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Abstract 

The Dolatabad area located in SE Iran is a well-endowed terrain owning several chromite mineralized zones. 

These chromite ore bodies are all hosted in a colored mélange complex zone comprising harzburgite, dunite, 

and pyroxenite. These deposits are irregular in shape, and are distributed as small lenses along colored 

mélange zones. The area has a great potential for discovering further chromite resources. Therefore, the 

current work endeavors to delineate the favorable zones of podiform chromite mineralization to focus on the 

detailed exploration surveys. In order to achieve this goal, the machine learning random forests algorithm 

was adapted to integrate the footprints of mineralization in various exploration datasets. The genetic 

characteristics of podiform chromite deposits were used to define the exploration criteria. These defined 

criteria were then translated to a set of exploration evidence layers. The competent exploration evidence 

layers, i.e. those with remarkable positive spatial associations with mineralization, were then recognized 

using distance distribution analysis. Respecting the location of known chromite mineralizations and 

competent exploration evidence layers, a predictive random forests model was trained and then applied to 

predict the favorable zones of chromite prospectivity. The delineated targets were found to occupy 19% of 

the studied area, in which all the known chromite mineralizations were delimited. Consequently, it is worthy 

to follow up the detailed exploration surveys within the delineated zones. 
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1. Introduction 

Due to the increase in metal consumption, 

depleted mineral reserves should be replaced by 

newly discovered mineral resources. Therefore, 

mineral exploration surveys should focus on the 

target zones of mineral prospectivity, in which 

mineral endowments are highly probable to be 

discovered. In regional-scale exploration surveys, 

the exploration targets are delineated by fusion of 

geo-exploration signatures of mineral deposits of 

the type sought or the so-called mineral 

prospectivity modeling (MPM) [1-17]. MPM is a 

multi-step process comprising (a) selection of the 

exploration criteria of the deposit-type sought, (b) 

translation of the exploration targeting criteria to a 

set of competent 2D exploration evidence layers, 

(c) weighting and integration of the individual 

exploration evidence layers, and finally, (d) 

prioritization of the target zones for detailed 

exploration surveys [2]. 

Generation of the competent 2D exploration 

evidence layers in regional-scale exploration 

surveys is a challenge. This is because in these 

terrains, not only the quality of the available 

datasets might be questionable but also the link 

between these datasets and the deposit-type 

sought is not clear [2, 18]. The competent 

exploration evidence layers are those with 

remarkable positive spatial associations with 

deposits of the type sought [2, 12, 18]. Therefore, 

the competent exploration evidence layers should 

be recognized from the incompetent ones. For 

this, the spatial association between the 

exploration evidence layers and the known 

mineral deposits of the targeted type should be 
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measured [2, 18, 19]. Different methods have 

been applied to assess the spatial distribution of 

the exploration evidence layers and the known 

mineral deposits including studentized t-statistic 

value [1], success-rate curves [20], receiver 

operating characteristics curves [21], and distance 

distribution analysis [22]. 

Weighting and synthesis of the exploration 

evidence layers is another challenging step of 

MPM. This is due to the non-linear nature of  

ore-forming processes [23], which should be 

modeled with proper tools [21, 24]. There are 

knowledge- and data-driven methods for 

weighting and synthesis of the exploration 

evidence layers [1-2]. The former and the latter 

are appropriate to be applied in the data-poor and 

data-reach zones, respectively [2]. Theoretically, 

multi-variate non-linear data-driven methods are 

more appropriate for modeling the non-linear 

nature of ore-forming processes [25]. Recently, 

machine learning algorithms have gained a 

considerable reputation in the data-driven 

modeling of mineral prospectivity [5, 7, 15, 25]. 

These methods are multi-variate non-linear 

algorithms, which can properly model the 

complexity of geological processes [25]. Random 

forests algorithm [26-28], as a machine learning 

method, has been successfully adapted in  

data-driven MPM [25, 29-31]. The superiority of 

random forests over other machine learning 

algorithms has been demonstrated in data-driven 

MPM [25, 30]. Therefore, it is worthy to apply the 

random forests algorithm in data-rich terrains to 

delineate the plausible zones of mineral 

prospectivity. 

The Dolatabad area is a well-endowed terrain in 

SE Iran owning more than 20 podiform chromite 

deposits [32]. Several geologists have reached a 

consensus about the great potential of the 

Dolatabad area for prospecting a further chromite 

mineralization [33]. The main objective of this 

work, therefore, is to delimit the target zones of 

podiform chromite deposits in this wealthy area. 

For this, a set of exploration datasets comprising 

the output of remote-sensing studies for detecting 

the hydrothermal alteration zones, and the 

geological and geochemical data was used as an 

exploration dataset, from which a set of 

exploration evidence layers were generated. The 

competent exploration evidence layers were then 

recognized by distance distribution analysis [22] 

and used as predictor variables in machine 

learning random forests algorithm. 

2. Dolatabad area 

2.1. Geological setting 

The Dolatabad area is situated in the southern part 

of the Sanandaj–Sirjan metamorphic zone, and 

covers an area of 1500 km
2
. The area is also a part 

of the Dolatabad-Esfandagheh ophiolite complex 

in southern Iran (Figure 1). This ophiolite 

complex is Cenozoic-Mesozoic in age, and serves 

as the host rock of several mineralization types for 

different commodities such as Cr, Mg, Mn, and 

Cu [33]. 

This area is covered by the outcrops of Paleozoic 

mafic and ultramafic sequences comprising 

pyroxenite, peridotite, gabbro, dunite, and 

harzburgites, followed by the mafic-ultramafic 

metamorphosed rocks of Paleozoic and Mesozoic 

age (Figure 2). These metamorphosed rocks are 

glaucophane schist, serpentine schist, amphibolite, 

and greenschist, all of which are associated with 

chromite mineralization and ultramafic sequences 

[32-33]. The Dolatabad-Esfandagheh ophiolitic 

colored mélange complex covers a considerable 

part of the area, which is mainly covered by 

massive oolitic and pelagic limestones, basalts, 

andesite basalts, and dacites. These basalts 

envisage the occurrence of pillow lava flows in 

the ophiolitic sequences, and are partly affected 

by the argillic and phyllic alterations [32-33]. 

There are also outcrops of intermediate to basic 

plutonic bodies, which are Late Triassic gabbros 

and Cenozoic granodiorites. Jurassic limestones 

and conglomerates and also alternations of 

Cretaceous shale, sandstone, and limestones are 

dominated in the NW part of the area. The lower 

slopes of the area are mainly covered by the 

Quaternary alluvial deposits (Figure 2). This 

figure shows the generalized geological map of 

the Dolatabad area. 

2.2. Podiform chromite mineralization 

The podiform chromite deposits are among the 

crucial resources of chromite, which is the only 

economic mineral for chromium [35]. These 

deposits are formed as small magmatic lenses 

within the ultramafic section of colored mélange 

and ophiolite sequences in oceanic crusts [36-39]. 

They are usually formed in supra-subduction 

tectonic settings [39], meaning that they were a 

part of the oceanic crust that arose to the surface 

during the subduction of oceanic crust below the 

continental crust, most probably due to their 

specific weight [39]. Podiform chromite 

mineralization is hosted by dunite, serpentine or 

peridotite bodies [36]. The peridotite host rocks 

include harzburgite and lherzolite. Chromitite in 
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the peridotite bodies is almost associated with 

dunite or serpentine bodies that are near gabbro 

[37] or pyroxenite [36]. Some podiform chromite 

deposits are accompanied by a halo of 

serpentinized alteration [38-40]. The podiform 

chromite deposits are often affected by faulting 

and tectonic processes [39]. Most of these 

deposits have been displaced by the interaction 

between faults, and consequently, their size has 

been significantly reduced [41]. There are 29 

podiform chromite occurrences in the Dolatabad 

area, most of which are accompanied by thin 

serpentinized halos and hosted by the donite and 

peridotite zones [33]. These deposits were used to 

generate a set of training data in order to develop 

the predictive model. 

 
Figure 1. Location of Dolatabad area in Sanandaj-Sirjan zone [34]. 

 
Figure 2. Simplified geological map of Dolatabad area [33]. 
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2.3. Dataset 

The data used in this work included (a) a 

1:100000 geological map of the Dolatabad area, 

from which the lithological units and faults had 

been extracted; (b) the results of processing of 

Aster remotely-sensed data for extraction of the 

serpentinized altered zones; and (c) the results of 

chemical analyses of the stream sediment 

geochemical samples for Cr, Co, Ni, Au, Zn, Pb, 

and Cu, collected by the geological survey of Iran 

(GSI). These stream sediment samples were 

analyzed by inductively coupled plasma optical 

emission spectrometry. However, gold was 

separately assessed by the fire assay method. The 

detection limits for the analyzed elements were 

0.2 ppm for Co, Pb, Zn, and Cu; 2 ppm for Cr and 

Ni; 0.5 ppm for As; and 1 ppb for Au. The 

analytical precision of these elements was 

assessed by the Thompson-Howarth method 

(1976) [42]. According to this method, the 

analytical precision of the analyzed elements was 

better than 10% at the 95% of confidence level. 

3. Methods and results 

3.1. Generation of exploration evidence layers 

According to the genetic model of the podiform 

chromite deposits [39], the following exploration 

criteria were selected for MPM: (a) dunite, 

serpentine, and peridotite bodies are the host rock 

of podiform chromite deposits [36-41]; (b) some 

of the podiform chromite deposits could 

experience different phases of serpentinized 

alteration [39]; (c) in regional-scale studies,  

multi-variate analyses could be applied to the 

stream sediment geochemical data for the 

recognition of mineralization-related geochemical 

signatures [8, 9, 11]; and (d) some faults are 

constructive in the development and exposure of 

the podiform chromite deposits [39]. 

The selected exploration criteria should be 

transferred to the 2D mappable features or 

evidence layers to be weighted and integrated. In 

this work, the exploration evidence layers were 

continuously generated to modulate the systematic 

uncertainty, which resulted from the fallacious 

discretization of evidence layers [12-14]. A pixel 

size of 200 m  200 m was used to generate all 

the exploration evidence layers and the rest of 

processes in MPM. This pixel size was selected 

according to an objective procedure outlined by 

Carranza (2009) [43]. In the following  

sub-sections, the generation of host rock, 

alteration, fault density, and mineralization-related 

geochemical evidence layer is explicitly 

explained. 

3.1.1. Evidence layer of host rock 

The distances to the polygons of dunite, 

serpentine, and peridotite bodies digitized from 

the published 1:100,000 geological map of the 

studied area by the geological survey of Iran [32] 

was calculated and mapped using a GIS system as 

the evidence for host rock (Figure 3). 

3.1.2. Evidence layer of alteration 

The distances to the polygons of serpentinized 

alteration detected by the processing of ASTER 

remotely-sensed data were calculated and mapped 

using a GIS system as the evidence for 

mineralization-related alteration (Figure 4). 

3.1.3. Evidence layer of faulting 

Faults could be constructive or destructive in the 

development and exposure of the podiform 

chromite deposits [38]. Therefore, it is worthy to 

generate an exploration evidence layer associated 

with faulting, and assess its spatial association 

with the known podiform chromite deposits. To 

this end, the fault density layer was generated 

(Figure 5) using the calculation of the total length 

of faults per pixel in this area [12]. 

3.1.4. Evidence layer of geochemistry 

Aiming to identify a mineralization-related  

multi-element geochemical footprint of 

mineralization, the robust factor analysis of 

compositional data [44] was used [e.g. 45, 46]. 

Robust factor analysis is a modified version of the 

ordinary factor analysis through which two 

problems of this analysis have been modulated. 

These problems are (a) the adverse effect of 

extreme values in factor estimation, and (b) the 

closure problem of geochemical data, which 

renders bias through estimation of factor loadings 

and scores [44]. The robust factor analysis of 

compositional data modulates the former problem 

using robust estimators by which extreme values 

no longer affect the factor estimation [44]. 

Moreover, the latter problem is addressed using 

log-ratio transformations such as the isometric 

log-ratio [ilr: 47] and centered log-ratio [clr: 48] 

transformations. The details of this method could 

be found in the related publications [44]. In the 

robust factor analysis of compositional data, the 

relationship between the estimated factors and 

elements is described by factor loadings, while the 

relationship between the estimated factors and 

samples is described by factor scores [44]. 

Initially, the raw data for elements were subjected 

to ilr transformation [47] in order to address the 

data closure problem [48]. Then the robust factor 
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analysis of compositional data [44] was applied to 

the ilr-transformed data to derive the loading and 

score matrices. Since the ilr transformation does 

not yield a one-to-one representation of the 

transformed variables [47], the derived loading 

and score matrices were back-transformed to the 

clr space [48], in which the interpretation of 

results is possible using the loading matrix [44]. 

Three factors were selected to be extracted from 

the robust factor analysis. Aiming to interpret the 

retained factors, i.e. the extracted factors, a value 

between 0.4 and 0.9 should be used, above which 

the contribution of elements in a factor can be 

assumed as significant [45, 46, 49]. In this work, 

the absolute value of 0.5 was used for 

interpretation of the retained factors because this 

value not only allows for the contribution of 

moderately high and moderately low values in the 

interpretation of factors but also has succeeded in 

the discrimination between the mineralized and 

non-mineralized element associations in this work 

[15, 45, 46, 49]. The first and second factors 

describe 45.56% and 26.76% of the total 

variability of the dataset, respectively (Table 1). 

The first component has positive loadings for Cr, 

Ni, Co, Zn, and Cu, and represents a Cr-Ni-Co 

elemental association (Table 1). This factor 

probably describes the ultramafic and ophiolitic 

rock sequences [8, 9, 11]. The foregoing factor 

could be considered as a multi-variate 

geochemical signature of the deposit-type sought 

[8, 9, 11]. Due to a straightforward 

implementation, the inverse distance weighting 

(IDW) method was applied for modeling the 

spatial distribution of the component scores [12]. 

Figure 6 depicts a map of the spatial distribution 

of the first component scores. This map was used 

as an evidence layer of the podiform chromium 

deposits in this work. 

 
Figure 3. Evidence of host rock for podiform chromite mineralization in the studied area. 

 

 
Figure 4. Evidence of serpentinized alteration for podiform chromite mineralization in the studied area. 
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Figure 5. Exploration evidence layer of fault density. 

 

Table 1. Loading matrix of three retained factors. Significant loadings (the bolded values) were selected based on 

the absolute threshold value of 0.5 [47]. 

Element Robust factor 1 Robust factor 2 Robust factor 3 

Cu 0.12 -0.21 0.55 

Au - 0.43 0.51 -0.23 

As -0.21 0.46 -0.45 

Pb -0.12 -0.61 -0.32 

Zn 0.15 -0.18 0.61 

Cr 0.54 0.12 0.20 

Co 0.63 0.09 0.18 

Ni 0.51 0.11 0.23 

Variability 45.56% 26.76% 11.25% 

Total variability 45.56% 72.32% 83.57% 

 

 
Figure 6. Spatial distribution of the first robust factor representing a Cr-Ni-Co elemental association. 

 

3.2. Recognition of competent exploration 

evidence layers 

Distance distribution analysis [22] is used to 

measure the spatial association between the 

mineralization and geological features [2, 17, 19]. 

Two curves are simultaneously constructed in this 

analysis comprising (a) distance to every location 

and (b) distance to deposit locations. The former 

and the latter curves are representatives of the 

random and ore-forming processes, respectively 

[19]. The difference between the latter and the 

former curves shows the degree of spatial 

association between the mineral deposit locations 

and the geological features. This difference is 
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shown in a contrast curve, in which positive and 

negative values show positive and negative spatial 

associations between deposit location and 

geological features, respectively. The competent 

exploration evidence layers, for which the contrast 

curve lies in a positive range, could be recognized 

by the distance distribution analysis [19]. 

The distance distribution curves [22] were plotted 

for recognition of the competent exploration 

evidence layers. The closer to the host rock and 

alteration is, the more favorable for mineralization 

would be. Therefore, cumulative increasing 

distance distribution curves [19] were generated 

for these two evidence layers (Figs. 7a,b). 

However, the higher the geochemical values and 

fault density values are, the more favorable for 

mineralization would be. Therefore, the 

cumulative decreasing distance distribution curves 

[19] were generated for these two evidence layers 

(Figs. 7c,d). 

 All the contrast curves in Figure 7 show 

remarkable positive values, and therefore, the 

spatial association between the generated 

evidence layers and the known podiform chromite 

deposits is positive. Consequently, it should be 

concluded that all the generated exploration 

evidence layers are competent [19] and can be 

used in targeting the prospective zones of 

podiform chromite deposits in the Dolatabad area. 

 

 
Figure 7. Distance distribution analysis for three generated evidence layers: (a) host rock, (b) alteration, (c) fault 

density, and (d) geochemical evidence layers. 

 

3.3. Predictive modeling by random forests 

algorithm 

3.3.1. Random forests algorithm 

Random forests are ensembles of multiple 

decision trees [26] that could be applied in the 

regression and classification problems [26-28]. 

Each decision tree uses a random subset of 

training samples that are taken with replacement 

from the original data [26-28]. About two-thirds 

of the samples are used for training the model, 

while the rest of them that are called the  

out-of-bag (OOB) samples are used for validation 

of the results using the OOB error [26-28]. 

The random forests algorithm models a target 

variable (here, the probability of occurrence of 

mineralization) based upon a set of predictor 

variables (here, exploration evidence layers). 

Random forests algorithm starts with purification 

of child nodes through splitting the target variable 

based on predictor variables from the parent node. 

The splitting successively iterates until a  

pre-defined stop criterion is reached. Through this 

process, every decision tree reaches its simple 

regression or classification model. Random forests 

algorithm then averages the results of various 

decision trees to gain the final model. The details 

of the random forests algorithm could be found in 

the related publications [26-28]. 
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Generally, the implementation of random forests 

algorithm in data-driven MPM includes the 

following steps [25, 29-31]: 

1. Generation of training data, which include 

the values for the competent exploration evidence 

layers in the location of deposit and non-deposit 

locations as the positive and negative sites, 

respectively. 

2. Training a set of random forests based on 

the training data. In order to train a set of random 

forests, a number of parameters should be set. 

These parameters are (a) the number of decision 

trees to be used, and (b) the number of predictor 

variables (evidence layers) to enter each decision 

tree. 

3. The trained random forests are then used 

for predictive mapping. The competent 

exploration evidence layers are used as the 

predictors or independent variables in the trained 

random forests, based on which, the probability of 

occurrence of mineralization as the target variable 

or dependent variable is estimated. 

4.  The results of predictive modeling are 

imported to GIS or any other 2D visualization 

software for mapping the exploration targets. 

The aforementioned steps are explained in the 

following sub-sections. 

3.3.2. Generation of training data 

Similar to all the predictive machine learning 

algorithms, random forests algorithm requires the 

training data to derive the predictive model  

[26-28]. The training data comprises the values of 

evidence layers for the location of mineral 

deposits and also non-deposit locations as the 

positive and negative sites, respectively [29-31]. 

The former can be achieved by the spatial 

distribution of mineral deposits, while the latter 

should be derived by a series of analyses, which 

are explained as follow [19, 21]. Firstly, the 

number of non-deposit locations should be equal 

to the deposit locations. There are 29 podiform 

chromite deposits in the studied area, and 

therefore, the number of non-deposit locations 

should be 29. The non-deposit locations should be 

far from the deposit locations so that their 

geological characteristics would be different from 

the deposit locations. Therefore, point pattern 

analysis [22] was applied to recognize the least 

possible distance from the deposit locations that 

suit non-deposit locations. This distance was 

recognized to be 5 km from the deposit locations. 

Moreover, despite the deposit locations that 

usually have a clustered distribution, the  

non-deposit locations should be randomly 

distributed [2]. The above-mentioned procedure 

was adapted for the generation of 29  

randomly-distributed non-deposit locations in the 

Dolatabad area (Figures 3-6). The values for 

evidence layers or predictor variables were 

extracted for the location of podiform chromite 

deposits and also non-deposit locations. These 

values were used as the training data for running 

the predictive model. 

3.3.3. Predictive modeling 

The training data was subjected to the 

"randomForests" package [50] in R freeware [51] 

for training a predictive regression model. As 

mentioned earlier, a couple of parameters are 

required to be rectified before running the 

regression model, namely the number of 

regression trees to be used in the model and the 

number of predictor variables to be incorporated 

in each regression tree of the "randomForests" 

package [50]. In this work, the number of 

regression trees was selected to be 20,000 since 

picking a large number of regression trees could 

enhance the efficiency of the training procedure 

[29-31]. Moreover, the number of predictor 

variables to enter each node was selected using 

the "tuneR" function [29-31]. The trained model 

was then used to predict the prospectivity scores 

of different pixels in the Dolatabad area. Figure 8 

depicts a map of the podiform chromite 

prospectivity in the Dolatabad area. 

The importance of evidence layers contributed to 

the generated model was then assessed using the 

GINI impurity index [28]. The GINI impurity 

index is a measure of how each variable 

contributes to the homogeneity of the nodes, and 

involves the generated random forests. Each time 

a variable is used to split a node, the GINI 

impurity index for the child nodes is calculated 

and compared to that of the original node. The 

GINI impurity index is a measure of homogeneity 

from 0 (homogeneous) to 1 (heterogeneous). The 

changes in GINI are summed for each variable 

and normalized at the end of the calculation. The 

variables that result in nodes with higher purity 

have a higher GINI index. The higher the GINI 

index for a variable is, the more import the 

variable in the predictive modeling would be [28]. 

This index demonstrates that the most important 

evidence layer in podiform chromite prospectivity 

mapping is host rock, while the least important 

evidence layer is the geochemical signature 

(Figure 9). 
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Figure 8. Predictive model of podiform chromite prospectivity. 

 

 
Figure 9. Importance of exploration evidence layers contributed to the predictive model of podiform chromite 

prospectivity. 

 

The values for prospectivity mapping by random 

forests algorithm lie in the [0, 1] range. Therefore, 

the prospectivity values > 0.5 and the values < 0.5 

could be considered as the prospective and  

non-prospective values, respectively [29-31]. 

According to the mentioned premise, a table of 

correctness [29-31] was generated to assess the 

accuracy of the derived prospectivity model. 

According to this table, the error for classification 

of the deposit and non-deposit locations is 0 

(Table 2). 

 
Table 2. Table of correctness for assessing the accuracy of the generated predictive model. 

Error for classification of deposit locations 0 out of 29 (0%) 

Error for classification of non-deposit locations 0 out of 29 (0%) 

OOB error 0% 

Model error 0% 
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The success- [20] and prediction-rate curves [52] 

could be employed to verify the predictive 

models. The former measures the correlation of 

the generated model with known deposit 

locations, while the latter estimates the chance of 

discovering further mineral endowments [29-31]. 

For the generation of success-rate curves, the 

prospectivity scores should undergo a series of 

discretization processes based on the cut-off 

values at five percentile intervals. Based upon 

each cut-off value, the two parameters (a) the 

portion of the area enclosed by the pattern 

representing the delimited prospectivity zone (Pa) 

and (b) the portion of mineral deposits delimited 

in that prospectivity zone (Pd) are calculated. The 

values for Pa and Pd for different threshold values 

are estimated and then plotted in the vertical and 

horizontal axes, respectively [20]. 

 For construction of the prediction-rate curves, the 

leave-one-out approach [52] was applied. In this 

approach, one deposit is excluded from a set of m 

deposits, and the remaining m-1 deposits are used 

for generating a prospectivity model. Then the 

generated prospectivity model is cross-validated 

with the excluded deposit. This procedure iterates 

m times, each time with excluding a different 

deposit for cross-validating. The values for 

mineral prospectivity models at each excluded 

deposit are used as thresholds for classification of 

mineral prospectivity scores. The proportion of 

delimited prospectivity areas by the m threshold 

values in the m generated prospectivity models are 

sorted increasingly. Then the cumulative 

increasing proportion of areas (Pa) and the 

cumulative increasing proportion of the deposits 

(Pd) are derived. Similar to the success-rate 

curves, the prediction-rate curves are constructed 

using the Pa values on the horizontal axis versus 

the Pd values on the vertical axis [52]. For a 

reliable predictive model, the success- and 

prediction-rate curves must lie above the diagonal 

line, which connects the first and last points of the 

curves [20, 53]. This is because the diagonal line 

represents a completely random process, and 

could not be accounted as a reliable prediction 

[20, 53]. Besides, as it has been discussed in 

several publications [15, 21, 25, 29-31], the 

success-rate curve must always lie above the 

prediction-rate curve. Figure 10 shows the 

generated success- and prediction-rate curves. The 

model is generally good because the success- and 

prediction-curves lie above the diagonal line 

(Figure 10). Moreover, the model is correctly 

generated as its success rate lies above its 

prediction rate [29-31]. Therefore, the generated 

model could be used to define the target areas for 

detailed exploration surveys. 

   

 
Figure 10. Success- and prediction-rate curves for the generated prospectivity models. 

 

3.3.4. Exploration targets 

Discretization of continuous prospectivity models 

can be implemented either subjectively or 

objectively [25, 29-31]. In this work, the 

subjective value of 0.85 was used for 

discretization of the continuous prospectivity 

model of Figure 8. It means that the exploration 

targets are pixels whose prospective scores have 

the values > 0.85. Figure 11 demonstrates the 

derived exploration targets. These targets have 

occupied 19% of the studied area, while covering 

all the known chromite deposits. It demonstrates 

that the generated targets are reliable to be 

followed up by further exploration surveys. 
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Figure 11. Delimited exploration targets for podiform chromite mineralization. 

 
4. Discussion 

Mineral prospectivity mapping (MPM) is plagued 

by different types of systematic uncertainties [2]. 

The major sources of systematic uncertainties in 

the regional-scale MPM [12-14, 18, 24] are as 

follow: (a) fallacious generation (b) improper 

weighting and integration of the exploration 

evidence layers. The former case is due to the 

failures and inherent errors in the exploration 

datasets, which yield an unclear link between the 

exploration datasets and the deposit-type sought 

[18]. In order to address the foregoing uncertainty, 

the competent exploration evidence layers should 

be recognized from the incompetent ones by 

assessing their spatial association with known 

deposits of the type sought [12-14, 18]. In this 

work, distance distribution analysis [22] was 

applied to assess the spatial association between 

the geological and geochemical evidence layers 

and mineralization. This procedure not only 

lowers the uncertainties but also enhances the 

predicting ability of MPM [12-14]. Multi-variate 

non-linear algorithms can be utilized to modulate 

the second source of systematic uncertainty in 

MPM [25]. In this work, random forests algorithm 

[29-31] was employed for weighting and 

integration of the competent exploration evidence 

layers. The merits of this method are as follow: (a) 

its non-linear combination of predictor variables 

(b) its ability to use continuous exploration 

evidence layers (c) its superiority over lots of 

machine learning algorithms [25]. The applied 

procedure in this work comprising the selection of 

competent exploration evidence layers using 

spatial analyses and application of random forests 

algorithm for data-driven MPM worked well as it 

could be understood by the accuracy of the 

prospectivity model (Table 2) and its success and 

prediction rates (Figure 10). Therefore, this 

procedure could be adapted in different case 

studies for delineation of reliable exploration 

targets. 

The recognized exploration targets in this work 

are mostly correlated with ultramafic and mafic 

rock sequences, which are the host of chromite 

mineralization in SE Iran [33]. It was not only 

geologically expected but also the algorithm did 

well in the recognition of the most important 

exploration evidence layers (Figure 9). It is 

worthy to note that few parts of ultramafic rock 

sequences of the Dolatabad area are mineralized 

[33]. Therefore, the target zones of the podiform 

chromite deposits were recognized by the 

integration of the geochemical, faulting, host rock, 

and alteration evidence layers. Exploration 

licenses and mining tenements for chromite 

deposits can be followed according to the 

recognized exploration targets (Figure 11).  

Large-scale detailed exploration surveys for the 

podiform chromite deposits can then be 

implemented in the licensed tenements within the 

delimited target zones. However, large-scale 

exploration surveys for the podiform chromite 

deposits have been a great challenge [54]. This is 

mainly due to the unpredictable nature of these 

deposits [36-38]. Field geological surveys are the 
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best approaches in large-scale exploration of the 

podiform chromite deposits [55]. The results of 

field geological surveys are worthy to be 

facilitated with gravimetric geophysical surveys 

[55]. Therefore, it is recommended to follow-up 

mixed geological and gravimetric geophysical 

surveys in the generated exploration targets. 

5. Conclusions 

In this work, we demonstrated the application of 

random forests algorithm for prediction of the 

target zones of podiform chromite. The results of 

processing remote sensing, geological, and 

geochemical data were used as inputs for mineral 

prospectivity mapping. A set of continuous 

exploration evidence layers were generated 

including distance to dunite, serpentine, and 

peridotite bodies as the evidence of host rock, the 

distance to the polygons of serpentinized 

alteration as the evidence of alteration, and the 

geochemical signature of Cr, Ni, and Co of stream 

sediment geochemical data as the geochemical 

evidence layers. The random forests algorithm 

was trained according to the values for evidence 

layers in the deposit and non-deposit locations as 

the positive and negative sites, respectively. The 

success- and prediction-rate curves were 

employed to assess the spatial correlation of the 

model with known deposits and to assess its 

predicting ability, respectively. The results 

obtained demonstrated that the model could be 

successfully applied to generate the exploration 

targets. The exploration targets occupied 19% of 

the studied area, and covered all the known 

podiform chromite deposits. Therefore, it is 

worthy to follow-up the detailed exploration 

surveys in the delineated target zones and follow 

the exploration licenses in delimited targets. 
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 چکیده:

ها در زون آمیزه رنگیین متشیک    زاییکرومیت است. این کانی شده شناختههای زاییو دارای تعدادی از کانی است شدهآباد در جنوب شرقی ایران واقع منطقه دولت

یی در زون آمییزه  ها یعدس صورت  بهآباد دارای اشکال نامنظم هستند و های کرومیت در منطقه دولتزاییشوند. کانیاز هارزبوژیت، دونیت و پیروکسنیت دیده می

بنیابراین، هیدا از ایین     ؛هیای بیشیتری از کرومییت اسیت    زاییی کشف و شناسایی کانی منظور  بهآباد واجد پتانسی  بسیار خوبی اند. منطقه دولترنگین توزیع شده

هیای  دسیتیابی بیه هیدا میذکور، الگیوریتم جنگی        منظیور   هبی های اکتشافی است. ای برای تمرکز برنامهزایی کرومیت انبانهمطالعه، شناسایی مناطق مستعد کانی

ای بیرای تعرییف   های ژنتیکیی کانسیارهای کرومییت انبانیه    های اکتشافی به کار گرفته شد. ویژگیزایی کرومیت در دادهاثرهای مرتبط با کانی قیتلفتصادفی برای 

های دارای ارتباط مثبت بیا  های شاهد اکتشافی مؤثر، یعنی لایهاکتشافی تبدی  شدند. لایه های شاهدمعیارهای اکتشافی استفاده شدند. سپس این معیارها، به لایه

ای هیای کرومییت انبانیه   زاییی های شاهد غییر میؤثر تفکیید شیدند. بیا توجیه بیه موقعییت کیانی         فاصله شناسایی و از لایه -زایی، با استفاده از تحلی  مسافتکانی

زاییی  شناسیایی منیاطق مسیتعد کیانی     منظور  بههای تصادفی آموزش دیده شد و شاهد اکتشافی مؤثر، ید مدل پیشگوی جنگ های در منطقه و لایه شده شناخته

ای در منطقیه  کرومییت انبانیه   شیده  شناختههای زایی% کانی711که شام   را آباد دولت% از منطقه 73 شده ییشناساای استفاده شد. اهداا اکتشافی کرومیت انبانه

 .استهای اکتشافی تفصیلی در مناطق تعیین مرز شده سودمند بنابراین، انجام فعالیت ؛دهندند، تحت پوشش قرار میباشمی

 یابی مواد معدنی.های تصادفی، پتانسی ای، جنگ کانسارهای کرومیت انبانه کلمات کلیدی:

 

 

 

 


