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Abstract 
Prediction of the production rate of the cutting dimensional stone process is crucial, 
especially when chain saw machines are used. The cutting dimensional rock process is 
generally a complex issue with numerous effective factors including variable and 
unreliable conditions of the rocks and cutting machines. The Group Method of Data 
Handling (GMDH) type of neural network and Radial Basis Function (RBF) neural 
network, as two kinds of the soft computing method, are powerful tools for identifying 
and assessing the unpredicted and uncertain conditions. Hence, this work aims to 
develop prediction models for estimating the production rate of chain saw machines 
using the RBF neural network and GMDH type of neural network, and then to compare 
the results obtained from the developed models based on the performance indices 
including value account for, root mean square error, and coefficient of determination. 
For this purpose, the parameters of 98 laboratory tests on 7 carbonate rocks are 
accurately investigated, and the production rate of each test is measured. Some 
operational characteristics of the machines, i.e. arm angle, chain speed, and machine 
speed, and also the three important physical and mechanical characteristics including 
uniaxial compressive strength, Los Angeles abrasion test, and Schmidt hammer (Sch) 
are considered as the input data, and another operational characteristic of the machines, 
i.e. production rate, is considered as the output dataset. The results obtained prove that 
the developed GMDH model is able to provide highly promising results in order to 
predict the production rate of chain saw machines based on the performance indices. 

1. Introduction 
Construction rocks are one of the most important 
materials used in the construction industry that 
have gained a special position in the construction 
industry sector due to the increasing development 
of this industry all over the world. In terms of the 
construction rock resources and reservoirs in the 
world, Iran is one of the most important countries 
in this area. Therefore, creating appropriate 
conditions to increase the productivity in 
production and extraction of construction rocks is 
inevitable and very important. In other words, the 
lack of technical knowledge and appropriate 
technology in the areas of extracting and 

processing can impose irreparable damages on 
this industry. The construction rock extraction 
methods generally include wire cutting, parallel 
holes, wedge, application of expandable materials, 
water jet, explosive materials, hydro mechanical 
method, heat cutting machine, and chain saw 
machine [1-6]. Among the present methods, the 
chain saw machine method, of diamond cutting 
type, is one of the most popular and common 
methods. A chain saw machine is a flexible 
machine that has a high ability and power and a 
hydraulic control system for cutting different 
types of construction rocks in vertical and 
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horizontal dimensions. Another advantage of such 
cutting machines is that in the open-pit and 
underground mines, they can extract large  
high-quality blocks through vertical and 
horizontal cuts. It is worth mentioning that the 
larger the mine and the length of working face, the 
more is the efficiency and productivity in using 
this method and the less is the energy 
consumption and waste of time. The correct 
choice of machine in terms of structure, 
operational parameters of cutting elements, 
physical and mechanical properties, and rock 
mass density are parameters influencing the 
efficiency and productivity of a chain saw 
machine in the construction rock mines. Unlike 
the high ability of this method in extracting 
construction rocks, extensive studies have not 
been carried out in this area. The cutting 
performance of chain saw machines in Basaranlar 
travertine quarry mine in Turkey has been 
evaluated by Copur et al. (2006) [7]. The results 
obtained have led to the conclusion that in 
extracting travertine, a combination of two 
methods of chain saw machine and diamond 
cutting machine have improved the cutting 
performance up to 20% [7]. The field and 
experimental studies (linear cutting test) have 
been conducted by Copur et al. (2011) on 
construction rocks including two types of 
travertine and three types of marble in order to 
predict the performance of chain saw machines. 
Their research works have shown that in choosing 
the chain saw machines, out of the physical and 
mechanical properties, the two parameters 
uniaxial compressive strength and Brazilian 
tensile strength are the most important and 
effective parameters. Finally, the predicted results 
have shown a high correlation coefficient [8]. The 
performance of chain saw machines has been 
studied by Tumac et al. (2013) using the 
parameters such as shore hardness and other 
physical and mechanical properties of the 
construction rocks. In this work, six different 
construction rock samples extracted from six 
quarry mines in the west Turkey were analyzed. 
In addition, the dependence between the surface 
areal net cutting rate (ANCR) and any of the 
mechanical parameters of the rock was analyzed. 
The results obtained from this research work 
showed that compared with the other physical and 
mechanical properties of the rocks under study, 
the Shore sclera scope hardness index had the 
highest correlation with ANCR [9]. The 
performance of chain saw machines has been 
estimated by Tumac (2014) according to shore 

sclera scope hardness. In this work, two empirical 
models developed previously were improved for 
estimating the areal net cutting rate (ANCR) of 
chain saw machines. The results obtained showed 
that the cutting force and the normal force had a 
strong and weak relationship with Shore hardness 
values, respectively [10].Enhancing the 
performance of chain saw machines for extracting 
construction rocks has been studied by 
Hekimoglu. The results obtained from this work 
have led to the reduction of tool wear and increase 
in the performance of chain saw machines. The 
chain saw cutting process was simulated by the 
linear cutting machine. The research results 
showed that the special cutting energy was 
reduced by reduction in the cutting speed. In the 
meantime, the optimal saw speed depends on the 
cutting force and cutting tool wear [11]. The 
cutting force monitoring of chain saw machines 
with various rake angles has been carried out by 
Romoli (2018). The results obtained indicated that 
the use of a negative value of the rake angle γ led 
to the tolerance of a reduced clearance angle α, 
providing a higher resistance section of the 
carbide inserts, and therefore, globally 
strengthening the tool [12]. 
As mentioned earlier, enhancing the productivity 
of the construction rock industry is very important 
at the level of extraction. The high ability in 
accurately studying and predicting the production 
rate of construction rocks is one of the most 
important factors involved in increasing the 
productivity of quarries. Accordingly, the present 
work aimed to investigate and predict the 
construction rock production rate using chain saw 
machines according to the artificial neural 
networks. Thus Radial Basis Function (RBF) 
neural network and Group Method of Data 
Handling (GMDH)-type neural network were 
used as the most practical methods of artificial 
neural networks for a highly accurate modeling. In 
addition, in this modeling, 98 data was collected 
from the field study results on 7 carbonate rock 
samples as datasets. In this work, three 
operational parameters of machines including 
Arm Angle (AA), Chain Speed (CS), and 
Machine Speed (MS), and three parameters of 
physical and mechanical properties of rocks under 
study including Uniaxial Compressive Strength 
(UCS), Los Angeles Abrasion (LAA) test, and 
Schmidt hammer (Sch) were considered as the 
input parameters, and the production rate 
parameter was considered as the output parameter. 
Finally, simulations were performed to indicate 
the effectiveness of neural networks modeling. As 
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a result, a comparison was made between the two 
modeling, and a sensitive analysis was performed 
among the inputs and the predicted production 
rate. 

2. Materials and method 
The carbonate rock mines studied in this work 
include the Dehbid and Shayan marble mines. 
Figure 1 shows a view of the under studied 
Dehbid mine. Overall, from different workshops 
in the Dehbid mine, six samples, and from the 
Shayan mine, rock blocks in approximately 
30*30*30 cm dimensions were extracted for 
conducting physical and mechanical experiments. 
These samples were sent to the laboratory and 

their physical and mechanical parameters 
including special mass, water absorption, porosity, 
Schmidt's hardness, grain size, uniaxial 
compressive strength, Brazilian tensile strength, 
and Los Angeles abrasion were determined for the 
samples under study based on the ISRM 
international standards [13]. The results obtained 
from the experimental studies are shown in Table 
1. 
The characteristics of the chain saw machine 
(Figure 2) used in the mines under study are 
shown in Table 2. This table also shows the 
sample machine used in this work. 

 

 
Figure 1. Dehbid marble mine. 

 

 
Figure 2. The chain saw machine used in this work. 
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Table 1. Operational characteristics of the machine, and the physical and mechanical properties of rock samples 
under study. 

Sample 
No. 

UCS 
(Mpa) 

Los 
(n) 

Sch 
(n) 

Arm 
angle 

Chain 
speed 
(m/s) 

Machine 
speed 

(cm/min) 

Production 
rate (m2/h) 

Sample 
No. 

UCS 
(Mpa) 

Los 
(n) 

Sch 
(n) 

Arm 
angle 

Chain 
speed 
(m/s) 

Machine 
speed 

(cm/min) 

Production 
rate 

(m2/h) 
1 92 3.4 68 65 7.5 8 3.8 50 90 3.1 72 75 7.5 8 4 
2 92 3.4 68 70 7.5 8 4.5 51 90 3.1 72 75 8 8 4.2 
3 92 3.4 68 75 7.5 8 4.85 52 90 3.1 72 75 8.5 8 4.2 
4 92 3.4 68 80 7.5 8 4.01 53 90 3.1 72 75 7.5 6.5 2.9 
5 92 3.4 68 85 7.5 8 4 54 90 3.1 72 75 7.5 7 3.2 
6 92 3.4 68 75 6 8 3.4 55 90 3.1 72 75 7.5 7.5 3.4 
7 92 3.4 68 75 7 8 4.1 56 90 3.1 72 75 7.5 8 4 
8 92 3.4 68 75 7.5 8 4.85 57 109 2.4 76 65 7.5 8 2.6 
9 92 3.4 68 75 8 8 4.85 58 109 2.4 76 70 7.5 8 2.8 
10 92 3.4 68 75 8.5 8 4.85 59 109 2.4 76 75 7.5 8 2.9 
11 92 3.4 68 75 7.5 6.5 3 60 109 2.4 76 80 7.5 8 2.6 
12 92 3.4 68 75 7.5 7 4 61 109 2.4 76 85 7.5 8 2.4 
13 92 3.4 68 75 7.5 7.5 4.73 62 109 2.4 76 75 6 8 2.4 
14 92 3.4 68 75 7.5 8 4.95 63 109 2.4 76 75 7 8 2.7 
15 99 2.8 70 65 7.5 8 3.5 64 109 2.4 76 75 7.5 8 3 
16 99 2.8 70 70 7.5 8 4 65 109 2.4 76 75 8 8 3.1 
17 99 2.8 70 75 7.5 8 4.1 66 109 2.4 76 75 8.5 8 3.1 
18 99 2.8 70 80 7.5 8 3.8 67 109 2.4 76 75 7.5 6.5 2.2 
19 99 2.8 70 85 7.5 8 3.5 68 109 2.4 76 75 7.5 7 2.5 
20 99 2.8 70 75 6 8 3 69 109 2.4 76 75 7.5 7.5 2.9 
21 99 2.8 70 75 7 8 3.5 70 109 2.4 76 75 7.5 8 2.9 
22 99 2.8 70 75 7.5 8 4.2 71 105 2 73 65 7.5 8 2.8 
23 99 2.8 70 75 8 8 4.2 72 105 2 73 70 7.5 8 3 
24 99 2.8 70 75 8.5 8 4.2 73 105 2 73 75 7.5 8 3 
25 99 2.8 70 75 7.5 6.5 3 74 105 2 73 80 7.5 8 2.9 
26 99 2.8 70 75 7.5 7 3.5 75 105 2 73 85 7.5 8 2.4 
27 99 2.8 70 75 7.5 7.5 3.9 76 105 2 73 75 6 8 2 
28 99 2.8 70 75 7.5 8 4.1 77 105 2 73 75 7 8 2.4 
29 100 3.5 71 65 7.5 8 3.7 78 105 2 73 75 7.5 8 2.9 
30 100 3.5 71 70 7.5 8 4.3 79 105 2 73 75 8 8 2.9 
31 100 3.5 71 75 7.5 8 4.3 80 105 2 73 75 8.5 8 2.9 
32 100 3.5 71 80 7.5 8 4.3 81 105 2 73 75 7.5 6.5 2.1 
33 100 3.5 71 85 7.5 8 3.3 82 105 2 73 75 7.5 7 2.5 
34 100 3.5 71 75 6 8 2.8 83 105 2 73 75 7.5 7.5 2.6 
35 100 3.5 71 75 7 8 2.9 84 105 2 73 75 7.5 8 2.8 
36 100 3.5 71 75 7.5 8 3.5 85 111 2.3 77 65 7.5 8 1.8 
37 100 3.5 71 75 8 8 3.5 86 111 2.3 77 70 7.5 8 1.8 
38 100 3.5 71 75 8.5 8 3.5 87 111 2.3 77 75 7.5 8 2.4 
39 100 3.5 71 75 7.5 6.5 3 88 111 2.3 77 80 7.5 8 2 
40 100 3.5 71 75 7.5 7 3.4 89 111 2.3 77 85 7.5 8 2 
41 100 3.5 71 75 7.5 7.5 4 90 111 2.3 77 75 6 8 1.6 
42 100 3.5 71 75 7.5 8 4.3 91 111 2.3 77 75 7 8 2 
43 90 3.1 72 65 7.5 8 3.2 92 111 2.3 77 75 7.5 8 2.3 
44 90 3.1 72 70 7.5 8 3.5 93 111 2.3 77 75 8 8 2.4 
45 90 3.1 72 75 7.5 8 3.6 94 111 2.3 77 75 8.5 8 2.4 
46 90 3.1 72 80 7.5 8 3.8 95 111 2.3 77 75 7.5 6.5 1.4 
47 90 3.1 72 85 7.5 8 2.9 96 111 2.3 77 75 7.5 7 1.8 
48 90 3.1 72 75 6 8 2.8 97 111 2.3 77 75 7.5 7.5 2.2 
49 90 3.1 72 75 7 8 3.4 98 111 2.3 77 75 7.5 8 2.5 

 
Table 2. Characteristics of the chain saw machine used in this work. 

Manufacturer Model 
Blade 
length 

(m) 

Useful 
cutting 
length 

(m) 

Electrical 
power 
(KW) 

Machine 
weight 

with rail 
(kg) 

Machine 
motion 
speed 

(cm/min) 

Saw 
speed 
(m/s) 

Cutting 
thickness 

(Mm) 

Arm 
rotation 
(valve) 

Hydraulic 
tank 

volume 
(L) 

Fantini 70RA/PA 7.2 6.3 50 10500 0-13 0.1-0.7 38 360 300 
 
3. Methodology 
3.1. Radial basis function (RBF) neural 
networks 
Artificial neural networks are one of the soft 
computing techniques that within less than a 
decade have gained a significant role in the 
information analysis and process of problems 
lacking an available solution or could not be 
easily solved [14-16]. Among the different 

methods, the RBF neural networks is one of the 
most practical artificial neural networks that has a 
higher speed compared with many artificial neural 
networks. The RBF neural networks are one of the 
forward neural networks with applications such as 
classification and mapping between the input and 
output vectors [17-19]. These neural networks, 
like the multi-layer perceptron neural networks, 
have the three input, middle, and output layers. In 
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this network, the input layer is only used for the 
data entry and does not have any role in data 
processing. The middle layer, also called the 
hidden layer, determines the non-linear mapping 
between the input and output data, and the number 
of neurons in this layer is obtained based on a 

trial-and-error method. At the end, there is the 
output layer, the input of which is the output of 
the hidden layer, which is a simple linear weight 
sum. Figure 3 shows a basic form of the RBF 
neural networks. 

 

 
Figure 3. A Basic form of RBF [20, 21]. 

 
3.2. Group method of data handling (GMDH)-
type neural networks 
One of the most important areas of soft computing 
in the recent decades has been artificial neural 
networks, which has attracted the attention of 
numerous researchers in different scientific fields. 
On the other hand, artificial neural networks can 
be considered as one of the intersections of the 
computer and biological sciences. Human brain as 
one of the most complicated body organs has 
many wonderful abilities, which despite various 
accurate studies, still many unknown aspects have 
remained. In the meantime, learning is one of the 
most obvious abilities of the human brain. 
Artificial neural networks by simulating a part of 
brain performance has a very good ability in 
solving problems about learning, pattern 
recognition, control systems, and image 
processing [22-32]. Many models for artificial 
neural networks have been proposed by the 
researchers, one of which is GMDH. This method 
was provided by Ivakhnenko in 1968 based on the 
self-organizing and one-way algorithms that have 
several layers and neurons, and are one of the 
linear regression and modeling methods. In fact, 
the GMDH network includes a set of neurons 
formed by a combination of different pairs 
through a second-degree polynomial. The GMDH 

neural network introduced by Ivakhnenko is also 
known as a polynomial neural network whose 
main basis is formed by a second-degree 
polynomial model and the least squares error 
algorithm [33]. 
By integrating the quadratic polynomials obtained 
from all neurons, the algorithm shows an 
approximate function (proper mapping) with 
output for a set of inputs like X=(xi1, xi2, xi3, ..., 
Xim) with a minimum possible error in 
comparison with the output y according to Eq. (1). 

1 2 3( , , ,......... )
(1,2,3,......., )

 




i i i imy f x x x x
i m

 (1) 

Eq. (2) shows the general form of the GMDH 
basic neural network mapping for the input data 
based on the output data. This equation is also 
known as the Ivakhnenko equation, in which for 
an output like y, a number of data for x1, x2, x3, 
..., Xm values is introduced with m. 
Figure 4 shows a set of n observations,where n 
and m indicate the total number of observations 
and number of variables, respectively. Also, nt 
shows the number of observations in the training 
set. 

1 1 1 1 1 1 1 1 1 1

,...
         

       
m m m m m m m m m m

i i ij i j ijk i j k ijkl i j k l
i i j i j k i j k l

y a b x c x x d x x x e x x x x  (2) 
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Figure 4. Input to the GMDH algorithm [34]. 

 
In fact, this algorithm has several different layers, 
which in the first time step, when the input data 
enter the algorithm and is given to the first layer 
in the form of a combination of data, data in the 
first layer is transferred to the next one after being 
processed. This process is defined for n layers, 
and when the algorithm in each layer reaches an 
acceptable convergence, the algorithm working 
process is stopped. In fact, by creating the initial 
answers and improving them, and then choosing 
the most appropriate answer, this algorithm 
performs like evolutionary algorithms and follows 
a recursive system. One of the main advantages of 
this method compared to the other neural network 
methods is determination of a mathematical model 
for the problem under study based on polynomials 
[34, 35]. Furthermore, another advantage of this 
technique is its appropriate and desired ability in 
the convergence of neural networks in different 
problems. The GMDH-type neural network has 
been used and developed by many researchers. 
Eight natural soil samples have been investigated 
by Hassanlourad et al. for predictingthe dry unit 
weight of compacted soils using the GMDH-type 
neural network. They carried out a comparison 
between the predicted and experimentally 
measured values. The results obtained showed 
that this approach could be applied for evaluating 
dry unit weight withhighly acceptable degrees of 
accuracy [36]. The group method of data 
handling–type neural network algorithm has been 
considered byZhao et al.for maintainingthe useful 
life estimation of equipment [37]. The settlement 
and bearing capacity of foundation based on the 
moisture content (ω), plasticity index, and 
corrected SPT blow counts (N60)have been 
evaluated by Ziaie Moayed et al. However,the 
GMDH-type neural network and genetic 
algorithm were considered as analysis approaches 

for the prediction of pressure-meter modulus and 
(EM) and limit pressure (PL).The results obtained 
demonstrated thatthe GMDH-type neural network 
had a higher capability in the prediction of 
pressure-meter modulus and limit pressure of 
clayey soils compared tothe other methods [38]. 
The shear strength parameters including C and 
φhave been estimated by Mola-Abasi and Eslami. 
For this purpose, they evaluated a database 
containing 50 datasets from CPTu data and used 
the GMDH-type neural network and genetic 
algorithm. Finally, the results obtained indicated 
that the GMDH-type neural network could 
provide a higher performance capacity in 
predicting the shear strength parameters compared 
to the other available correlations [39]. For 
prediction of theelasticity modulus of clayey 
deposits from a database including 131 plate load 
tests (PLT) and standard penetration tests (SPTs), 
the GMDH-type neural networkhas been used by 
Naeini et al. They proposed a new equation to 
predict theelasticity modulus with an appropriate 
accuracy [40]. 
According to the high ability of this algorithm in 
solving complex and ambiguous problems on one 
hand and existence of different influential 
parameters and lack of certainty in the process of 
cutting dimensional rocks on the other hand, in 
this work, the GMDH-type neural network was 
used to predict the rock production rate for chain 
saw machines. 

4. Modeling and discussion 
In this work, in order to predictthe production rate 
in the chain saw machine, the linear regression 
prediction methods, i.e. the GMDH-typeand RBF 
neural network, were used. Moreover, for the 
performance evaluation of simulations, three 
performance indices were used based on Eqs. (3)-
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(5) including value account for (VAF), root mean 
square error (RMSE), and coefficient of 
determination (R2). 

var( )1
var ( )

 
  
 

i i

i

x yVAF
x

 (3) 

2

1

1 ( )


 
n

i i
i

RMSE x y
n

 (4) 

2 2
m2 1 1

2
m1

[ ( ) ] [ ( ) ]

[ ( ) ]
 



  



 



n n
i ean i ii i

n
i eani

x x x y
R

x x
 (5) 

where n shows the number of datasets, and xi and 
yi are the measured and estimated production 
rates, respectively. 
The significant point in the analysis of the values 
for performance indices is that the closer the VAF 
and RSME values to 100 and 0, respectively, the 
more accurate and correct is the algorithm 
performance. Also this is the case for R2 when its 
value is close to the unity [41-43]. 

4.1. Prediction of production rate using RBF 
neural network 
As mentioned earlier, in a simulation conducted in 
this work, 98 data were collected as the datasets 
from the experimental results obtained from 7 
carbonate rock samples. Then according to the 
suggestion proposed in the Looney’s research 
works, the value of 75% for data was considered 
as the training data and the rest were the testing 
data [44]. In this work, six parameters including 
three operational parameters of the chain saw 
machine, and three physical and mechanical 
parameters of rocks including uniaxial 
compressive strength (UCS), Los Angeles 
abrasion (LAA) test, and Schmidt hammer (Sch) 

were considered as the input data, and the 
parameter production rate was considered as the 
output data. Figure 5 shows the structure ofthe 
RBF neural network model based upon the input 
and output parameters. Then for the modeling, the 
algorithm control parameters were adjusted 
according to the views of the experts and past 
studies. The important issue is that some of these 
control parameters must be adjusted 
experimentally and through trial-and-error. 
Therefore, according to the experts, the numberof 
the two parameters spread (controlling the 
dispersion in functions) and neurons was 
considered as 5, 0, 1, and 1.5, and 30, 20, and 10, 
respectively, and totally, 9 models were 
constructed for predicting the production rate. The 
results obtained from this modeling were 
determined based on the algorithm performance 
indices, as seen in Eqs. (3)-(5) and Table 3. 
After the determination of each performance 
index for each model, a simple ranking method 
was used for ranking each model [45]. The results 
obtained from this ranking are provided in Table 
4. 
According to the results of ranking models in 
Table 4, the most appropriate model for the 
prediction of production rate is model No. 8. This 
model has coefficients of determination (R2) equal 
to 0.97 and 0.66 for the training and testing data, 
respectively. Figures 6 and 7 show the R2 values 
for the training and testing data, respectively. 
Additionally, Figures 8 and 9 show a comparison 
between the predicted results for the production 
rate and its measured values for the training and 
testing data. The procedure of this comparison in 
these figures indicates a good and accurate 
prediction. 

 

 
Figure 5. A structure of RBF model. 
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Table 3. Effects of spread and number of neurons on the statistical function performance in RBF network. 

Model 
No. 

Layer 
size 

 
Spread Number of 

neurons 

Results of network 
for R2 

Results of network 
for RMSE 

Results of network 
for VAF 

Training Testing Training Testing Training Testing 
1 3 0.5 10 0.55 0.59 0.55 0.55 19.85 11.26 
2 3 0.5 20 0.83 0.39 0.34 0.8 79.9 8.39 
3 3 0.5 30 0.89 0.43 0.26 0.89 88.72 32.39 
4 3 1 10 0.65 0.6 0.5 0.52 45.84 33.61 
5 3 1 20 0.81 0.75 0.36 0.51 75.87 70.77 
6 3 1 30 0.86 0.53 0.3 0.71 84.9 51.92 
7 3 1.5 10 0.55 0.66 0.53 0.58 17.08 32.42 
8 3 1.5 20 0.97 0.66 0.16 0.73 96.44 65.94 
9 3 1.5 30 0.89 0.62 0.27 0.63 87.97 60.6 

 
Table 4. Ranking of each model using RBF network. 

Model 
No. 

Layer 
size 

 
Spread 

Number 
of 

neurons 

Results of network 
for R2 

Results of network 
for RMSE 

Results of network 
for VAF Total 

rank Training Testing Training Testing Training Testing 
1 3 0.5 10 3 5 1 7 2 2 20 
2 3 0.5 20 6 2 5 2 5 1 21 
3 3 0.5 30 8 3 8 1 8 3 27 
4 3 1 10 4 6 3 8 3 5 29 
5 3 1 20 5 9 4 9 4 9 40 
6 3 1 30 7 4 6 4 6 6 39 
7 3 1.5 10 3 8 2 6 1 4 24 
8 3 1.5 20 9 8 9 3 9 8 46 
9 3 1.5 30 8 7 7 5 7 7 41 

 

 
Figure 6. R2 between measured and predicted 
production rates for training datasets for RBF 

model. 

 
Figure 7. R2 between measured and predicted 

production rates for testing datasets for RBF model. 

 
Figure 8. Comparison of predicted and measured RBF for training datasets for RBF model. 
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Figure 9. Comparison of predicted and measured RBF for testing datasets for RBF model. 

 
4.2. Prediction of production rate using GMDH 
neural network 
As mentioned earlier, a database of 98 laboratory 
tests were conducted on 7 different varieties of 
carbonate rocks extracted from Iranian quarries. 
Then the three operational properties of the 
machine, i.e. arm angle (AA), chain speed (CS), 
and machine speed (MS),and three important 
physical and mechanical properties including 
uniaxial compressive strength (UCS), Los 
Angeles abrasion (LAA) test, and Schmidt 
hammer (Sch) were considered as the input data, 
and another operational property of the machine, 
i.e. the production rate, was considered as an the 
output dataset. There are some ideas about the 
percent of data for training. According to thework 
of Looney, 75% of all datasetsshould be 
considered for trainingpurposes[44], while this 
percent has been suggested by Swingler as 80% of 
the whole datasets [46]. Hence, in this work, 80% 
of dataset was used randomly for the training 
dataset and the remaining 20% was considered as 
the testing data in each simulation. 
In the next simulation step,the structure of a 
neural network must be formed. For modeling the 
GMDH-type neural network, like other artificial 
neural networks, the neural network structure 
must be defined. Therefore, the number of layers 
and neurons must be determined in each layer. 
Although the exact number of layers and neurons 
in each layer for the best model cannot be 
determined at the beginning of modeling, based 
on the number of datasets, an acceptable range 
can be determined for them. Thus in this work, 
according to the number of datasets and using the 
perspectives of experts in the neural network 
modeling, different numbers of layers were 
considered including 2, 3, and 4 layers, and the 
modeling was done for each layer with different 
numbers of neurons such as 5, 10, 20, 30, 40, and 
50. In fact, for determining the most appropriate 

numbers of layers and neurons in the hidden layer, 
18 models were created, and the performance of 
each model was calculated based on the 
performance indices in accordance with  
Eqs. (3)-(5). Table 5 shows 18 models created and 
the performance indices for each one. It is worth 
mentioning that in choosing the number of layers 
and neurons in each layer, there is no specified 
relation for their determination and this choice has 
an experimental process, which is generally based 
upon issues such as the number of samples under 
study, complexity of the problem, and 
perspectives of experts in neural network 
problems, and then the best model is determined 
through trial-and-error. 
As mentioned earlier, the modeling was done for 
three different types of layers and six states with 
different neurons, and the performance indices 
were determined for each model. In the next step, 
according to the results obtained (Table 5) and a 
simple ranking method, a rank was considered for 
each model [45]. The results of ranking for each 
model are shown in Table 6. 
According to the results obtained (Table 4), the 
rank of each model was determined. The best 
model based on the obtained rank is model No. 
18, which has the score 108. In this model, the 
performance index values include coefficient of 
determination (R2) of training = 0.91 and testing = 
0.92, RMSE of training = 0.252, and testing = 
0.245; and also VAF of training = 90.30 and 
testing = 92.06. Figures 10 and 11 show the 
diagrams of coefficient of determination (R2) for 
the training and testing datasets. 
Figures 12 and 13 make a comparison between the 
measured values and the values predicted from the 
production rate value, respectively, for training 
and testing the datasets for model No. 18. 
According to Figure 12, the data measured for 78 
experimental samples shows that the predicted 
values appropriately match together in terms of 
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the training data. For example, data Nos. 2, 7, and 
8 were completely predicted. Data Nos. 10 and 74 
had a partial difference, and although some data 
such as Nos. 18 and 76 had much difference 
between the measured and predicted values of the 
production rate, their difference was generally 
acceptable and the performance of the total set 
was highly acceptable. Furthermore, in Figure 13, 

a comparison was made between the results 
measured and predicted from the production rate 
for the testing data, indicating the high ability and 
productivity of this algorithm in predicting the 
testing data. For instance, 11 out of 20 data were 
tested in the algorithm; for example,data Nos. 3, 
2, 1, 15, 11, 10, 4,and 19 fully match with the 
predicted and measured data. 

 
Table 5. Effects of layer size and number of neurons in each layer on performance indices in GMDH. 

Model 
No. 

Layer 
size 

 

Number of 
neurons in 
each layer 

Results of network 
for R2 

Results of network 
for RMSE 

Results of network 
for VAF 

Training Testing Training Testing Training Testing 
1 2 5 0.79 0.85 0.362 0.382 75.74 82.63 
2 2 10 0.81 0.86 0.32 0.521 76.53 52.84 
3 2 20 0.75 0.8 0.373 0.545 74.28 35.17 
4 2 30 0.76 0.68 0.393 0.448 71.72 49.65 
5 2 40 0.83 0.89 0.341 0.35 80.25 85.38 
6 2 50 0.85 0.71 0.343 0.41 81.35 70.67 
7 3 5 0.83 0.69 0.34 0.48 80.5 69.34 
8 3 10 0.78 0.59 0.385 0.562 73.45 52 
9 3 20 0.86 0.58 0.373 0.35 84.36 49.23 
10 3 30 0.87 0.66 0.295 0.446 85.94 62.62 
11 3 40 0.81 0.74 0.35 0.491 77.25 70.54 
12 3 50 0.82 0.73 0.369 0.347 79.12 67.65 
13 4 5 0.84 0.79 0.325 0.373 81.21 73.84 
14 4 10 0.86 0.82 0.305 0.395 84.26 82.15 
15 4 20 0.78 0.83 0.374 0.373 74.43 78.6 
16 4 30 0.85 0.85 0.301 0.383 82.6 81.9 
17 4 40 0.82 0.76 0.344 0.515 76.61 75.55 
18 4 50 0.91 0.92 0.252 0.245 90.30 92.06 

 
Table 6. Ranking of each model using GMDH. 

Model 
No. 

Layer 
size 

 

Number of 
neurons in 
each layer 

Results of network 
for R2 

Results of network 
for RMSE 

Results of network 
for VAF Total 

rank Training Testing Training Testing Training Testing 
1 2 5 10 15 8 14 5 16 68 
2 2 10 11 16 14 5 6 5 57 
3 2 20 7 12 6 4 3 1 33 
4 2 30 8 5 3 9 1 3 29 
5 2 40 13 17 11 16 10 17 84 
6 2 50 15 7 10 11 13 10 66 
7 3 5 13 6 12 8 11 8 58 
8 3 10 9 3 4 3 2 4 25 
9 3 20 16 2 6 16 16 2 58 
10 3 30 17 4 17 10 17 6 71 
11 3 40 11 9 9 7 8 9 53 
12 3 50 12 8 7 17 9 7 60 
13 4 5 14 11 13 15 12 11 76 
14 4 10 16 13 15 12 15 15 86 
15 4 20 9 14 5 15 4 13 60 
16 4 30 15 15 16 13 14 14 87 
17 4 40 12 10 9 6 7 12 56 
18 4 50 18 18 18 18 18 18 108 
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Figure 10. R2 between measured and predicted 

production rates for training datasets for GMDH 
model. 

 
Figure 11. R2 between measured and predicted 
production rates for testing datasets for GMDH 

model. 

 
Figure 12. Graphical comparison between measured and predicted production rates for training datasets for 

GMDH model. 
 

 
Figure 13. Graphical comparison between the measured and predicted production rates for testing datasetsin 

GMDH model. 
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4.3. Discussion 
After the design and construction of the RBF and 
GMDH neural networks, and the most appropriate 
determination of simulation by any algorithm, in 
this section, the results obtained by the two 
methods were compared. The results obtained 
from the two modellings are shown in Table 7. 
By observing and comparing the results of the 
best models from these methods, according to the 
performance index of networks indicating the 
amount of optimization and efficiency of the 
model, it is obvious that although the RBF neural 
network has an acceptable performance, the 
GMDH neural network performance is better than 
that for the RBF neural network. In the next step, 
for the optimized model from GMDH neural 
network (model No. 18), a sensitivity analysis was 
performed for the predicted inputs and outputs. 
This sensitivity analysis was conducted among 
three operational properties of the machine, i.e. 
arm angle (AA), chain speed (CS), and machine 
speed (MS),and three important physical and 
mechanical properties including uniaxial 
compressive strength (UCS), Los Angeles 
abrasion (LAA) test, and Schmidt hammer (Sch) 

and predicted production rate and measured 
production rate. 
In the process of sensitivity analysis, each input 
data was determined for a range of data, then by 
fixing the other 5 input data and changing one of 
them to the desired range, the sensitivity analysis 
was conducted for each input data, respectively. 
Figures 14 and 15 make the sensitivity analysis 
for each input data based upon the measured and 
predicted production rate, respectively. 
The sensitivity analysis was done for the 
production rate measured and predicted from the 
optimized model (model No. 18), GMDH. Based 
on the results obtained, for the physical and 
mechanical input data, Schmidt hammer, uniaxial 
compressive strength, and Los Angeles abrasion 
data have the highest to the lowest effect on the 
measured and predicted production rate process, 
respectively. Consequently, based upon the results 
of sensitivity analysis, it can be concluded that the 
machine operational analysis including arm angle, 
chain speed, and machine speed have the highest 
to the lowest effect on the measured and predicted 
production rate process, respectively. 

 
Table 7. A comparison between the performance indices of the best models RBF and GMDH. 

Method R2 RMSE VAF 
Training Testing Training Testing Training Testing 

RBF 0.97 0.66 0.16 0.73 96.44 65.94 
GMDH 0.91 0.92 0.252 0.245 90.30 92.06 

 

 
Figure 14. Sensitivity analysisbased upon predicted production rate. 
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Figure 15. Sensitivity analysis based upon measured production rate. 

 
5. Conclusions 
Dimensional stone is one of the most important 
building materials, which has a significant role in 
the construction industry. Furthermore, 
determination of an appropriate model for the 
prediction and evaluation of the production rate of 
chain saw machines leads to the increase in 
productivity and efficiency in mines using this 
type of cutting machine. The primary focus of this 
work was to develop a precise model for 
estimating the production rate. For this purpose, a 
database including 98 laboratory tests on 7 
carbonate rock samples was collected.Some 
operational properties of the machine, i.e. arm 
angle (AA), chain speed (CS), and machine speed 
(MS),and three important physical and mechanical 
propertiesincluding uniaxial compressive strength 
(UCS), Los Angeles abrasion (LAA) test, and 
Schmidt hammer (Sch) were considered as the 
input data, and another operational property of the 
machine, i.e. the production rate,was considered 
as an output dataset. In this work, different models 
were developed using the most important soft 
computing techniques including the GMDH-type 
neural network and RBF neural network. 
However, three performance indices including 
VAF,RMSE, and R2 were considered to evaluate 
the algorithm results.For modeling, 18and 9 
models were constructed by the GMDH and RBF 
neural networks, respectively. A comparison was 
made among the 18 simulations based on the 
performance indices, and the 18thmodel of GMDH 
had the best performance to predict the production 
rate with coefficient of determination (R2) of 
training = 0.91 and testing = 0.92. Also in RBF, 

the model No. 8 with the performance indices of 
R2=0.97 and 0.66 for training and testing data 
obtained the highest rank. Finally, based on the 
performance indices, it was found that the GMDH 
algorithm could provide a higher performance 
capability for estimating the production rate of 
carbonate rocks compared to the RBF method, 
althoughthe RBF approach in this work is 
applicable to predict the production rate. In the 
future research works, prediction of the 
production rate for chain saw machines can also 
be investigated and improved using other kinds of 
artificial neural networks such as the Hopfield 
network and multi-layer perceptron (MLP) neural 
network. 
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  چکیده:

هـاي سـاختمانی   ساختمانی و به خصوص زمان استفاده از ماشین برش اره زنجیري بسیار سخت است. فرآیند برش سنگ بینی نرخ تولید فرآیند برش سنگپیش
. روش گروهـی مـدیریت   اسـت هاي برش ها و ماشیناطمینان سنگ رقابلیغیک موضوع پیچیده به همراه فاکتورهاي مؤثر متعدد شامل شرایط مختلف و  عموماً

) به عنوان نوعی از روش محاسباتی نرم، ابزاري قدرتمند بـراي تعیـین و ارزیـابی    RBF( یشعاعبکه عصبی و شبکه عصبی مصنوعی ) از نوع شGMDH( هاداده
زنجیري با استفاده ی براي تخمین نرخ تولید ماشین برش اره نیب شیپي ها مدلهدف توسعه  پژوهش، در این رو نیا ازی هستند. رقطعیغی نشده و نیب شیپشرایط 

هـاي  بر مبنـاي شـاخص   افتهی توسعههاي آمده از مدل دست بهو سپس مقایسه نتایج  است GMDHو روش شبکه عصبی  RBFاز روش شبکه عصبی مصنوعی 
نوع سنگ کربناته به طـور دقیـق    هفت يروتست آزمایشگاهی  98است. براي این هدف، پارامترهاي  (R2) و ضریب همبستگی VAF ،RMSE شاملعملکرد 

 نیماش ـ) و سـرعت  CS( ریزنج)، سرعت AA( ارهگیري شده است. برخی مشخصات عملیاتی ماشین از جمله زاویه بررسی شده است و نرخ تولید هر تست اندازه
)MS ( محوره تکمشخصه مهم فیزیکی و مکانیکی سنگ شامل مقاومت فشاري  سه) وUCS( آنجلس)، تست سایش لسLAA و تست سختی چکش اشمیت (

 افتـه ی توسـعه کند مـدل  آمده ثابت می دست بههاي ورودي و نرخ تولید ماشین به عنوان مجموعه اطلاعات خروجی در نظر گرفته شده است. نتایج به عنوان داده
GMDH  هاي عملکرد تواناتر است.ر اساس شاخصبینی نرخ تولید ماشین برش اره زنجیري بپیش برايبراي مهیا کردن نتایج با اطمینان بالاتر  

  .هاي کربناتهسنگ، GMDH، ماشین برش اره زنجیري، نرخ تولید، سنگ ساختمانی کلمات کلیدي:

 

 

 

 


