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Abstract 

The dynamic response of slopes against earthquake is commonly characterized by the earthquake-induced 

displacement of slope (EIDS). The EIDS value is a function of several variables such as the material properties, 

slope geometry, and earthquake acceleration. This work is aimed at the prediction of EIDS using the Monte 

Carlo simulation method (MCSM). Hence, the parameters height, unit specific weight, cohesion, friction 

angle, vibration duration, and maximum horizontal acceleration are used to predict the EIDS values. To do 

this, a multiple non-linear regression relationship is first derived between EIDS and the independent 

variables. Then MCSM is performed based on the developed regression equation. The results obtained 

demonstrate that the stochastic approach used is able to successfully reproduce the EIDS values and calculate 

the confidence intervals. The average of the measured and simulated values for EIDS was 4.34 cm and 4.48 

cm, respectively. Eventually, the results of a performed correlation sensitivity analysis revealed that the 

maximum horizontal acceleration had the greatest impact on EIDS. 

 

Keywords: Earthquake-Induced Displacements, Slopes, Monte Carlo Simulation, Multiple Non-Linear 

Regression, Sensitivity Analysis. 

1. Introduction 

The analysis of earth structures (e.g. slopes) 

against possible earthquakes is of great 

importance since the instability of such 

infrastructures usually has catastrophic human, 

financial, and environmental consequences [1]. 

Vulnerable slopes may partially fail in the event 

of an earthquake of magnitude greater than 4, and 

they may undergo an overall instability against an 

earthquake of magnitude greater than 6 [2, 3]. The 

slope geometry, matrerial properties, and ground 

vibrations control the degree of  

earthquake-induced instability of a slope [1]. A 

large number of research works have addressed 

the earthquake-induced displacement of slope 

(EIDS). Saygili and Rathje [4] have presented an 

empirical model to estimate the slope movements 

against earthquakes. Lin and Whitman [5] have 

developed a stepwise procedure to calculate the 

permanent displacements of sliding blocks caused 

by ground accelerations. Rathje and Saygili [6] 

have carried out a probabilistic analysis of EIDS. 

Refice and Capolongo [7] have performed a 

reliability analysis of slope stability against 

earthquake loads. Al-Homoud and Tahtamoni [8] 

have considered the uncertainties associated with 

a 3D slope stability analysis and studied the 

earthquake-induced movements. Yuan et al. [9] 

have considered the effect of the acceleration 

component normal to the sliding surface on 

earthquake-induced landslide triggering. 

Babanouri and Dehghani [10] have studied the 

failure probability and shear strains for a large 

potentially slide-prone slope in the event of a 

design earthquake. Bray and Travasarou [11] have 

developed a simplified approach that used a  

non-linear fully-coupled sliding-block model to 

produce a semi-empirical relationship for 

predicting displacements. Bray and Travasarou 
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[12] have presented a straightforward approach to 

calculate the pseudo-static coefficient as a 

function of allowable displacement, earthquake 

magnitude, and spectral acceleration. The 

common basis of these rationalized approaches is 

calibration based on allowable displacement. 

Jibson [13] has divided the methods developed to 

assess the stability or performance of slopes 

during earthquakes into three general categories: 

(1) pseudo-static analysis, (2) stress-deformation 

analysis, and (3) permanent-displacement 

analysis. Bojadjieva et al. [14] have studied the 

landslide hazard and risk assessment considering 

different water saturation and earthquake 

scenarios for a selected area in a sub-urban hilly 

part of Skopje, the capital of Macedonia. 

On the other hand, the Monte Carlo simulation 

method (MCSM) has been widely used to 

determine uncertainties of geoscience problems. 

Using MCSM, Jiang et al. [15] have estimated the 

failure probability of a soil slope with spatially 

variable properties. Wang et al. [16] have carried 

out a reliability analysis of slope stability with the 

help of MCSM and evaluated the impact of the 

parameters involved. Abbaszadeh et al. [17] have 

evaluated a reliability index analysis for the 

Sungun copper mine slope stability based on three 

uncertainty methods consisting of the Taylor 

series method, Rosenblueth point estimate 

method, and MCSM. Sari et al. [18] have 

successfully used MCSM to anticipate the back 

break area for a production blasting design. 

Ghasemi et al. [19], Armaghani et al. [20], and 

Little and Blair [21] have applied MCSM to 

predict the blast-induced fly-rock risk in surface 

mines. Fattahi et al. [22] have assessed the 

damaged zone of the surrounding underground 

excavations by coupling MCSM and the  

ANFIS-subtractive clustering method. Based on 

the Kuz–Ram equation, Morin and Ficarazzo [23] 

have carried out a Monte Carlo simulation of the 

blast fragmentation size. Li and Chu [24] have 

developed a systematic and probabilistic approach 

to locate the multiple failure surfaces combining 

the traditional limit equilibrium method with 

MCSM. Mahdiyar et al. [25] have conducted a 

risk analysis of a slope instability in the presence 

of seismic loads using MCSM. 

This paper presents a research work in which 

MCSM is used to predict EIDS. First, a regression 

equation was established to empirically predict 

EIDS. Then a Monte Carlo simulation was 

performed based on the developed equation. 

Finally, in order to evaluate the effect of each 

parameter involved on EIDS, a sensitivity analysis 

was carried out. 

2. Database description 

In order to model EIDS in this work, a database of 

the input and output variables was borrowed from 

the literature [26]. The original data covering 45 

case studies are presented in Table 1. 

Furthermore, the statistical characterization of the 

database is provided in Table 2. The database was 

extracted by analyzing five embankments of slope 

angle β = 2:3 and pore water pressure ratio  

ru = 0.1. The earthquake-induced displacements 

(u) for radius (r) = 5, 10, and 15 km, and 

magnitude (M) = 6, 6.5, and 7 Richter were 

calculated for the five embankments using Eqs. 

(1) to (3). In this way, a database containing 45 

cases was established. Eqs. (1) to (3) take the 

input parameters of height (H), unit specific 

weight (γ), cohesion (C), angle of internal friction 

(φ), significant duration of shaking (D5–95), 

maximum horizontal acceleration (kmax), and 

return displacement (u). Section 4.2.2 in [26] 

thoroughly explains the database. 
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where M is the earthquake magnitude in Richter and r is the distance in km. 
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Table 1. Original data used for modeling [26]. 

Case No. 
Input parameters  Output parameter 

H (m) ɣ (KN/m
3
) C (KPa) Φ (

o
) D5–95 kmax  u (cm) 

1 12 22 8 35 7.9 0.24  0.25 

2 12 22 8 35 8.35 0.2  0.06 

3 12 22 8 35 9.55 0.13  0.0008 

4 12 22 8 35 11.1 0.33  2.7 

5 12 22 8 35 11.5 0.27  0.82 

6 12 22 8 35 12.7 0.18  0.036 

7 12 22 8 35 16 0.45  18.16 

8 12 22 8 35 16.4 0.37  7.37 

9 12 22 8 35 17.65 0.24  0.55 

10 10 22 5 35 7.9 0.24  1.19 

11 10 22 5 35 8.35 0.2  0.4 

12 10 22 5 35 9.55 0.13  0.014 

13 10 22 5 35 11.1 0.33  8.45 

14 10 22 5 35 11.5 0.27  3.31 

15 10 22 5 35 12.7 0.18  0.3 

16 10 22 5 35 16 0.45  42 

17 10 22 5 35 16.4 0.37  20.4 

18 10 22 5 35 17.65 0.24  2.7 

19 10 21 5 36 7.9 0.24  0.55 

20 10 21 5 36 8.35 0.2  0.16 

21 10 21 5 36 9.55 0.13  0.003 

22 10 21 5 36 11.1 0.33  4.84 

23 10 21 5 36 11.5 0.27  1.68 

24 10 21 5 36 12.7 0.18  0.1 

25 10 21 5 36 16 0.45  27.84 

26 10 21 5 36 16.4 0.37  12.4 

27 10 21 5 36 17.65 0.24  1.24 

28 8 22 6 36 7.9 0.24  0.094 

29 8 22 6 36 8.35 0.2  0.02 

30 8 22 6 36 9.55 0.13  0.0001 

31 8 22 6 36 11.1 0.33  1.34 

32 8 22 6 36 11.5 0.27  0.35 

33 8 22 6 36 12.7 0.18  0.001 

34 8 22 6 36 16 0.45  10.8 

35 8 22 6 36 16.4 0.37  3.94 

36 8 22 6 36 17.65 0.24  0.2 

37 6 21 5 35 7.9 0.24  0.07 

38 6 21 5 35 8.35 0.2  0.013 

39 6 21 5 35 9.55 0.13  7.34 

40 6 21 5 35 11.1 0.33  1.07 

41 6 21 5 35 11.5 0.27  0.26 

42 6 21 5 35 12.7 0.18  0.006 

43 6 21 5 35 16 0.45  9.24 

44 6 21 5 35 16.4 0.37  3.24 

45 6 21 5 35 17.65 0.24  0.16 

 
Table 2. Statistics of input and output datasets. 

Max. Min. Symbol Unit Parameter 

12 6 H m Height 

Inputs 

22 21 γ KN/m
3
 Special Weight 

8 5 C KPa Cohesion 

36 35 φ ° Angle of friction 

17.65 7.9 D5-95 - Period of time 

48 0.13 Kmax m/s
2
 Horizontal acceleration 

42 0.001 U cm Displacement Output 
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3. Developing an EIDS predictive model 

In order to the simulate EIDS using MCSM, an 

empirical equation is first required to be 

developed [18, 20, 25]. Therefore, the non-linear 

multiple regression (MNLR) analysis was used. 

The parameters H, γ, C, φ, D5–95, and kmax were 

considered as the input variables, and EIDS was 

the dependent parameter. 80% of the datasets 

were considered as the training data used for 

building the model, and 20% of them were 

allocated to the testing data used for assessing the 

model performance for unseen cases. The 

following formula was fitted over the data using 

SPSS v16 [27]. 

5 95 max

U ( ) 0.04+exp(9.8+0.41H+0.2 -

0.67C+0.52 +0.1D +12.48K )

 cm 


 (4) 

The performance of Eq. (4) was examined using 

the squared correlation coefficient (R
2
), mean 

square error (MSE), root mean square error 

(RMSE), and variance account for (VAF), defined 

as follow, respectively: 
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where y is the measured value for the dependent 

parameter, y  and y  stand for the predicted 

values and their mean, respectively, and N 

specifies the number of data. The  

above-mentioned indices were computed for Eq. 

(4) in the training and testing phases. The 

performance indices obtained in Table 3 

demonstrate the strong performance of the model 

in the indirect estimation of EIDS. Furthermore, 

correlations between the measured and predicted 

values of EIDS for the testing and training phases 

are shown in Figure 1. 

 
Table 3. Performance of regression model for 

predicting EIDS. 

Type data R
2
 MSE RMSE VAF 

Training data 0.95 2.476 1.573 0.94 

Testing data 0.98 3.646 1.909 0.97 

 

 
(a) 

 
(b) 

Figure 1. Correlation between measured and 

predicted EIDS values for a) training data b) testing 

data. 

 

4. Monte Carlo simulation of EIDS 

Contrary to a deterministic modeling in which a 

fixed value is considered for each influencing 

parameter, a distribution of values is considered 

for any input parameter in the Monte Carlo 

simulation according to its pre-defined statistical 

characterization. Then a large number (commonly 

1000) of realizations of the system and their 

corresponding response are obtained. In this way, 

MCSM provides identification of the uncertainties 

associated with an estimator model [19, 20, 28, 

29]. 

In this work, the @Risk software was used to 

perform the Monte Carlo simulation of EIDS. The 

developed regression relationship was used as the 

estimation model. Each one of the model inputs 
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(H, γ, C, φ, D5–95, and kmax) was specified with a 

continuous probability distribution. In order to 

find the best-representing distribution, the Expon, 

Pareto, Triang, and InvGauss functions were 

examined. The best-fitted probability distribution 

functions of the input variables are given in Table 

4. 

The software @Risk provides two schemes for 

sampling, namely Latin Hypercube sampling 

(LHS) and simple random sampling. In LHS, the 

stratified sampling is performed, which requires a 

lower number of sample generation, and yields a 

more accurate representation of the prescribed 

probability distributions [30]. Hence, LHS with 

6,000 iterations was carried out in this work to 

ensure a good realization of the distribution 

functions. As a result, 6,000 different possible 

combinations of independent parameter values 

were evaluated in the Monte Carlo simulation. 
The existence of correlation between the input 

parameters may significantly influence the 

simulation results. Therefore, the cross-correlation 

of the input parameters was also investigated 

(Table 5). For the sample generation to be 

rational, the existing correlations between the 

input parameters are required to be accounted for; 

otherwise, the generated samples would be quite 

random. 

The EIDS distribution model obtained using 

MCSM together with the summary statistics are 

shown in Figure 2. It was found that the 

LogNormal distribution was the best-fitting 

model. In addition, the EIDS values were found to 

range from a minimum of 0.04 cm to a maximum 

of 111.04 cm with an average of 4.48 cm. As it 

can be seen, the EIDS values obtained by the 

simulated model vary within a quite wide range. 

At the 90% confidence level, the EIDS values will 

not exceed 20.97 cm. Different variation ranges of 

EIDS can be extracted from the analysis results at 

different levels of confidence. Moreover, the 

EIDS values obtained by measurement, the 

MNLR model, and MCSM simulation are 

compared in Figure 3. This figure proves that the 

proposed MCSM is capable of reproducing the 

EIDS values properly. 
 

Table 4. Probability distribution functions of input parameters. 

Best-fitted function Model input 

Expon (k, sigma): k = 3.2, sigma = 5.928 H 

Pareto(α, β): α = 35.827, β = 21 γ 

Triang(α, β, sigma): α = 5, β = 5, sigma = 8.649 C 

Triang(α, β, sigma): α = 35, β = 35, sigma = 36.4 φ 

InvGauss(A, B, C): A = 7.1617, B = 23.666, C = 5.1883 D5–95 

Expon (k, sigma): k = 0.1377, sigma = 0.1269 kmax 
 

Table 5. Spearman’s correlation coefficients for model inputs. 

 H γ C φ D5-95 kMax 

H 1      

γ 0.48 1     

C 0.60 0.56 1    

φ -0.08 -0.16 -0.21 1   

D5-95 0.0 0.0 0.0 0.0 1  

kMax 0.0 0.0 0.0 0.0 0.55 1 

 
Figure 2. Histogram of EIDS achieved by MCS along with statistical details. 
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Figure 3. Comparison of the cumulative frequency of measured, predicted, and simulated values of EIDS. 

 

5. Correlation sensitivity analysis 

A correlation sensitivity analysis was carried out 

to determine the role of each influencing 

parameter in the EIDS prediction. The rank-order 

correlations between each one of the input 

parameters and the simulated EIDS values were 

calculated using the STATISTICA software 

package. In order to do this, the two variables 

(EIDS and one of the input parameters) are first 

ranked. Then the correlation between their ranks 

is computed [25, 20]. In this way, the strength and 

direction of sensitivity of EIDS to the input 

parameters are measured (Table 6). The value for 

the rank-order correlation varies between −1 and 

+1. As it can be seen, the most influential 

parameter is kmax with a correlation coefficient of 

0.696, and then EIDS is sensitive to D5–95, C, γ, H, 

and φ, respectively. 

 
Table 6. Results of correlation sensitivity analysis. 

Name of variable Correlation coefficient 

kmax 0.696 (1) 

D5–95 0.437 (2) 

H 0.128 (3) 

C -0.115 (4) 

φ -0.069 (5) 

γ 0.044 (6) 

 

6. Conclusions 

The displacements induced by an earthquake are 

important because the displacements can be very 

large and result in severe damages to the earth and 

earth-supported structures. In this work, MCSM 

was used to evaluate/predict EIDS. For this aim, a 

total of 45 datasets were extracted by analyzing 

five embankments of slope angle β = 2:3 and pore 

water pressure ratio ru = 0.1. In this work, the 

parameters having the most influence on EIDS 

(i.e. kmax, D5–95, C, γ, H, and φ) were used as the 

independent parameters. In the first step, an 

empirical equation was developed between EIDS 

and the independent variables using the MNLR 

technique. The results of the values predicted 

using the constructed equation were in good 

agreement with the actual data, demonstrating the 

reliability of the developed MNLR model. Then 

this equation was used in MCSM. The results 

obtained for the predicted and simulated EIDS 

values were very similar to the measured ones in 

all the data cases. The average of the simulated 

EIDS values was obtained to be 4.48 cm, while 

the actual EIDS values had an average of 4.34 cm. 

Furthermore, the results obtained revealed that 

there was a positive correlation between EIDS and 

kmax, D5–95, γ, and H. On the other hand, C and φ 

had negative correlations with EIDS. 

Furthermore, the sensitivity analysis demonstrated 

that kmax, among the other parameters, had the 

most influence on the EIDS value. It is noticeable 

that due to the nature of the problem, the 

model/equation proposed in this work cannot be 

applied directly to other conditions, and should 

only be used for the mentioned parameters and 

their ranges. In order to do simulation in other 

slopes, the process presented in this work should 

be reconsidered. 
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 چکیده:

شایروانی تاابچ چنادی      زلزلاه  از یناشا  ییجابجاا . مقادیر شودیم مشخص شیروانی زلزله از یناش ییجابجا توسط معمولاً زلزله برابر در هاشیروانی یکینامید پاسخ

شایروانی باا اساتهاده از روش     زلزلاه  از یناشا  ییجابجاا بینی از ای  پژوهش پیش . هدفاستهای مصالح، ابعاد هندسی شیروانی و شتاب زلزله متغیر مانند ویژگی

زلزلاه   و ماکزیمم شتاب افقای  کارلو است. برای ای  منظور پارامترهای ارتهاع، وزن مخصوص، چسبندگی، زاویه اصطکاک داخلی، مدت زمان لرزش سازی مونتشبیه

 یناشا  ییجابجاشیروانی مورد استهاده قرار گرفته است. برای انجام ای  کار، ابتدا رابطه رگرسیون غیرخطی چند متغیره بی   زلزله از یناش ییجابجابینی برای پیش

به کار گرفته شد. نتایج به دست آماده نشاان    کارلو سازی مونتآمده روش شبیه دست بهآمد. سپس بر اساس معادله  دست بهمتغیرهای مستقل شیروانی و  زلزله از

 گیاری و  شایروانی را محاسابه کناد. باه  اوری کاه میااندی  مقاادیر انادازه          زلزلاه  از یناش ییجابجاتواند دهد که رویکرد تصادفی استهاده شده با موفقیت میمی

سانتیمتر است. در نهایت نیز آنالیز حساسیت انجام شاده روی پارامترهاا نشاان     42/4سانتیمتر و  94/4شیروانی به ترتیب  زلزله از یناش ییجابجاسازی شده شبیه

 شیروانی دارد. زلزله از یناش ییجابجارا روی  ریتأثدهد که ماکزیمم شتاب افقی بیشتری  می

 .حساسیترگرسیون غیرخطی چند متغیره، آنالیز کارلو،  سازی مونتشبیه، شیروانی، زلزله از یناش ییجابجا کلمات کلیدی:

 

 

 

 


