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Abstract 
In geochemical exploration, there are various techniques such as univariate and 
multivariate statistical methods available for recognition of anomalous areas. Univariate 
techniques are usually utilized to estimate the threshold value, which is the smallest 
quantity among the values representing the anomalous areas. In this work, a 
combination of the Sequential Gaussian Simulation (SGS) and Gap Statistics (GS) 
methods was utilized as a new technique to estimate the threshold and to visualize the 
anomalous regions in the Hararan area, which is located in SE Iran, and consists of 
copper mineralization that seems to be connected to a porphyry Cu-Mo system. 
Furthermore, the most important advantage of this method is the reliable assessment of 
the anomalous areas. In other words, the anomalous areas were discriminated in terms of 
their probability values. The regions with high probability values were reliable and 
appropriate to locate the drilling points for a detailed exploration. It not only decreases 
the risk, cost, and time of exploration but also increases the drilling point reliability and 
precision of reserve estimation after drilling. In this research work, the results of 
analysis of 607 lithogeochemical samples for the element Cu were used. The SGS 
method was performed on the transformed data and 50 realizations were obtained. In the 
next step, the back-transformed realizations were utilized to obtain an E-type map, 
which was the average of 50 realizations. Moreover, the results of the GS method 
showed that the Cu threshold value was 228 ppm in the area. Therefore, using the E-type 
map, areas with values greater than 228 ppm were introduced as the anomalous areas. 
Finally, the probability map of the exceeding threshold values was acquired, and the 
anomalous districts located in the southern part of the studied area were considered as 
more reliable regions for future detailed exploration and drilling. 

1. Introduction 
The purpose of geochemical exploration is to 
discover and evaluate the anomalous populations 
of ore elements [1]. In mineral resource 
categorization, mine planning, and mineral 
exploration, identification of a geochemical 
background and its distinction from the 
geochemical anomalies are very important to 
recognize, delineate, and model the mineral zones 
[2]. Separating a geochemical background from 
the anomalous areas and then identifying the 

mineralized areas is the key to geochemical data 
processing and to recognize the threshold [3, 4]. 
There are various techniques available such as 
mean+ 2SDEV to estimate the threshold,, which 
are still applied approximately 50 years after its 
beginning [5], and fence, median+2MAD, Gap 
Statistics (GS), and other spatial methods 
including the fractal and multi-fractal analysis 
techniques. Many authors have used the 
mentioned techniques in their research works  
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[6-20]. In addition, there are some multivariate 
analysis methods involving factor analysis, cluster 
analysis, principal component analysis, and so on, 
which are used to identify the anomalous areas 
that have been applied by a lot of researchers  
[21-30]. In order to forecast the spatial attributes 
and model the uncertainty of predictions in 
locations that are un-sampled, the geostatistical 
techniques have been increasingly applied as 
powerful tools [2]. These methods have recently 
been applied in geochemical studies by many 
researchers [31-35]. 
An important geostatistical interpolation 
technique is called kriging, which is a robust 
estimator and visualizer, but its smoothing effect, 
particularly for the data that is skewed, is its major 
disadvantage [2]. In order to overcome the 
smoothing effect of the kriging estimator, the 
conditional stochastic simulation has been 
designed [36]. On the other hand, if the 
distribution of dataset is non-Gaussian and kriging 
is used, spatial heterogeneity that is the attribute 
of a lot of such datasets is not capable of being 
reproduced. To the contrary, there is Gaussian 
simulation as an alternative method, which 
provides more accurate results [2]. When the 
distributions of continuous variables transform to 
Gaussian or multi-Gaussian, they will be 
simulated by the Gaussian simulation methods [2, 
37]. In mining, Gaussian simulations are most 
general. Although there are various Gaussian 
simulations that are used as well as others, 
Sequential Gaussian Simulation (SGS) is the most 
commonly used method [38]. SGS was first 
commenced by Isaaks (1990), and was based upon 
the multi-Gaussian RF model assumptions [38]. 
This method has been applied by many 
researchers in mining industries [2, 36, 39]. 
In this work, a combination of the GS and SGS 
methods was used to separate and delineate the 
anomalies from the background districts. 
Moreover, this method was utilized to assess the 
reliability of the anomalous regions, which is the 
most important ability of this technique. In other 
words, the probability values, which are the base 
of the discriminating regions, were calculated in 
the anomalous areas. In a detailed exploration, 
regions with high probability values are reliable 
and applicable to locate the drilling points. This 
makes the precision of reserve estimation to 
increase and the cost and time to decrease in a 
drilling project. 
The utilized data was obtained from the 
lithogeochemical samples in the Hararan area, 
which appeared to possess the potential for  

Cu-Mo porphyry mineralization. The deposit was 
located in the northern latitudes 56˚, 40′, 49″ to 
56˚, 42′, 40″ and the eastern longitudes 29˚, 27′, 
20″ to 29˚, 29′, 46″ in the Baft geological sheet 
(1:100,000 series) in SE Iran [40]. The samples 
were systematically collected according to a 
regular grid pattern. The sampling density was 
48.56 samples/Km2 that corresponded to 1:5000 
lithogeochemical surveys. 607 rock samples were 
analyzed by Amdel laboratory for 45 elements. 
However, only the results for the element Cu were 
used in this work. The map of the studied area and 
the location of the sampling points are shown in 
Figure 1(a). In this research work, the 
geostatistical studies were applied using the 
SGeMs, WinGslib, Golden Surfer, and GS+ 
softwares. 

2. Geological setting 
The most ancient rock units cropped out 
extensively in most parts of the studied area 
belong to the Eocene period. These units 
including the andesite and andesite porphyry and 
andesite volcanic breccias diorite to granodiorite 
rocks placed in the north, SE, and south parts of 
the studied area, respectively. Moreover, the 
tonalite and granodiorite rocks belong to the 
Eocene period placed in the central, west, and NW 
parts of the area. As well, dacite dykes with NE to 
SW trend are dispersed in most parts of the area. 
In addition to the felsic to intermediate rocks 
mentioned earlier, the other outcrops with 
Quaternary period mainly consist of colluviums 
with andesite volcanic, colluvium with 
agglomerate component, and quartz stockworks 
[41] (Figure 1(b)). 

3. Methodology 
3.1. Sequential gaussian simulation 
Sequential simulation is a stochastic modeling 
algorithm obtaining multiple realizations based on 
the same input data. This data could be either 
categorical or continuous [42, 43]. Regarding the 
kind of data, Sequential Gaussian Simulation 
(SGS), Direct Sequential Simulation (DSS) or 
Sequential Indicator Simulation (SIS) are utilized 
[44].The mainly straightforward algorithm to 
produce realizations of a multivariate Gaussian 
field is given by the sequential theory [45, 46]. 
SGS requires standard Gaussian data with unit 
variance and zero mean, so for SGS, the data is 
transformed to Gaussian through a quantile 
transformation [47]. Each variable is simulated 
sequentially in accordance with its normal 
conditional cumulative distribution function 
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(CCDF) via a simple kriging estimation method. 
The conditioning data comprising all the formerly 
simulated values and all the original data exists 

within a neighborhood of the position being 
simulated [45, 46, 48]. Performance of the SGS 
method consists of the following steps [38]. 

 

 
a) 

 
b) 

Figure 1. (a) Location of the Hararan area and its sampling point: left picture shows the geographical position of 
important copper porphyry deposits and Cu porphyry mineralization of Hararan in the Urumieh-Dokhtar 

magmatic arc. Location of the studied area is defined by a triangle shape. Right picture depicts the 
lithogeochemical sampling points in the Hararan area. (b) Geological map of the Hararan area (1:5000): most 

rock units cropped out extensively in most parts of the area belong to the Eocene age. 
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1. Complete a whole exploratory data analysis 
of the original data comprising the domain 
definition and variography. 

2. After identifying the domains, examine 
whether the data is required to be de-trended, i.e. 
whether the simulation should be applied to the 
residuals. 

3. Obtaining the matching Gaussian 
distribution, carry out the normal score 
transformation to the original data. 

4. Acquire the variogram models with a 
Gaussian distribution for the variable that is 
transformed. 

5. Draw a chance path through each domain to 
be simulated. To avoid artifacts, the route for the 
simulation is randomly delineated. 

6. For each node to be simulated, estimate the 
conditional distribution via simple kriging in the 
Gaussian space. The variance of conditional 
distribution is called the simple kriging variance 
(σsk (u)), and its mean is named the estimated 
simple kriging value (Y*(u)). The Gaussian mean 
of distribution is zero while simulation is applied 
to residuals later than de-trending. 

7. Obtaining a simulated value for each node, 
Ys (u), draw from the conditional distribution at 
random. 

8. Add the simulated value (Ys (u)) as the 
conditioning data for the nodes that are simulated 
later. This is essential to guarantee the variogram 
reproduction. 

9. Loop the process until all domains and all 
nodes have been simulated. 

10. Ending the simulation, check that 
histogram (univariate distribution) of values that 
is simulated is Gaussian; also verify the variogram 
model of simulation the same as the original 
model variogram. 

11. Back-transform the normalized simulated 
values into the original variable space. 

12. Add back the trend if the simulation was 
performed on residuals. 

13. Check that the original distribution and the 
variogram of the original values are the same as 
the histogram for the back-transformed data and 
the variogram that is obtained from the simulated 
values, respectively. 
It should be regarded although there are statistical 
fluctuations in simulation while data distribution 
is transformed to Gaussian and vice versa; they 
should be unbiased and logical in the variance and 
mean [49]. 
The following controls should be carried out after 
having all nodes simulated. Reproduction of [49]: 

(1) The actual summary statistics; 

(2) The data values at data positions; 
(3) The enter covariance model; 
(4) The actual histogram. 

3.2. Gap statistics 
The gap statistics (GS) method is applied while 
there is a more delicate gap in the data. In this 
method, the data distribution should be Gaussian; 
thus in the first step, the data must be converted so 
that they can conform the normal form as well as 
possible. The second step is the standardization of 
data so that they have a mean with zero value and 
a variance equal to one; the goal of 
standardization is to remove the effects of scales. 
The standardized data is called (Z). The third step 
is to sort the transformed data in an ascending or 
descending form; the next steps include the 
following [50, 51]: 
The mean of two standardized values that were 
placed sequentially was obtained. These values 
were called (mi). 
Obtain the absolute distinction between the 
resulting succeeding values in the ordered array, 
which may be named the standardized gaps. 
The greatest standardization gaps will tend to take 
place next to tails of distribution, and 
approximately never take place next to the mean. 
Nevertheless, the geochemical threshold values 
can take place anywhere through the variety of 
values; this trend should be removed. This is 
applied by multiplying the gap standardized by 
the supposed frequency at the center of gap as 
specified from an appropriate normal curve. 
Therefore, the calculated values are called the 
adjusted gaps (Gi). 
 The greatest value is selected among the 
calculated Gi. Then mi corresponding to Gi is 
introduced as the gap statistics value. Finally, the 
threshold is acquired using Equation 4, in which 
the calculation stages are shown by the following 
equations: 

1( )[ ] i i iG F m Z Z  1,  2,  3 ...i  (1) 
21

2( ) 0.3989



m

F m e  (2) 

1

2
][  

 i i
i

Z Zm  (3) 

     Threshold gap statistics standard deviation mean  (4) 

 
4. Results and discussion 
4.1. Descriptive statistics 
Before calculating the primary statistical 
parameters, preprocessing of the geochemical data 
including replacement of the censored and outlier 
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data was performed. The histogram and 
descriptive statistics of raw copper concentrations 
from 607 samples are presented in Figure 2 and 
Table 1, respectively. The values representing the 
mean, standard deviation, and skewness were 
equal to 118.9 ppm, 243.35 ppm, and 5.82 ppm, 
respectively. As illustrated in the histogram and 
skewness coefficient, the copper distribution is 
highly far from normal and positively skewed. In 
order to perform the SGS and GS methods, the 
data should be transformed by a suitable 
transformation function to follow a Gaussian 
distribution. Note that due to the influence of 
skewness, a method like ordinary kriging can 
produce poor results. 
Since the input data for the SGS and GS methods 
have to be a standard Gaussian distribution, first, 

the copper data was transformed by utilizing a log 
transformation function. Then the logarithmic data 
was standardized using the Z score method; the 
mean distribution was subtracted from each 
observation and divided by the standard deviation 
of the distribution. The statistical parameters of 
the transformed data (i.e. the variance value close 
to 1 and mean of about 0) control the accuracy of 
the transformation. The histogram of the new 
variable with Gaussian distribution and its 
statistical parameters are shown in Figure 3 and 
Table 1, respectively. Regarding the statistical 
values such as variance (equal to 1), mean (equal 
to 0), and skewness (equal to 0), the correctness of 
transformation was confirmed. 

 
Table 1. Descriptive statistical parameters of element Cu in the Hararan area. 

 Mean (ppm) Median (ppm) Std. Deviation (ppm) Variance (ppm)2 Skewness 
Cu 118. 9 62 243.35 59220.68 5.82 

Transformed data 0 0 1 1 0 
 

 
Figure 2. Histogram of raw copper element in the 

Hararan area. 

 
Figure 3. Histogram of transformed copper element 

in the Hararan area. 
4.2. GS on simulated data 

In order to compute the threshold of the Cu data in 
the Hararan area, the GS method was used. Based 
on the principles of GS mentioned in Section 3.2, 
a programming code was used. Consequently, the 
threshold value of the Cu data was obtained to be 
228 ppm in the studied area. 

4.3. Simulation of copper concentration based 
on SGS 
4.3.1. Spatial analysis 
In order to explain the spatial structure and control 
the anisotropy of the transformed data, the  
omni-directional and several directional  
semi-variograms (for directions N-S, N45˚E, E-
W, and N45˚W) were computed with 22.5 degree 
tolerance, and were modeled. Then the theoretical 
models of spatial variability were fitted to the 
experimental semi-variograms. 
The spatial model of variability for the 
transformed Cu data depicted two components of 
continuity: a spherical structure with geometry 
anisotropy and a nugget effect. Interestingly, the 
region had a maximum range (600 m) in the 
azimuth 90˚ that could verify the main trend of 
Hararan mineralization as being in the W-E 
orientation with an anisotropy ratio of 1.5. 
Figure 4 displays the semi-variograms in two 
directions on the basis of the transformed data 
with the spherical model that is fitted to the 
experimental variogram, while Table 2 depicts the 
parameters of the theoretical model fitted to the 
semi-variograms. As it can be seen, a high content 
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of the nugget effect demonstrates the high 
variability of the regional variable (Cu) even at 
short ranges, and the variograms show periodic 
variations (hole effect), especially in the N-S 
direction (AZ = 0), representing periodic grade 
fluctuation or vein type mineralization. 

4.3.2. Geostatistical simulation 
SGS was implemented by the SGSSIM algorithm 
in the SGeMs software, and a regular 2-D grid 
with the 64 × 62 m blocks were produced within 
the estimation space. For each block, fifty 
conditional simulations were produced by 
utilizing the semi-variogram model parameters of 
the transformed copper data and the ordinary 
kriging estimator. The representation of two 
realizations, which were selected randomly, and 
an E-type map, which was obtained from 
averaging 50 realizations, are displayed in 

Figures. 5(a-c). As mentioned, the final results are 
presented in an E-type map. Therefore, in order to 
compare the SGS results with the kriging method, 
the ordinary kriging map of data was obtained and 
displayed in Figure 5(d). Unlike the kriging 
technique, the SGS technique can simulate the 
data for each block in whatever number the user 
needs. This property is the main benefit of the 
SGS technique in comparison with the kriging 
interpolation technique because it provides the 
user with the capability of having wider 
possibility models of related distribution in an ore 
body. Therefore, as it can be seen in Figures 5(c) 
and 5(d), there is a much lower smoothing effect 
in the spatial distribution of the E-type map in 
comparison with the kriging map. 
 

 
Table 2. Variogram model parameters of transformed Cu data in the Hararan area. 

Variable C0 Sill Range (m) Maximum Continuity Direction Anisotropy Ratio 
Transformed data 0.6 1 600 W-E 1.5 

Anisotropy Ratio: major axis/minor axis; Direction: major axis orientation for the ellipse of the spherical structure; Range: 
spherical structure major range (m); Sill: (C+C0) for spherical structure; C0: nugget effect. 
 

 
a) 

 
b) 

Figure 4. (a) Sample semi-variogram of transformed Cu data for the directions N-S (a) and E-W (b). The black 
line corresponds to the theoretical model fitted to the experimental semi-variograms. 
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a) 

 

 
b) 

 

 
c) 

 

 
d) 

Figure 5. Representations of two randomly chosen realizations (a, b), E-type map (c), and kriging map (d) of 
spatial distribution of Cu element in the Hararan area through applying SGS (the results obtained are on the 

basis of the normal score transformed). 
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4.3.3. Validation of simulation results 
The simulation results are considered to be 
acceptable while their validation was done. 
Validation of the output of a sequential 
geostatistical simulation (realizations) was carried 
out in two steps. The first step was applied by 
comparing the experimental semi-variogram 
model of the transformed Cu data to the  
semi-variograms of a set of realizations. However, 
some differences between the sample model and 
the variation realizations named fluctuations are 
reasonable, which may have special causes such 
as: (a) the parameters of the semi-variogram 
model, (b) the algorithm that is used for the 
simulation, and (c) the number of conditioning 
data to be used for the simulation. The results of 
this comparison were depicted in Figure 6. (The 

green line and black lines are representative of the 
semi-variogram model and semi-variogram 
realizations, respectively.) 
The second step used to examine the validity of 
the simulation was comparison of the cumulative 
distribution frequencies (CDFs) of all realizations 
with the transformed Cu data (CDF). Figure 7 
shows the CDFs of some realizations and raw data 
in various colors. 
As depicted in Figures 6 and 7, not only there is a 
suitable coincidence between the semi-variograms 
obtained from the simulation and the semi-
variogram of the raw data but also there is an 
appropriate coincidence between their CDFs. 
Hence, in this work, the simulation results are 
acceptable and can be utilized for the next steps. 

 
Figure 6. Comparison of experimental variogram model reproduction acquired by realizations (black lines) with 

experimental omni-directional variogaram of original data (green line) in the Hararan area. 
 

 
Figure 7. CDFs of some realizations and primary Cu data in the Hararan area. 
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4.3.4. Display of anomalous areas 
Having produced and validated the ultimate 
simulated models (50 realizations), the E-type 
map, which is the average of realizations, was 
obtained, and selected to display the anomalous 
areas in the studied area. As mentioned earlier, the 
threshold value for the element Cu, acquired by 
the GS method, is equal to 228 ppm in the studied 
area. Therefore, Figure 8(a) displays the map of 
the anomalous areas, which exceeds the target 
value for the Cu element data produced by the  
E-type map in the Hararan area. 

4.4. Determination of reliability of anomalous 
areas 
As mentioned earlier, the SGS algorithm is able to 
create various realizations, i.e. each grid node in 
the studied area is estimated as the number of 
realizations. Therefore, this capability was utilized 
to define a criterion of reliability of anomalous 
areas of Cu mineralization. However, there are 
some degrees of uncertainty for estimation of 
anomalous regions. In order to evaluate the 
quality of estimations, a probability map of 
threshold exceeding was generated using the 
realizations. Consequently, at each grid node, a 
bulk of 50 realizations was transformed into a 
probability of exceeding the target value. Figure 

8(b) displays the probability map of exceeding the 
target value for the Cu element data in the 
Hararan area. As it can be seen in the probability 
map, the anomalous areas were discriminated on 
the basis of various probabilities shown in 
different colors. The regions that represented high 
probability values (70-100%) are reliable, and can 
be used for a detailed exploration and drilling to 
estimate more accurate reserves. This affair will 
decrease the risk, time, and cost of a detailed 
exploration. In Figure 8(b), these districts are 
depicted in red color, and are located in the 
southern part of the studied area. Moreover, due to 
the lack of drilling in the studied area, the copper 
values obtained from the mineralized points in the 
outcrop zones were utilized for validation of high 
probability areas. These points are represented in 
the probability map (Figure 8b) as black and white 
asterisks. As it can be seen in this figure, the 
validation points with high outcrop copper values 
(white asterisks) are often consistent with high 
probability points, especially in the southern part. 
It emphasizes that the outcrops and anomalous 
areas in the southern part of the district have more 
importance and priority for a detailed exploration, 
and could be explored at deeper levels by drilling 
for a probable deep and high grade mineralization. 

 

 
a) 

 
b) 

Figure 8. (a) Anomalous areas (discriminated by gap statistic method) displayed in red color, produced by 
simulation in the Hararan area. (b) Probability map of exceeding values in the Hararan area. 
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5. Conclusions 
In exploration geochemistry, recognition of the 
anomalous areas is necessary and important. In 
order to recognize them, there are various 
methods. In this work, a new technique, i.e. a 
combination of the SGS and GS methods was 
applied. Compared to various existing methods of 
identifying the anomalous areas, this method not 
only separates background from anomaly and 
represents the anomalous areas but also identifies 
the reliability of the exceeding critical values. The 
analysis of 607 lithogeochemical samples for the 
element Cu was utilized in this work. After 
transforming the data to a standard Gaussian 
distribution, 50 realizations were simulated by the 
SGS algorithm, and an E-type map that was the 
average of 50 realizations was obtained. As well, 
based upon the principles of the GS method, the 
threshold of the transformed data (228 ppm) was 
acquired. Therefore, regions with values higher 
than the threshold value were represented in an E-
type map, and introduced as the anomalous 
districts in the studied area. Consequently, a 
probability map of the anomalous areas (with 
values greater than 228 ppm) was obtained from 
50 realizations, and the anomalous districts that 
were located in the southern part of the studied 
area displayed a high probability and were 
identified as the reliable districts for a detailed 
exploration. 
Eventually, a combination of the SGS and GS 
methods is suggested as a new powerful technique 
to identify the anomalous areas and the 
assessment of their reliability, which is the most 
important advantage of it. The determination of 
reliability is important and can be used in 
decision–making procedures such as drilling 
projects in a detailed exploration to decrease the 
risk, cost, and time of exploration. 

References 
[1]. Burenkov, E.K., Mukhitdinov, G.N. and Reznikov, 
I.N. (1989). Procedure for the evaluation of 
lithogeochemical anomalies in large-scale mineral 
exploration. Journal of Geochemical Exploration.  32 
(1-3): 399-400.  

[2]. Sadeghi, B., Madani, N. and Carranza, E.J.M. 
(2015). Combination of geostatistical simulation and 
fractal modeling for mineral resource classification. 
Journal of Geochemical Exploration. 149: 59-73. 

[3]. Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q. 
and Liu, H. (2010). Delineation and explanation of 
geochemical anomalies using fractal models in the 
Heqing area, Yunnan Province, China. Journal of 
Geochemical Exploration. 105 (3): 95-105. 

[4]. Gałuszka, A. (2007). A review of geochemical 
background concepts and an example using data from 
Poland. Environmental Geology. 52 (5): 861-870. 

[5]. Reimann, C., Filzmoser, P. and Garrett, R.G. 
(2005). Background and threshold: critical comparison 
of methods of determination. Science of The Total 
Environment. 346 (1-3): 1-16. 

[6]. Afzal, P., Alhoseini, S.H., Tokhmechi, B., 
Ahangaran, D.K., Yasrebi, A.B., Madani, N. and 
Wetherelt, A. (2014). Outlining of high quality coking 
coal by concentration–volume fractal model and 
turning bands simulation in East-Parvadeh coal deposit, 
Central Iran. International Journal of Coal Geology. 
127: 88-99. 

[7]. Afzal, P., Harati, H., Fadakar Alghalandis, Y. and 
Yasrebi, A.B. (2013). Application of spectrum-area 
fractal model to identify of geochemical anomalies 
based on soil data in Kahang porphyry-type Cu deposit, 
Iran. Chemie der Erde- Geochemistry. 73 (4): 533-543. 

[8]. Asadi, H.H., Kianpouryan, S., Lu, Y.J. and 
McCuaig, T.C. (2014). Exploratory data analysis and 
C-A fractal model applied in mapping multi-element 
soil anomalies for drilling: A case study from the Sari 
Gunay epithermal gold deposit, NW Iran. Journal of 
Geochemical Exploration. 145: 233-241. 

[9]. Daya, A.A. (2015). Comparative study of C-A, C-
P, and N-S fractal methods for separating geochemical 
anomalies from background: A case study of 
Kamoshgaran region, northwest of Iran. Journal of 
Geochemical Exploration. 150: 52-63. 

[10]. Nazarpour, A., Omran, N.R., Paydar, G.R., 
Sadeghi, B., Matroud, F. and Nejad, A.M. (2015). 
Application of classical statistics, logratio 
transformation and multifractal approaches to delineate 
geochemical anomalies in the Zarshuran gold district, 
NW Iran. Chemie der Erde- Geochemistry. 75 (1): 117-
132. 

[11]. Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, 
A.B. and Saein, L.D. (2012). Application of fractal 
models to outline mineralized zones in the Zaghia iron 
ore deposit, Central Iran. Journal of Geochemical 
Exploration. 122: 9-19. 

[12]. Shuguang, Z., Kefa, Z., Yao, C., Jinlin, W. and 
Jianli, D. (2015). Exploratory data analysis and 
singularity mapping in geochemical anomaly 
identification in Karamay, Xinjiang, China. Journal of 
Geochemical Exploration. 154: 171-179. 

[13]. Xiao, F., Chen, J., Agterberg, F. and Wang, C. 
(2014). Element behavior analysis and its implications 
for geochemical anomaly identification: A case study 
for porphyry Cu-Mo deposits in Eastern Tianshan, 
China. Journal of Geochemical Exploration. 145: 1-11. 

[14]. Yuan, F., Li, X., Zhou, T., Deng, Y., Zhang, D., 
Xu, C. and Jowitt, S.M. (2015). Multifractal modelling-
based mapping and identification of geochemical 



Abbaszadeh et al./ Journal of Mining & Environment, Vol. 10, No. 1, 2019 
 

85 
 

anomalies associated with Cu and Au mineralisation in 
the NW Junggar area of northern Xinjiang Province, 
China. Journal of Geochemical Exploration. 154: 252-
264. 

[15]. Zuo, R. (2014). Identification of geochemical 
anomalies associated with mineralization in the 
Fanshan district, Fujian, China. Journal of 
Geochemical Exploration. 139: 170-176. 

[16]. Zuo, R., Xia, Q. and Wang, H. (2013). 
Compositional data analysis in the study of integrated 
geochemical anomalies associated with mineralization. 
Applied Geochemistry. 28: 202-211. 

[17]. Ghannadpour, S.S. and Hezarkhani, A. (2016). 
Introducing 3D U-statistic method for separating 
anomaly from background in exploration geochemical 
data with associated software development. Journal of 
Earth System Science. 125 (2): 387-401. 

[18]. Ghannadpour, S.S., Hezarkhani, A. and 
Sharifzadeh, M. (2017). A method for extracting 
anomaly map of Au and As using combination of U-
statistic and Euclidean distance methods in Susanvar 
district, Iran. Journal of Central South University. 24 
(11): 2693-2704. 

[19]. Mahvash Mohammadi, N., Hezarkhani, A. and 
Shokouh Saljooghi, B. (2016). Separation of a 
geochemical anomaly from background by fractal and 
U-statistic methods, a case study: Khooni district, 
Central Iran. Chemie der Erde- Geochemistry. 76 (4): 
491-499. 

[20]. Shokouh Saljoughi, B., Hezarkhani, A. and 
Farahbakhsh, E. (2018). A comparative study of fractal 
models and U-statistic method to identify geochemical 
anomalies; case study of Avanj porphyry system, 
Central Iran. Journal of Mining and Environment. 9 
(1): 209-227. 

[21]. Granian, H., Tabatabaei, S.H., Asadi, H.H. and 
Carranza, E.J.M. (2015). Multivariate regression 
analysis of lithogeochemical data to model subsurface 
mineralization: a case study from the Sari Gunay 
epithermal gold deposit, NW Iran. Journal of 
Geochemical Exploration. 148: 249-258. 

[22]. Levitan, D.M., Zipper, C.E., Donovan, P., 
Schreiber, M.E., Seal Ii, R.R., Engle, M.A. and Aylor 
Jr, J.G. (2015). Statistical analysis of soil geochemical 
data to identify pathfinders associated with mineral 
deposits: An example from the Coles Hill uranium 
deposit, Virginia, USA. Journal of Geochemical 
Exploration. 154: 238-251. 

[23]. Lin, X., Wang, X., Zhang, B. and Yao, W. 
(2014). Multivariate analysis of regolith sediment 
geochemical data from the Jinwozi gold field, north-
western China. Journal of Geochemical Exploration. 
137: 48-54. 

[24]. Xiao, F., Chen, J., Zhang, Z., Wang, C., Wu, G. 
and Agterberg, F.P. (2012). Singularity mapping and 

spatially weighted principal component analysis to 
identify geochemical anomalies associated with Ag and 
Pb-Zn polymetallic mineralization in Northwest 
Zhejiang, China. Journal of Geochemical Exploration. 
122: 90-100. 

[25]. Yaylalı-Abanuz, G. (2013). Determination of 
anomalies associated with Sb mineralization in soil 
geochemistry: A case study in Turhal (northern 
Turkey). Journal of Geochemical Exploration. 132: 63-
74. 

[26]. Yaylalı-Abanuz, G., Tüysüz, N. and Akaryalı, E. 
(2012). Soil geochemical prospection for gold deposit 
in the Arzular area (NE Turkey). Journal of 
Geochemical Exploration. 112: 107-117. 

[27]. Aliyari, F., Afzal, P. and Abdollahi Sharif, J. 
(2017). Determination of geochemical anomalies and 
gold mineralized stages based on litho-geochemical 
data for Zarshuran Carlin-like gold deposit (NW Iran) 
utilizing multi-fractal modeling and stepwise factor 
analysis. Journal of Mining and Environment. 8 (4): 
593-610. 

[28]. Ghannadpour, S.S. and Hezarkhani, A. (2016). 
Exploration geochemistry data-application for anomaly 
separation based on discriminant function analysis in 
the Parkam porphyry system (Iran). Geosciences 
Journal. 20 (6): 837-850. 

[29]. Javadnejad, F., Shahraki, J. E., Khoubani, S., 
Kalantari, E. and Alinia, F. (2018). Multivariate 
Analysis of Stream Sediment Geochemical Data for 
Gold Exploration in Delijan, Iran. International Journal 
of Research and Engineering. 5 (3): 325-334. 

[30]. Nejadhadad, M., Taghipour, B. and Karimzadeh 
Somarin, A. (2017). The Use of Univariate and 
Multivariate Analyses in the Geochemical Exploration, 
Ravanj Lead Mine, Delijan, Iran. Minerals. 7 (11): 212. 

[31]. Costa, J. and Koppe, J. (1999). Assessing 
Uncertainty Associated with the Delineation of 
Geochemical Anomalies. Natural Resources Research. 
8 (1): 59-67. 

[32]. Jimenez-Espinosa, R., Sousa, A.J. and Chica-
Olmo, M. (1993). Identification of geochemical 
anomalies using principal component analysis and 
factorial kriging analysis. Journal of Geochemical 
Exploration. 46 (3): 245-256. 

[33]. Lark, R.M., Ander, E.L., Cave, M.R., Knights, 
K.V., Glennon, M.M. and Scanlon, R.P. (2014). 
Mapping trace element deficiency by cokriging from 
regional geochemical soil data: A case study on cobalt 
for grazing sheep in Ireland. Geoderma. 226-227: 64-
78. 

[34]. Reis, A.P., Sousa, A.J. and Cardoso Fonseca, E. 
(2003). Application of geostatistical methods in gold 
geochemical anomalies identification (Montemor-O-
Novo, Portugal). Journal of Geochemical Exploration. 
77 (1): 45-63. 



Abbaszadeh et al./ Journal of Mining & Environment, Vol. 10, No. 1, 2019 
 

86 
 

[35]. Talesh Hosseini, S., Asghari, O. and Ghavami 
Riabi, S.R. (2018). Spatial modelling of zonality 
elements based on compositional nature of 
geochemical data using geostatistical approach: a case 
study of Baghqloom area, Iran. Journal of Mining and 
Environment. 9 (1): 153-167. 

[36]. Soltani, F., Afzal, P. and Asghari, O. (2014). 
Delineation of alteration zones based on Sequential 
Gaussian Simulation and concentration–volume fractal 
modeling in the hypogene zone of Sungun copper 
deposit, NW Iran. Journal of Geochemical Exploration. 
140: 64-76. 

[37]. Emery, X. and Lantuéjoul, C. (2006). TBSIM: A 
computer program for conditional simulation of three-
dimensional Gaussian random fields via the turning 
bands method. Computers and Geosciences. 32 (10): 
1615-1628. 

[38]. Rossi, M.E. and Deutsch, C.V. (2013). Mineral 
resource estimation: Springer Science and Business 
Media. 

[39]. Albuquerque, M.T.D., Antunes, I.M.H.R., Seco, 
M.F.M., Roque, N.M. and Sanz, G. (2014). Sequential 
Gaussian Simulation of Uranium Spatial Distribution – 
A Transboundary Watershed Case Study. Procedia 
Earth and Planetary Science. 8: 2-6. 

[40]. Khakzad, A. and Jafari, H.R. (2001). mineralogy, 
paragenesis and economic geology of Cu deposits, case 
study: Hararan area, Kerman province. Paper presented 
at the 10th crystallography and mineralogy of Iran 
confrence. 

[41]. Alikhani, A. (2007). geology map of Hararn area 
scale (1:5000): National Iranian Copper Company. 

[42]. Geboy, N.J., Olea, R.A., Engle, M.A. and Martín-
Fernández, J.A. (2013). Using simulated maps to 
interpret the geochemistry, formation and quality of the 

Blue Gem coal bed, Kentucky, USA. International 
Journal of Coal Geology. 112: 26-35. 

[43]. Qu, M., Li, W. and Zhang, C. (2013). Assessing 
the risk costs in delineating soil nickel contamination 
using sequential Gaussian simulation and transfer 
functions. Ecological Informatics. 13: 99-105. 

[44]. Soltani, F., Afzal, P. and Asghari, O. (2013). 
Sequential Gaussian Simulation in the Sungun Cu 
Porphyry Deposit and Comparing the Stationary 
Reproduction with Ordinary Kriging. Universal Journal 
of Geoscience. 1 (2): 106-113. 

[45]. Manchuk, J. and Deutsch, C. (2012). 
Implementation aspects of sequential Gaussian 
simulation on irregular points. Computational 
Geosciences. 16 (3): 625-637. 

[46]. Manchuk, J.G. and Deutsch, C.V. (2012). A 
flexible sequential Gaussian simulation program: 
USGSIM. Computers and Geosciences. 41: 208-216. 

[47]. Chilès, J.P. and Delfiner, P. (2012). Geostatistics: 
Modeling Spatial Uncertainty (Second Edition ed.): 
John Wiley and Sons. 

[48]. Leuangthong, O., McLennan, J.A. and Deutsch, 
C.V. (2004). Minimum acceptance criteria for 
geostatistical realizations. Natural Resources Research. 
13 (3): 131-141. 

[49]. Zanon, S. and Leuangthong, O. (2005). 
Implementation aspects of sequential simulation 
Geostatistics Banff 2004. Springer. pp. 543-548. 

[50]. Hassanipak, A.A. and Sharafodin, M. (2011). 
Exploratory data analysis. Tehran University Press (in 
persian). Third edition. 

[51]. Miesch, A.T. (1981). Estimation of the 
geochemical threshold and its statistical significance. 
Journal of Geochemical Exploration. 16 (1): 49-76. 

 

  



 1397دوره دهم، شماره اول، سال زیست، پژوهشی معدن و محیط -و همکاران/ نشریه علمی زادهعباس
 

 

  

سازي  هاي شبیهها با استفاده از ترکیبی از روشاعتماد آنهاي ژئوشیمیایی مس و ارزیابی قابلیت تمایز آنومالی
 گوسی متوالی و آماره انفصال در منطقه حراران، کرمان، ایران

  

  1و حسین ملایمت 2، احد علیخانی*1، فرهاد محمدتراب1زادهسمیه عباس

دانشکده مهندسی معدن و متالورژي، دانشگاه یزد، ایران - 1  
معادن و فلزات، ایران گذاري توسعه شرکت سرمایه - 2  

25/8/2018، پذیرش 3/5/2018ارسال   

  fmtorab@yazd.ac.ir* نویسنده مسئول مکاتبات: 

  

  چکیده:

هاي هاي آماري تک و چند متغیره براي تشخیص مناطق آنومال در دسترس قرار دارند. تکنیکهاي متنوع آماري همچون روشدر اکتشافات ژئوشیمیایی تکنیک
نماینده حداقل مقدار آنومالی در منطقه است. در این پـژوهش، ترکیبـی از    قتیحق درشوند که کار برده می معمولاً براي تخمین مقدار حد آستانه بهتک متغیره 

آنومـال در   به عنوان یک تکنیک جدید براي تخمین حد آستانه و به تصویر کشـیدن منـاطق   (GS)و آماره انفصال  (SGS)سازي گوسی متوالی  هاي شبیهروش
مولیبدن پورفیري باشد. گذشته  -رسد حاوي کانی سازي مس مرتبط با یک سیستم مسمنطقه حراران واقع در جنوب شرق ایران به کار گرفته شد که به نظر می

شوند. به شان تفکیک میبرحسب مقادیر احتمالبه عبارت دیگر، مناطق آنومال  ؛ترین مزیت این روش امکان ارزیابی قابلیت اعتماد مناطق آنومال است از این، مهم
شوند. این روش نه تنها میزان برده می کار بهاي که مناطق با احتمال بالاتر براي تعیین موقعیت نقاط حفاري براي اکتشافات تفصیلی با قابلیت اعتماد بالاتر گونه

فزایش قابلیت اعتماد نقاط حفاري و دقت بیشـتر ارزیـابی ذخیـره انجـام شـده پـس از       دهد بلکه باعث اخطرپذیري، هزینه و زمان عملیات اکتشاف را کاهش می
هـاي  بـر روي داده  SGSنمونه لیتوژئوشیمیایی براي عنصر مس مورد استفاده قرار گرفـت. روش   607شود. در این کار تحقیقی، نتیجه آنالیز عملیات حفاري می
بنابراین  ؛است ppm228 ، نشان داد که حد آستانه مس در منطقه، معادل GS. به علاوه نتایج حاصل از روش تحقق مختلف به دست آمد 50تبدیل یافته، اجرا و 

 دست بهبه عنوان مناطق آنومال معرفی شدند. در نهایت، نقشه احتمال مناطق متجاوز از آستانه  ppm 228نواحی با مقادیر بالاتر از  E-typeکارگیري نقشه با به
ام ومال که بیشتر در بخش جنوبی منطقه مورد مطالعه متمرکز هستند، به عنوان مناطق با قابلیت اعتماد بالاتر در نظر گرفتـه شـده و بـراي انج ـ   آمد و مناطق آن

  اکتشافات تفصیلی و حفاري پیشنهاد شدند.

  سازي گوسی متوالی، حد آستانه، آماره انفصال، قابلیت اعتماد، منطقه حراران. شبیهکلمات کلیدي: 

 

 

 

 


