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Abstract 
In this work, we tried to automatically optimize the cost of the concrete segmental lining 
used as a support system in the case study of Mashhad Urban Railway Line 2 located in 
NE Iran. Two meta-heuristic optimization methods including particle swarm 
optimization (PSO) and imperialist competitive algorithm (ICA) were presented. The 
penalty function was used for unfeasible solutions, and the segmental lining structure 
was defined by nine design variables: the geometrical parameters of the lining cross-
section, the reinforced feature parameters, and the dowel feature parameters used among 
the joints to connect the segment pieces. Furthermore, the design constrains were 
implemented in accordance with the American Concrete Institute code (ACI318M-08) 
and guidelines of lining design proposed by the International Tunnel Association (ITA). 
The objective function consisted of the total cost of structure preparation and 
implementation. Consequently, the optimum design of the system was analyzed using 
the PSO and ICA algorithms. The results obtained showed that the objective function of 
the support system by the PSO and ICA algorithms reduced 12.6% and 14% per meter, 
respectively. 

1. Introduction 
Reinforced concrete structures have a 
considerable compressive strength compared to 
most materials. In addition to the high 
compressive strength, the reinforced concrete 
structures are durable and versatile with a 
relatively low maintenance cost compared with 
the steel structures [1]. Material cost is an 
important issue in the design and construction of 
reinforced concrete structures. The main 
influential factor involved in this process is the 
amount of the required concrete and steel 
reinforcement. Therefore, it is advantageous to 
make the concrete structures lighter, while 
maintaining the service ability and strength 
requirements. Some other significant factors 
involved in this regard are labour and formwork 
costs. Engineers must be able to design cost-
efficient structures without compromising the 
function or violating the structural constraints. 

The long-established approach to design 
reinforced concrete members does not fully 
optimize the use of materials. Most designs are 
based upon the prior experience of the engineers 
who select the cross-section dimensions and 
material grades correspondingly, thereby creating 
fixed rules-of-thumb for preliminary designs. 
Typically, this process is time-consuming and 
requires ample human efforts and material usage. 
The structural optimization procedures by 
artificial intelligence are an evident alternative to 
the experimental designs.  
The design optimization of reinforced concrete 
(RC) structures is challenging due to the 
complexity associated with the reinforcement 
design. Moreover, in the case of concrete 
structures, three cost components must be 
considered due to concrete, steel, and formwork, 
and any variation in the quantity of each 
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mentioned item affects the overall cost of the 
structure to a great extent. As such, selecting 
appropriate values for the design variables and 
quantity of reinforcement to minimize the total 
cost component is a major issue.  
In a study, Kaveh and Sabzi (2011) have assessed 
the optimum design of reinforced concrete frames 
using two methods: heuristic big bang-big crunch 
(HBB-BC), which is based upon the big bang-big 
crunch (BB-BC) and a harmony search (HS) 
scheme to manage the variable constraint, and the 
HPSACO algorithm, which is a combination of 
particle swarm with passive congregation 
(PSOPC), ant colony optimization (ACO), and HS 
algorithms [2]. Akin and Saka (2010) have 
investigated the optimum detailed design of 
reinforced concrete continuous beams using the 
HS algorithm [3]. In another research work, Camp 
et al. (2003) have evaluated the flexural design of 
reinforced concrete frames using a genetic 
algorithm [4]. Carbonell and Gonzalez-Vidosa 
(2011) have studied the optimum design of 
reinforced concrete road vaults using the multi-
start global best descent local search (MGB), 
meta-simulated annealing (SA), and meta-
threshold acceptance (TA) [5]. Kaveh and Ilchi 
Ghazaan (2017) have used a harmony search-
based mechanism to handle the side constraints. 
They combined that with the particle swarm 
optimization and an aging leader and challengers 
(ALC-PSO), resulting in a new algorithm called 
HALC-PSO. These two algorithms have been 
employed to optimize different types of skeletal 
structures with continuous and discrete variables 
[6]. Kashania et al. have utilized ICA for locating 
the critical failure surface and computing the 
factor of safety (FOS) in a slope stability analysis 
based on the limit equilibrium approach. They 
demonstrated that the proposed techniques could 

provide reliable, accurate, and efficient solutions 
for locating the critical failure surface and relating 
FOS [7]. Koopialipoor et al. [8] have performed a 
work to evaluate/predict flyrock induced by 
blasting through applying three hybrid intelligent 
systems, namely imperialist competitive algorithm 
(ICA)-artificial neural network (ANN), genetic 
algorithm (GA)-ANN, and particle swarm 
optimization (PSO)-ANN.  
In the current paper, the simulation algorithm of 
segmental lining structure was established based 
on the analytical solution proposed by Lee et al. 
(2001). Additionally, the model was combined 
with the two methods of particle swarm 
optimization (PSO) and imperialist competitive 
algorithm (ICA) in order to determine the 
optimum design variables of segmental lining in 
terms of constrains. In the simulation model, we 
also calculated the internal forces including the 
bending moment, axial forces, and shear forces, 
and in the optimization model, the optimum 
combination of design variables in terms of 
constrains were studied using PSO and ICA.  
Mashhad Urban Railway Line 2 is the second 
metro line used to facilitate passenger transport in 
the city of Mashhad (Iran). The total length of the 
metro line 2 is approximately 14.3 km. The 
segment of the tunnel that runs from station C2 
through L2 and further to the tunnel boring 
machine (TBM) exit shaft is to be constructed by 
mechanized tunnelling methods using TBM [9]. 
The current work aimed to consider the 
assessment of the imposed load and optimization 
of the segmental lining for the critical cross-
section of the tunnel. Tables 1 and 2 present the 
geo-mechanical properties of the soil and 
mechanical properties of the segmental lining, 
respectively.   

 
Table 1. Geo-mechanical properties of soil [9]. 

Layer Number Layer Substance Density Cohesion Friction angle Elastic modulus 
ࡺ࢑) ⁄૜࢓ ࢍ࢑) ( ⁄૛࢓ࢉ ) (Degree) (ࢍ࢑ ⁄૛࢓ࢉ ) 

I SC-SM 18 0 35 800 
II CL-ML 16.5 0.8 23 150 
III SC-SM 19 0 36 1000 
IV CL-ML 17 0.95 25 180 
V SC-SM 17.5 0 35 1000 

 
Table 2. Properties of segmental lining [10]. 

Density (Kg/m3) Internal radius (m) Thickness (m) Elastic modulus (GPa) 
2400 4.2 0.35 35 
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2. Definition of optimization problem 
2.1. Problem definition 
Optimization is performed in order to attain 
the most efficient adequate segmental lining 
pattern with a minimum cost. The term 
“adequate” implies that the lining must have 
sufficient strength and deformation 
characteristics as well as the ability to meet 
the constraints in the formulation of the 
optimization function. Another objective of 
the optimization process is to minimize the 
costs of segmental lining, while guaranteeing 
the strength and serviceability of the 
ACI318-08 code and guidelines of the 
segmental lining design (ITA-2000) [11]. 
Therefore, the mathematical formulation of 
the objective function and optimum 
constraints are stated as follow: 

,ଵܺ)ܨ ܺଶ, ܺଷ, …… . , ܺ௡)
= ஼ܥ ∗ ( ௜ܸ௧ − ௜ܸ௦) + ௦ܥ
∗ ( ௜ܸ௦ ∗ (௜௦ߛ + ௙ܥ ∗ ௙௕ܣ
+ ௕ܥ ∗ ( ௜ܸ௕ ∗  (௜௕ߛ

(1) 

ܥ	݋ݐ	ݐ݆ܾܿ݁ݑݏ < ܥ		݁ݎℎ݁ݓ	0 =෍ܿ௜

௡

௜ୀଵ

 (2) 

Note that x1, x2,..., xn are the design 
variables for the analysis described in 
Section 2.2. Other necessary data for the 
calculation of the RC segmental lining are 
the parameters of the problem, as described 
in Section 2.3. In Eq. (1), the objective 
function F is the cost function, where vit, vis, 
and vib represent the measurements of 
construction units (i.e. concrete, steel, and 
formwork), and CC, CS, and Cb denote the 
unit prices, which are defined in accordance 
with the price list of road issued by the 
Ministry of Transportation (Iran). In Eq. (2), 
the constraints ci show all the ultimate limit 
states (ULS) that the structure must comply 
with as well as the geometrical and 
constructability constraints of the problem. 

2.2. Design variables 
In the RC segmental lining, the design 
variables describe the cross-sectional 
characteristics and reinforcement 
arrangements including the bar 
reinforcement, stirupt reinforcement, and 
bolt reinforcement parameters. In the current 
paper, we considered nine design variables, 

as follow: 
1. Lining width; 
2. Lining thickness; 
3. Number of continuous lower reinforcements;  
4. Diameters of continuous lower 

reinforcements;  
5. Number of continuous upper reinforcements;  
6. Diameters of continuous upper 

reinforcements;  
7. Diameters of stirrups;  
8. Diameters of bolts;  
9. Number of the bolts used to connect the 

lining pieces. 
Figure 1 shows the transverse and bar 
reinforcement variables considered in the 
present work. 
An algorithm was used to analyze the design 
variable limits and the corresponding step sizes 
required to maintain these variables within the 
proper range. After setting the limits and 
corresponding step sizes, the number of possible 
values used by a design parameter could be 
calculated based on which, the number of possible 
segmental lining designs was determined. The 
variable limits and step sizes for the segmental 
linings are presented in Table 3. 
With a design space, the number of the possible 
segmental lining pattern designs was calculated to 
be 1020*106 (Table 3). 

2.3. Design parameters with a fixed value 
The design parameters of the analysis include all 
the magnitudes that are considered as the fixed 
data, rather than a part of the optimization 
process. In addition to the geometrical values, 
these parameters encompass the properties of the 
surrounding rocks, construction circumstance, and 
the applied TBM. In this regard, the main 
geometrical parameters are the radius of 
segmental lining centroid and the number and 
position of the lining joints. Stiffness modulus of 
the surrounding medium is the main considered 
parameter of the ground. Moreover, the main 
considered parameter regarding the construction 
circumstance is the grouting pressure, which must 
be selected cautiously. As for the applied TBM, 
the main parameter is the cutter head trust, which 
should be prepared by shield jacks. A summary of 
the design parameters in the RC segmental linings 
is presented in Table 4.  
Since the tunnel elevation is above the 
underground water table, the water pressure was 
not considered as the acting parameter in 
segmental lining and is not given in Table 4. 
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Figure 1. Schematic view of design variables. 

 
Table 3. Design variables of segmental lining. 

Variable Unit Lower limits Step size Upper limits Possible value 
Lining width mm 800 10 1800 101 

Lining Thickness mm 200 10 450 26 
Number of continuous lower reinforcements - 2 1 16 15 

Diameters of continuous lower reinforcements mm 12 2 22 6 
Number of continuous upper reinforcements - 2 1 16 15 

Diameters of continuous upper reinforcements mm 12 2 22 6 
Diameters of stirrups mm 10 2 12 2 

Diameters of bolts mm 18 2 32 8 
Number of bolts mm 2 1 4 3 

 
Table 4. Basic parameters of geometry and actions in segmental lining. 

Parameters Values 
Radius of segmental lining centroid (m) 9.10 

Overburden (m) 10.4 
Ring configuration 7+1 (7+key) 

Soil unit weight (ܰܭ ݉ଷ⁄ ) 17.5 
Jack plate diameters (mm) 230 

Soil internal friction angle (degree) 28 
Soil cohesion (݃ܭ ܿ݉ଶ⁄ ) 0.95 

Coefficient of lateral earth pressure 0.8 
Thrust force of shield jacks (ܰܯ ݉⁄ ) 5.6 

Number of shield jacks 15 
Nominal strength of concrete (MPa) 50 

Allowable compressive strength of concrete (MPa) 15 
Allowable compressive strength of reinforcement (MPa) 350 

Allowable compressive strength of bolts (MPa) 1050 
Safety factor 2 

Eccentricity between center of working thrust force by one jack and segmental lining centroid (mm) 10 
Space between two adjacent jacks (cm) 10 

Backfill grouting pressure (KPa) 100 
Number of lining joints 8 
Joint flexural stiffness 0.01 

Surface load magnitude (ܰܭ ݉ଶ⁄ ) 20 
Allowable deformation in dynamic analysis 0.002 

 
2.4. Cost function 
The cost function defined in Eq. 8 represents the 
objective function, where 
F(x) is the objective function, which denotes the 
total cost of the segmental lining (Iranian Rial);  

Cc is the cost of concrete (Rial/ m3);  
Cs is the cost of steel (Rial/kg);  
Cf is the cost of formwork (Rial/m2);  
Cb is the cost of bolt (Rial/kg); 
Vit is the total volume of member (m3);  
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Vis is the volume of steel reinforcement in a 
member (m3);  
Vib is the volume of steel reinforcement (bolt) in a 
member (m3);  
Af is the total formwork area (m2);  
  ;௜௦ is the weight per unit volume of steel (kg/m3)ߛ
௜௕ߛ 	is the weight per unit volume of bolt (kg/m3);  
C shows the penalty (constraint violation) 
function, which is the summation of all the 
constraint violations, and 
Ci is the violation function of a specific constraint.  
Cost function encompasses the price of materials 
(concrete, steel, and formwork) and all the entries 
required to evaluate the full cost of the segmental 
lining per linear meter (Rial/m). To assess the 
fitness of a trial design and determine its distance 
from the global optimum, the eventual constraint 
violation was computed using a penalty function, 
which consisted of a series of geometric 
constraints corresponding to the dimensions and 
shape of the cross-sections. In addition, the 
function had a series of constraints correlating to 
the construction and internal forces of the 
structure. As such, the penalty would be 
proportional to the constraint violations, and the 
most efficient design with the minimum cost had 
no penalty. The penalized objective function 
measures the applicability of a solution, as follows: 

(3) φ(ݔ) = .(ݔ)ܨ [1 +  ఌ[ܥܭ

where ߮(ݔ)  denotes the penalized objective 
function (Rial), K is the penalty function constant, 
and ϵ shows the penalty function exponent. In the 
current work, the K and ϵ values were estimated to 
be 1.0 and 2.0, respectively, as recommended by 
Kaveh & Sabzi (2011). 
The constraint violation was as follows: 

ܥ (4) = 	෍ܿ௜

௡

௜ୀଵ

 

where ci represents the violation function of a 
specific constraint. In total, 18 constraints were 
set to obtain an adequate segmental lining in the 
present work. The theoretical background and 
calculation of the penalty function for these 
constraints are discussed in the following section.  

2.5. Design constraints and provisions 
The following constraints were considered for 
designing a segmental lining in accordance with 
the American Concrete Institute code (ACI318M-
08) and guidelines of segmental lining design 
(ITA, 2000): 
1) Axial Strength: The axial 

strength	of	the	lining	(߶ ௡ܲ) should be larger than 
twice the value of the applied factor load	( ௨ܲ). 
Therefore, the axial strength of constraint c1 is 
calculated as follows: 

ଵܥ (5) =	
௨ܲ − ߶ ௡ܲ

߶ ௡ܲ
	≥ 0 

2) Moment: A column should have a sufficient 
bending strength (߶ܯ௡)  in order to resist the 
applied bending moment (ܯ௨ ). Therefore, the 
flexural strength of constraint c2 was calculated as 
follows: 

ଶܥ (6) =	
௨ܯ − ௡ܯ߶

௡ܯ߶
	≥ 0 

3) Shear Strength: A column should have a 
sufficient shear strength	(߶ ௡ܸ) in order to resist 
the applied shear force ( ௨ܸ). Therefore, the shear 
strength of constraint c3 was calculated as follows: 

ଷܥ (7) =	
௨ܸ −߶ ௡ܸ

߶ ௡ܸ
	≥ 0 

4) Minimum Reinforcement Ratio: The 
reinforcement ratio (ߩ௧) cannot be less than the 
minimum reinforcement ratio (ߩ௠௜௡), as proposed 
by ACI. Therefore, the minimum reinforcement of 
constraint c4 was determined as follows: 

ସܥ (8) =	

ݔܽܯ

⎩
⎪
⎨

⎪
⎧ 1.4

௬݂

0.25ඥ ௖݂
௬݂ ⎭

⎪
⎬

⎪
⎫

௧ߩ	−

ݔܽܯ

⎩
⎪
⎨

⎪
⎧ 1.4

௬݂

0.25ඥ ௖݂

௬݂ ⎭
⎪
⎬

⎪
⎫

≥ 0 

5) Maximum Reinforcement Ratio: The 
reinforcement ratio (ߩ ) cannot exceed 8%. 
Therefore, c5 could be calculated as follows: 

ହܥ (9) =	
ߩ	 − 0.08
0.08

≥ 0 

6) Minimum Bar Spacing: An adequate bar 
spacing in segmental lining must be provided to 
allow the smooth flow of concrete and avoid 
segregation. Therefore, the minimum spacing of 
constraint c6 was determined as follows: 

଺ܥ (10) =	
ݔܽܯ ൜ ݀௕

25	݉݉ൠ − ݏ	

ݔܽܯ ൜ ݀௕
25	݉݉ൠ

≥ 0 

7) Minimum Reinforcement Ductility: Failure 
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of the flexural members with ductility requires the 
strain in the extreme steel layer (ߝ௧) to exceed 
0.004:  

଻ܥ (11) =	
	0.004 − ௧ߝ 	
0.004

≥ 0 

8) Minimum Bolt Reinforcement Ratio: The 
reinforcement ratio of the bolt (ߩ௕) cannot be 
considered less than 1% due to the two pieces of 
segmental lining. Moreover, the shear stresses 
caused by internal forces should have resistance 
against the shear and tension stresses caused by 
the jack thrusts. As such, the minimum 
reinforcement of constraint c8 was determined as 
follows: 

଼ܥ (12) =	
	0.01 − ௕ߩ 	

0.01
≥ 0 

9) Maximum Bolt Reinforcement Ratio: The 
reinforcement ratio ( ௕ߩ ) cannot exceed 8%. 
Therefore, c9 could be calculated as follows:  

ଽܥ (13) =	
௕ߩ − 0.08
0.08

≥ 0 

10) Joints: According to the guidelines of the 
International Tunnel Association for segmental 
lining design, the moment-resisting of the joints 
should not be less than 60% of the segmental 
lining resisting moment. Therefore, this constrain 
was considered as follows: 

ଵ଴ܥ (14) =	
(0.6 ∗ (௟௜௡௜௡௚ܯ	 − ௝௢௜௡௧ܯ

௝௢௜௡௧ܯ
≥ 0 

where	ܯ௟௜௡௜௡௚  represents the moment-resisting 
of the segmental lining and ܯ௝௢௜௡௧is the moment-
resisting of the lining joints. 
11) Shear Resistance of Bolts against Imposed 
Shear Forces: In the segmental lining joints, the 

bolts must have resistance against the shear forces 
imposed by medium external pressures, TBM jack 
thrust pressures, and backfill grouting pressure. In 
the following section, the violation functions 
regarding these imposed shear stresses have been 
expressed in Eqs. (15 and 16), respectively. 

ଵଵܥ (15) =	
௨ܸ − ௕ܸ௢௟௧

௕ܸ௢௟௧
	 ≥ 0 

 
ଵଶܥ (16) =	

௝ܸ௔௖௞௦ − ௕ܸ௢௟௧

௕ܸ௢௟௧
	≥ 0 

 
ଵଷܥ (17) =	

௚ܸ௥௢௨௧௜௡௚ − ௕ܸ௢௟௧

௕ܸ௢௟௧
	 ≥ 0 

12) Segmental Strength against Jack Pressures: 
According to the guidelines of ACI (2000), the 
segmental body must have enough strength to 
resist the pressure caused by jack thrusts in order 
to avoid crack appearance and growth. Therefore, 
the amount of imposed pressure by the jacks 
( ௝௔௖௞௦ߪ ) should not exceed the nominal 
compressive strength of concrete ( ௖௔ߪ ) [11]. 
Mathematically, this constrain is expressed as 
follows: 

ଵସܥ (18) =	
௝௔௖௞௦ߪ − ௖௔ߪ

௖௔ߪ
	≥ 0 

13) Resistance against Earthquake: In this 
constrain, the effects of design earthquake for the 
dynamic stability of the segmental lining have 
been discussed. In order to analyze dynamic 
stability, the soil-structure interaction approach 
was utilized using the analytical equation under 
no-slip and full-slip conditions, as proposed by 
Wang and Penzien in 1993 and 2000, respectively 
[12, 13]. The analytical equations and their 
parameters are presented in Tables 5 and 6, 
respectively. 

Table 5. Equations used for dynamic analysis [10, 11]. 
Method No-slip Full-slip 

Wang 
(1993) 

௠ܶ௔௫ = ଶܭ±
௠௔௫ߛݎ௠ܧ
2(1 + (௠ߥ

 ௠ܶ௔௫ = ±
1
ଵܭ6

௠௔௫ߛݎ௠ܧ
(1 + (௠ߥ

 

௠௔௫ܯ = ±
1
ଵܭ6

௠௔௫ߛଶݎ௠ܧ
(1 + (௠ߥ

௠௔௫ܯ  = ±
1
ଵܭ6

௠௔௫ߛଶݎ௠ܧ
(1 + (௠ߥ

 

ܥ =
1)ݎ௠ܧ − (௟ଶߥ

1)ݐ௟ܧ + ௠)(1ߥ − (௠ߥ2
ܨ  =

1
6
ଷ(1ݎ௠ܧ − (௟ଶߥ
1)ܫ௟ܧ + (௠ߥ

 

Penzien (2000) 

௠ܸ௔௫ = ±
௠௔௫ߛ௡ܴܫ௟ܧ12
݀ଶ(1 − (௟ଶߥ

 ௠ܸ௔௫ = ±
௠௔௫ߛ௡ܴܫ௟ܧ12
݀ଶ(1 − (௟ଶߥ

 

ߙ =
3)ܫ௟ܧ24 − (௠ߥ4
݀ଷܩ௠(1 − (௟ଶߥ

௡ߙ  =
5)ܫ௟ܧ12 − (௠ߥ6
݀ଷܩ௠(1 − (௟ଶߥ

 

ܴ = ±
4(1 − (௠ߥ
ߙ + 1  ܴ௡ =

4(1 − (௠ߥ
௡ߙ + 1  
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Table 6. Definition of parameters used in dynamic analysis [12, 13]. 
Description Parameter Description Parameter 

Maximum axial force ௠ܶ௔௫ Compressibility ratio C 
Maximum bending moment ܯ௠௔௫ Modulus of lining elasticity  ܧ௟ 

Maximum shear force ௠ܸ௔௫  Poisson’s lining ratio ߥ௟ 
Maximum free-field shear strain ߛ௠௔௫ Lining flexibility ratio  F 

Poisson’s medium ratio ߥ௠ Lining thickness  t 
Modulus of medium elasticity  ܧ௠ Tunnel lining moment of inertia (per unit width) I 

Lining deflections Δd Tunnel lining radius and diameters  r	, d 
 
In this constrain, all the possible Wang and 
Penzien equations were calculated for each single-
pattern design proposed by the algorithms, while 
the maximum shear force ( ௦ܸ௘௜௦௠௜௖), axial force 
( ௦ܲ௘௜௦௠௜௖), and bending moment (ܯ௦௘௜௦௠௜௖) were 
considered as the imposed load of earthquake. 
Additionally, the stability of the segmental body 
and bolts was determined since this constrain had 
been prepared using four independent constrains. 
The mathematical expression in this regard is as 
follows: 

ଵହܥ (19) =	
௦ܸ௘௜௦௠௜௖ − ߶ ௡ܸ

߶ ௡ܸ
	 ≥ 0 

ଵ଺ܥ (20) =	
௦ܲ௘௜௦௠௜௖ − ߶ ௡ܲ

߶ ௡ܲ
	≥ 0 

ଵ଻ܥ (21) =	
௦௘௜௦௠௜௖ܯ ௡ܯ߶−

௡ܯ߶
	≥ 0 

ଵ଼ܥ (22) =	
௦ܸ௘௜௦௠௜௖ − ௕ܸ௢௟௧

௕ܸ௢௟௧
	≥ 0 

In the present work, the strength interaction 
diagrams were used to prepare the strength 
parameters. Segmental linings must have 
resistance against axial forces, bending moments, 
and shear forces, simultaneously. The 
interdependency of the axial forces and bending 
moment result in an interaction diagram to 
provide a combination of the axial forces and the 
bending moment, ultimately demonstrating the 
failure of reinforced concrete sections. This 
interaction diagram is depicted in Figure 2 with 
five characteristic points and their strain 
distributions [14]. 

 

 
Figure 2. Nominal interaction diagram [14]. 

 
1) Point A-Pure Axial Load: In Figure 2, point A 
and its corresponding strain distribution represent 
the uniform axial compression without a moment, 
which is considered as the largest nominal axial 
load for the column to support.  
2) Point B-Zero Tension, Onset of Cracking: 

The strain distribution at B in Figure 2 
corresponds to the axial load and moment at the 
onset of concrete crash as the concrete strains on 
the opposite face of the column reach zero. Case 
B demonstrates the onset of cracking in the least 
compressed side of the column. Since the tensile 
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stresses are neglected in strength calculations, the 
failure loads below point B in the interaction 
diagram represent the cases where the section is 
partially cracked.  
3) Region A-C-Compression Controlled 
Failures: Initial failure could be observed in the 
column with the axial load Pu and moment Mu, 
which falls on the upper branch of the interaction 
diagram between points A and C. This was 
attributed to the crushing of the compression face 
before the yielding of the reinforcement’s extreme 
tensile layer; therefore, they are known as the 
compression controlled columns.  
4) Point C-Balanced Failure, Compression 
Controlled Limit Strain: In Figure 2, point C 
corresponds to a strain distribution with a 
maximum compressive strain of 0.003 on one face 
of the section and tensile strain, which is equal to 
the yield strain in the farthest layer of the 
reinforcement from the column’s compression 
face.  
5) Point D-Tensile Controlled Limit: In Figure 
2, point D corresponds to a strain distribution with 
the compressive strain of 0.003 on the top face as 
well as the tensile strain of 0.005 in the extreme 
layer of the tension steel. Failure of this column 
would be ductile along with the crashing of the 
steel strains, which is approximately 2.5 times the 
yield strain for 420 MPa reinforcement. 
Therefore, the strain of 0.005 was selected to be 
significantly higher compared to the yielding 
strain in order to ensure ductile failure.  
6) Region C-D-Transition Region: Flexural 
members and columns with loads and moments 
that would plot between the points C and D in 
Figure 2 are known as transition failures since the 
magnitude of the curvatures at the critical section 
is in a transition between the ultimate curvature 
corresponding to the steel strains of 0.002 and 
0.005. This is reflected in the transition of the 
strength reduction factor from 0.65 to 0.9 in the 
rectangular tied columns. 

3. Applied metaheuristic algorithms 
A metaheuristic technique seeks near-optimal 
solutions at a reasonable computational cost 
without the ability to guarantee feasibility or 
optimality. Typically, metaheuristic methods are 
far less time-consuming compared to the exact 
techniques. Heuristics could be constructive 
(building a solution piece by piece) or 
improvement-based (altering a solution to find a 
better one) [14].  
The metaheuristic optimization methods used in 
the present work include the variants of the 

descent local search with the most efficient global 
strategy, particle swarm optimization, and 
imperialist competitive algorithm optimization 
process, which starts with one initial solution and 
is improved iteratively. In this regard, a specific 
mechanism is required for moving from one 
solution to a closer one within the neighborhood 
as well as a certain acceptance criterion for the 
new solutions. The neighborhood of a solution is 
defined as the set of solutions that can be obtained 
through slight modifications of the current 
solution. 

3.1. Particle swarm optimization (PSO) 
The PSO algorithms are nature-inspired 
population-based metaheuristic algorithms that are 
originally accredited to Kennedy and Eberhart, 
(1995) [15]. PSO algorithms mimic the social 
behaviors in bird flocking and fish schooling. 
Starting from a randomly distributed set of 
particles (i.e. potential solutions), PSO algorithms 
are applied in order to improve the solutions based 
on a quality measure (i.e. fitness function). The 
improvisation is preformed through moving the 
particles around the search space using a set of 
simple mathematical expressions, which model 
interparticle communications. In their simplest 
and most basic form, these mathematical 
expressions suggest the movement of each particle 
toward its best experienced position as well as the 
best position of the swarm along with random 
perturbations [16].  
There is an abundance of different variants using 
different updating rules. The earliest attempt to 
apply this concept in simulating social behaviors 
was made by Kennedy and Eberhart, which 
resulted in a set of agents randomly spread over a 
torus pixel grid by adopting two main strategies: 
nearest neighbor velocity matching and craziness. 
At each iteration, a loop was determined in the 
program for each agent, with the other agent 
considered as its nearest neighbor. Following that, 
the velocities of the two agents X and Y were 
assigned to the agent in focus. As predicted, it was 
observed that the sole use of the strategy would 
quickly settle down the swarm in a unanimous, 
unchanging direction. In order to avoid this, we 
introduced a stochastic variable, known as 
craziness. At each iteration, some changes were 
applied to the velocities of the randomly selected 
X and Y agents, which resulted in sufficient 
variations into the system in order to render the 
simulation more “life-like” in appearance [15, 17].  
Considering the mentioned observations, it could 
be inferred that one of the most essential features 
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of PSO to indicate its seemingly unalterable, non-
deterministic nature is the incorporation of 
randomness. As a further step in this regard, 
Kennedy and Eberhart replaced the notion of 
“roost” (a place recognized by birds) in the theory 
proposed by Heppner and Grenander with “food” 
(for which the birds must search). As a result, they 
converted the social simulation algorithm into an 
optimization paradigm. The idea was to let the 
agents (birds) find an unknown favorable place in 
the search space (food source) through 
capitalizing on each other’s knowledge. Each 
agent was able to remember the best position for 
itself and the entire swarm. The extremum of the 
mathematical function to be optimized could be 
considered as the food source. The rules for 
calculating the next position of a particle were 
introduced as follows [16, 17]: 

 
(23) 

௜,௝௞ାଵݒ = ௜,௝௞ݒ + ܿଵݎଵ൫ݐݏܾ݁ݔ௜,௝௞ − ௜,௝௞ݔ ൯
+ ܿଶݎଶ൫ݐݏܾ݁݃ݔ௝௞ − ௜,௝௞ݔ ൯ 

௜,௝௞ାଵݔ (24) = ௜,௝௞ݔ +  ௜,௝௞ାଵݒ

where ݔ௜,௝௞  and ݒ௜,௝௞  are the jth components of the 
ith particle’s position and velocity vector, 
respectively, in the kth iteration, ݎଵ and ݎଶ 
represent two random numbers uniformly 
distributed in the range (1,0), ݐݏܾ݁ݔ௜ and xgbest 
denote the best positions experienced so far by the 
ith particle and whole swarm, respectively,	and	ܿଵ 
and ܿଶ are two parameters representing the 
particle’s confidence in itself (cognition) and the 
swarm (social behavior), respectively [17].  
A schematic movement of a particle is illustrated 
in Figure 3. 
 In PSO, the potential results, titled as particles, 
hover through the problem space by following the 
present optimal particles. The advantages of PSO 
are that PSO is easy to implement and there are 
few parameters to set [18].  
 

 
Figure 3. Schematic movement of a particle in 

PSO [17]. 
 
3.2. Imperialist Competitive Algorithm (ICA) 

ICA has been proposed by Atashpaz-Gargari and 
Lucas (2007) as a new global heuristic search 
method, which applies the imperialism and 
imperialistic competition processes as a source of 
inspiration [18]. The beginning of ICA is with a 
production of randomly initial population called 
countries. The pseudo-code of ICA steps is 
demonstrated as follows:  

 Choose some random points on the 
functions and start the empires. 

 Precede the colonies toward their 
relevant imperialist. 

 If there is a colony in an empire with 
lower cost than that of imperialist, swap the 
position of that colony and the imperialist. 

 Calculate the total cost of all empires 
(related to the power of both imperialist and its 
colonies). 

 Select the weakest colony (colonies) 
from the weakest empire and give it (them) to the 
empire with the most likelihood to possess it 
(imperialistic competition). 

 Omit the powerless empires. 
 If there is just one empire, stop, else go 

to step 2. 
ICA starts with an initial population; some of the 
best individuals of the population (i.e. countries) 
are selected as the imperialist states, while the 
remaining account for the colonies of these 
imperialists. Due to the powers of the imperialists 
that are reversely proportional to their cost, the 
colonies of initial population are divided among 
them. Having distributed the colonies among 
imperialists and establishing the initial empires, 
these colonies commence proceeding toward their 
relevant imperialist country. Figure 4 depicts the 
movement of a colony toward the imperialist in 
ICA. In this movement, h and x are arbitrary 
numbers, which are generated uniformly as x ~ 
U(0,b*d) and h ~U(-ߛ,ߛ).  Moreover, d is the 
distance between the colony and imperialist, and b 
must be greater than one. As a result of this 
constraint, the colonies get closer to the 
imperialist state from both sides [18, 19].   
Additionally, ߛ is a parameter that adopts the 
deviation from the main direction. Although b and 
 are random numbers, their fitting values are ߛ
estimated at approximately 2 and ߨ 4⁄  (radian), 
respectively, most of the time. More explicitly, a 
percentage of the mean power of each 
imperialist’s colonies is added to power of 
imperialist to form the total power of an empire. 
Any empire that does not improve in imperialist 
competition will be diminished. As a result, the 



Mousavi et al./ Journal of Mining & Environment, Vol. 10, No. 1, 2019 

104 
 

imperialistic competition will grow the power of 
great empires and weaken the frail ones. Hence, 
weak empires will collapse finally. The movement 
of colonies toward their related imperialists along 
with competition among empires and also collapse 
mechanism will bring out the countries to 
converge to a state in which there exists just one 
empire in the world, and all the rests are its 
colonies. In the final stage, the colonies have the 
same position and power as the imperialist [19]. 
 

 
Figure 4. Movement of colonies toward their 

imperialist [19]. 
 
4. Application of Algorithms 
In general, preparation of an optimal design model 
of segmental lining requires a combination of 
simulation and optimization algorithms in an 
iterative process. Segmental lining simulation 
model analyzes the behavior of structures based 
on the design variables, which must be defined at 
the beginning of the optimization problems. In 
this analytical process, the accuracy of design 
constrains is evaluated as well.  
In the present work, if all the segmental lining 
design constrains (see Section 3.4) were met, the 
resulting segmental lining plan would be 
considered to be a practical design pattern. On the 
other hand, if the total segmental lining design 
constrains were not satisfied, the resulting pattern 
would be classified as an impractical solution. 
With regard to this principle, there are numerous 
possible combinations for the segmental lining 
design variables as well as infinitive practical 
patterns so that their assessment seems 
unnecessary. Therefore, an optimization model 
could be used to reduce the number of design 
analyses efficiently. In the proposed combination 
model, the PSO and ICA algorithms were used as 
the optimization models; however, the mentioned 
procedure could not be imported to complex 
optimization problems since these models were 
normally non-linear and applied for large-scale 
problems. In such cases, simulation models would 
be combined for the optimization model through 
an iterative procedure to be regarded as an 
independent model.  
In the current work, certain properties of the 

design problem justified the use of a hybrid model 
in the metaheuristic and simulation algorithms. 
Furthermore, the obstacles associated with the 
system behavior and segmental lining design 
pattern must guarantee the acceptable safety factor 
of the system behavior against the imposed 
external forces. These non-linear system obstacles 
are completely non-convex in the decision space 
of the problems; as such, there are some different 
local optimal spots that cancel the compressive 
definition of mathematical optimization models 
based on gradient solutions. Therefore, the 
proposed hybrid optimization-simulation method 
could present the design variables near the 
optimum value by maintaining accuracy and 
precision. 
If the gradient-based optimization methods are 
used for these problems, there will be some 
approximation in the simulation of the segmental 
lining, the results of which might decrease the 
precision of the segmental lining simulation, 
thereby significantly affecting the final result of 
the optimization problem. In the current research 
work, strength parameters for the interaction 
curve of the reinforced concrete lining were 
calculated, as presented in the following section. 
Afterwards, the imposed bending moment, axial 
forces, and shear forces were referred to the 
optimization model. 
In the following section, by adding the violation 
to the problem cost function, the fitness degree of 
the unacceptable design patterns decreased. 
Moreover, the next position and other basic 
parameters of the algorithms (e.g. position and 
velocity of particles in PSO) were calculated 
again based on the research methodology in 
various types of meta-heuristic optimization 
algorithms. Combination process of the 
optimization and simulation models is illustrated 
in Figure 5. 
In the current research work, we developed two 
programs by the MATLAB software for the 
optimal design of the segmental lining in 
Mashhad subway tunnels. In these programs, the 
first code was related to the simulation of the 
segmental lining behavior, and the output of the 
program determined the imposed internal forces. 
The code was written based on the analytical 
solutions proposed by Lee et al. (2001) [20]. The 
second code represented the optimization model 
of the PSO and ICA algorithms, in which the 
input data was received from the simulation 
algorithm and the optimal segmental lining design 
parameters were considered as the output data. 
After combining these models, the optimal design 
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variables of the segmental lining would be 
presented as the output data of these algorithms. 
Table 7 shows the results of the comparison 
between the design parameters and costs of 

designing and implementing RC segmental lining 
for Mashhad subway tunnels by PSO and ICA, as 
well as the conventional design method used by 
the consulting company. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig 5. Combination process of simulation and optimization algorithms. 
 

Table 7. Comparison of simulation-optimization hybrid model and conventional method. 
 

Design variables 
 

 
PSO 

 
ICA Conventional method of segmental lining 

design 

Lining length (mm) 1220 1130 1500 
Lining thickness (mm) 310 290 350 

Number of continuous lower reinforcements 8 7 12 
Diameters of continuous lower reinforcements 

(mm) 18 18 14 

Number of continuous upper reinforcements 
(mm) 8 7 12 

Diameters of continuous upper reinforcements 
(mm) 16 16 14 

Diameters of stirrups mm) 10 10 12 
Diameters of bolts (mm) 20 18 16 

Number of bolts 3 3 2 
(*) Cost of segmental lining (Rial/m)*107 4.7375 4.6827 5.4241 

(*) 34000 IRR. = 1 USD 
 
 

Simulation of segmental lining 

Analytical solution of segmental 
lining (Force method)  

Satisfying the 
constrains 

Calculation the objective 
function and violation 

Is the 
convergence 

provition 

Optimization model 

Produce new population as an 
iterative procedure to reduce 

the objective function 
 

Produce new 
parameters of 

particles 

Stop 

Yes 

No 
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According to the results of the hybrid model, 
meta-heuristic algorithms have an acceptable 
ability to optimize the RC segmental lining as a 
structural tunnel support in mechanized tunneling. 
Using the PSO and ICA algorithms as an 
optimization model, the costs of designing and 
implementing the RC segmental lining for 
Mashhad subway project were estimated at 
4.7375*107 and 4.6827*107 Rial/m in 2015, 
respectively (the US dollar exchange rate to Rial 
is about 34000 Rial), which are 12.6% and 14% 
lower than the cost of the segmental lining 
designed based on the conventional method by the 
consulting company. 
Convergence history of the most effectual test 
program for the PSO and ICA algorithms is 
shown in Figure 6. As it can be seen, a typical 
convergence history, which starts with a very 
steep slope and turns into a steady state afterwards, 
is characterized by a low slope since the program 
reaches near-optimal costs by making further 
improvement harder. 

As depicted in Figure 6, convergence of the 
objective function in the ICA algorithm occurs at 
the same time as the PSO algorithm, with the 
minimum objective function of ICA estimated at 
1.4% lower than the objective function obtained 
by the PSO. Therefore, it could be inferred that in 
these types of problems, the ICA algorithm is 
more applicable compared to the PSO algorithm, 
while the following analyses are established by 
the ICA algorithm as an optimization model. 
Mean, minimum, and cost results for 10 runs with 
initial random solutions are presented in Table 8. 
According to the information in this table, the 
results had a slight difference with the mean 
values of all the analyses; therefore, it could be 
concluded that the method is almost insensitive to 
the selection of the initial solution. As the 
mechanism of the optimization program method 
has been clarified, sensitive analysis of different 
geo-mechanical properties as well as the medium 
and different mechanical properties of the force 
methods equations were conducted.  

 

 
Figure 6. Convergence history of segmental lining optimization. 

 
Table 8. Cost of segmental lining pattern using PSO and ICA algorithms in 10-time program run 

Run PSO cost (Rial/m)*107 ICA cost (Rial/m)*107 
R01 4.759 4.70312 
R02 4.793 4.712 
R03 4.739 4.6846 
R04 4.811 4.723 
R05 4.7375 4.6827 
R06 4.8522 4.6882 
R07 4.8066 4.744 
R08 4.739 4.829 
R09 4.831 4.7235 
R10 4.762 4.8130 

Minimum 4.7375 4.6827 
Mean 4.7826 4.7303 
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Figure 7 shows the effect of soil resistance 
coefficient (Ks) on a logarithmic scale on the 
changes of the objective function. As mentioned 
earlier, increased soil resistance coefficient could 
enhance the rock strength specification. As such, 
heightening the soil resistance coefficient is 
associated with the decreased deformation of the 
segmental lining. In addition, higher soil 
resistance coefficient is associated with the 
reduction of the bending moments, while the 
imposed soil resistance pressure rises, thereby 
increasing the axial forces imposed on the 
segmental lining. As it can be seen in Figure 7, a 
higher soil resistance coefficient (Ks) diminishes 
the cost of segmental lining since the reduction of 
the Ks coefficient leads to heightened imposed 
bending moment. Therefore, to satisfy constrained 
optimization problems against these internal 
forces, the load capacity of the segmental lining 
must increase so that the cost of segmental lining 
implementation per meter would rise. 
Effect of joint flexural stiffness on the changes in 
the cost function of the problem is depicted in 
Figure 8. As mentioned earlier, joint flexural 

stiffness and bending moment decrease in a 
parallel fashion. Furthermore, reduced joint 
flexural stiffness is associated with the higher 
deformation of the segments and imposed soil 
resistance pressure, thereby increasing the 
imposed internal axial forces.  
As it can be seen in this figure, an increase in the 
joint flexural stiffness causes the lining behavior 
to act as a continuous structure, which, in turn, 
raises the imposed loading, leading to the 
subsequent increase in the costs of lining design 
and implementation. 
Effect of number of lining joints on the cost 
function is depicted in Figure 9. As it can be seen 
in this figure, an increased number of lining joints 
is associated with lower costs of segmental lining 
design and implementation since the number of 
joints increases, the imposed bending moment 
reduces, and the imposed axial forces rise. 
However, as the rate of reduction in the bending 
moment is higher than the rate of increase in the 
axial forces, the bending moment has a more 
sensible role in the decline of the cost function.   

 

Figure 7. Effect of soil resistance coefficient on objective function. 
 

Figure 8. Effect of joint flexural stiffness on objective function. 
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Figure 9. Effect of number of lining joints on objective function changes.  
 
Effect of joint arrangement patterns on the 
objective function is demonstrated in Figure 10. 
As observed earlier, from a structural viewpoint, 
behavior of the segmental lining could be 
considered optimal if the first joint is located near 
the crown of the tunnel since the bending moment 
decreases under such circumstances. Accordingly, 
the imposed internal forces and cost of segmental 
lining implementation would decline in a parallel 
fashion.  
Figure 11 shows the effect of joint arrangement 
patterns in terms of the diameters of the tunnel on 
the changes in segmental lining thickness. 
As shown in this figure, increased diameters of 
the tunnel are associated with higher segmental 
lining thickness, while the amount of lining 
thickness in the joint arrangement pattern number 
one is lower compared to the other arrangements 
since the imposed internal forces in this pattern 
are lower than the other patterns.  
Figures 12 and 13 demonstrate the correlations 
between the effects of joint arrangement patterns 
in terms of the diameter of the tunnel on the 
changes in the resulting length and area of steel 
reinforcement in the segmental lining, 
respectively. 
As depicted in these figures, length of the segment 
and area of steel reinforcements (bars, stirrups, 

and bolts) at the optimal design pattern in the joint 
arrangement pattern number one change steeply 
compared to the joint arrangement pattern number 
two. However, the magnitude of augmentation is 
more sensible in the segmental lining length 
compared to the steel reinforcement. 
Figure 14 shows the effect of excavation diameter 
on the optimal cost of segmental lining, which has 
been analyzed at the critical section. As depicted 
in the figure, augmented excavation diameter is 
associated with an increase in the cost of optimal 
design. However, the magnitude of these costs 
may rise along with a higher rate in larger 
diameters due to the increased dead zone load. 
Furthermore, larger excavation diameters are 
associated with increased depth of excavation and 
optimal cost compared to smaller excavation 
diameters.  
Figure 15 demonstrates the effect of soil cohesion 
on the cost of the optimal segmental lining design. 
As it can be seen in this figure, the cost of optimal 
design and soil cohesion decline in a parallel 
fashion. 
As shown in this figure, the rate of reduction due 
to shear resistance increases at higher excavation 
depths. Figure 16 illustrates the effect of the 
internal friction angle of the medium on the cost 
of optimal segmental lining pattern. 

Figure 10. Effect of joint arrangement patterns on objective function. 
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Figure 11. Effect of joint arrangement patterns on segmental lining thickness. 

Figure 12. Effect of joint arrangement patterns on segmental lining length. 

Figure 13. Effect of joint arrangement patterns on area of steel reinforcement. 
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Figure 14. Effect of excavation diameters on optimal cost of segmental lining. 

 
Figure 15. Effect of soil cohesion on optimal cost of segmental lining.  

 
Figure 16. Effect of internal friction angle on optimal cost of segmental lining.  
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As depicted in this figure, an increased internal 
friction angle is associated with a reduction in the 
optimal cost due to higher shear resistance, by 
which the magnitude of reduction is more 
significant at higher excavation depths. Similar to 
soil cohesion, high rate of internal forces in the 
upper amount of the friction angle is less 
significant compared to lower values so that an 
increased rate of the optimal cost would have a 
diminishing effect on this condition. 

5. Conclusions 
The main objective of the current work was to 
develop a hybrid simulation-optimization model 
that is capable of obtaining the optimal design for 
reinforced concrete segmental linings in terms of 
cross-section dimensions and reinforcement 
details. Optimization was carried out using the 
ICA and PSO algorithms, while meeting the 
strength and serviceability constraints, as 
proposed by the American Concrete Institute and 
the guidelines for designing shield tunnel linings, 
presented by the International Tunneling 
Association (ITA) (Requirements for Structural 
Concrete and Commentary). The model was 
applied to the segment of Mashhad urban tunnel 
project as a case study to obtain its optimal design 
pattern, while drawing the possible conclusions 
and recommendations. Conclusions of this work 
could be summarized as what follows. The result 
of hybrid model revealed that the meta-heuristic 
algorithms had an acceptable ability to optimize 
the RC segmental lining as a structural tunnel 
support in Mechanized Tunneling. When the PSO 
and ICA algorithms were used as the optimization 
model, design and implementation costs of the RC 
segmental lining in Mashhad urban tunnel project 
were estimated at 4.735*107 and 4.6827*107 
Rial/m in 2015, respectively, which were 12.6% 
and 14% lower than the cost of segmental lining 
(5.4243*107 Rial/m), as offered by the consulting 
company. With ICA as the optimization algorithm, 
the objective function was converged in the lower 
amount of iteration compared to the PSO 
algorithm. Moreover, the cost of optimal design 
using ICA was determined to be 1.5% lower than 
the PSO algorithm, which indicated that these 
algorithms would be efficient in these types of 
problems considering their powerful search ability 
in both the exploration and exploitation aspects. 
The results obtained showed that an increase in 
the number of joints augmented the flexibility of 
the segmental lining, thereby declining the 
bending moments. Consequently, an increased 
number of joint numbers was associated with the 

decreased cost of optimal design. 
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  چکیده:

سگمنت پوشش بتنی سیستم نگهداري در مطالعه موردي قطار شهري خط دو مشهد ارائه شـده اسـت. در    خودکار هزینهسازي  در این پژوهش روشی براي بهینه
هـاي غیرقابـل    حـل  استفاده شده است. تابع پنالتی براي راه (ICA)و الگوریتم رقابت استعماري  (PSO)سازي ازدحام ذرات  این راستا دو روش فرا ابتکاري بهینه

تعداد  -3ضخامت سگمنت،  -2عرض سگمنت،  -1متغیر طراحی پوشش بتنی شامل:  9 باشد. هاي قیود اعمال شده می ه و مجموع تمام جریمهقبول استفاده شد
قطر بولت اتصـال   -8قطر خاموت مورد استفاده،  -7قطر آرماتورهاي فشاري،  -6قطر آرماتورهاي کششی،  -5تعداد آرماتورهاي فشاري،  -4آرماتورهاي کششی، 

 (ACI318M-08)بتن آمریکا  نامه نییآها در نظر گرفته شده است. همچنین، قیود طراحی طبق هاي اتصال دهنده سگمنتتعداد بولت -9ها و دهنده سگمنت
طعات پوشـش بتنـی   و اجراي اجزاء ق نیتأمي شده است. تابع هدف شامل هزینه کل ساز ادهیپی تونل الملل نیبو راهنماي طراحی پوشش بتنی پیشنهادي انجمن 

 6/12به ترتیب  ICAو  PSOآمده از الگوریتم  دست به. هزینه اجراي طرح بهینه اند شدهتحلیل  ICAو  PSOهاي . طراحی بهینه با استفاده از الگوریتمشود یم
  درصد کمتر از هزینه طرح اجرا شده در پروژه است. 14و 

  ی مکانیزه.زن تونلسازي ازدحام ذرات، الگوریتم رقابت استعماري،  سازي فرا ابتکاري، قطعات پوشش بتنی، بهینه بهینه کلمات کلیدي:

 

 

 

 


