either original or mining-induced. 

Therefore, the presence of these geological factors 

reduce the strength of the roof layer rock mass. 

Disregarding these features leads to an inaccurate 

prediction. For instance, in the studied panel of 

New Denmark colliery in Africa [24], the roof has 

some discontinuities such as joint set and bedding 

plane. Performance of the regression models in 

this panel highlights the importance of 

considering such properties. In contrast, 

incorporating RQD increases the accuracy of 

these models. Nevertheless, one may note that 

RQD is an index for fracture spacing, and the 

other discontinuity properties are not taken into 

account through it. 

On the other hand, groundwater movement 

through rock mass redistributes stresses around 

joints and discontinuities within the rock mass. 

This reduces the normal stresses across the 

fractures lowering the shear strength of the joints 

based on the effective stress concept, confining 

that stresses across a joint or a bedding plane may 

be low in the proximity of excavations. In such 

cases, the movement of groundwater may lead to 

a large dilation of the joints/bedding planes, 

resulting in large inflows of water and instability 

of strata. 

In addition, when a relationship is developed 

based on a database, the logical relationship 

between the output variable and the input 

variables may not be met. The relationships 3 and 

7 show direct relations between the main caving 

span and the coal seam thickness, while in reality 

and based on the analytical model, this 

relationship should be inverse. This shows that the 

reliability of a data-based model is largely 

dependent on the size, quality, and consistency of 

the database. This is another disadvantage of the 

data-based methods. 

An effective solution for considering all the 

effective parameters in a model to predict the 

main caving span is to develop a classification 

system, and consequently, an index. Also the level 

of significance for each parameter is required to 

be determined using the scientific methods. 

Finally, using the best-fitted curves on the actual 

data would result in the development of a reliable 

model. The results obtained confirm this solution. 

6. Conclusions 

Two methods were proposed for the prediction of 

the main caving span. Cavability index (CI) using 

the hybrid fuzzy MCDM and two relations using 

the regression analysis were developed. The 

following main conclusions could be drawn from 

this investigation: 

 The Gaussian model, which defines the 

relationship between CI and the main 

caving span, was found to be superior in 

comparison with the other models with the 

coefficient of determination (R
2
) and root 

mean squared error (RMSE) values of 

0.9976 and 6.88, respectively. 



Mohammadi et al./ Journal of Mining & Environment, Vol. 9, No. 3, 2018 

726 

 

 CI is a suitable approach to predict the main 

caving span in longwall projects due to the 

consideration of various types of effective 

parameters on the caving. 
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 چکیده:

ها و مساال  مارتبط باا کنتارل     ای است که هسته مرکزی بسیاری از چالشطولانی فرآیند دینامیکی پیچیده کار جبههتخریب سقف بلاواسطه در روش استخراجی 

های جبهه کار طاولانی اماری الزامای    ها در مرحله طراحی پروژهتخریبی آنها و پتانسی  شود. از این رو، تخمینی قاب  اتکا از رفتار لایهها محسوب میزمین و لایه

هاای  ها است. در این پژوهش، به منظور تخمین دهاناه تخریاب اصالی در پاروژه    دهنده قابلیت تخریب لایهاست. در این روش دهانه تخریب اصلی معیار کمّی نشان

( بر اساس یک روش ترکیبای  CIراله شده است. برای این منظور، در رویکرد اول شاخص قابلیت تخریب )استخراجی با روش جبهه کار طولانی دو رویکرد متفاوت ا

ی فاازی معرفای شاده اسات. سابط رابطاه باین        رگیمیو آزمون تصم یابیارز شگاهیروش آزماای فازی و گیری چند معیاره با ترکیب دو روش تحلی  شبکهتصمیم

های رگرسیونی چند متغیره توسعه یافتاه اسات. باه    صلی تعیین شده است. در رویکرد دوم روابط آماری با استفاده از روششاخص قابلیت تخریب و دهانه تخریب ا

شام  مدل گوسینی و مدل تااب  درجاه ساه و     CIها از اطلاعات نه پهنه استخراج شده استفاده شده است. بر این اساس دو مدل مبتنی بر منظور توسعه این مدل

هاای مختلفای   هاای پهناه  های توسعه یافته باا اساتفاده از داده  اند. در انتها عملکرد مدلی پیشنهاد شدهرخطیغهای رگرسیونی چند متغیره خطی و همچنین مدل

ی نسابت باه   در تخمین دهانه تخریب اصلی دارای عملکارد بهتار   CIدهد که مدل گوسینی مبتنی بر آمده نشان می دست بهمورد بررسی قرار گرفته است. نتایج 

موجب ایجاد خطاای زیااد    مؤثرهای رگرسیونی تجربی در دخی  کردن تمام پارامترهای ها بوده است. این نتایج مؤید این نکته است که عدم توانایی مدلدیگر مدل

 شود.ها میدر عملکرد آن

 گیری چند معیاره، تحلی  رگرسیونی.مدهانه تخریب اصلی، شاخص قابلیت تخریب، استخراج جبهه کار طولانی، تصمی کلمات کلیدی:

 

 

 

 


