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Abstract 
Horizontal directional drilling is usually used in drilling engineering. In a variety of 
conditions, it is necessary to predict the torque required for performing the drilling 
operation. Nevertheless, there is presently not a convenient method available to 
accomplish this task. In order to overcome this difficulty, the current work aims at 
predicting the required rotational torque (RT) to operate horizontal directional drilling 
on the 7 effective parameters including the length of drill string in the borehole (L), axial 
force on the cutter/bit (P), total angular change of the borehole (KL), radius for the ith 
reaming operation (Di), rotational speed (rotation per minute) of the bit (N), mud flow 
rate (W), and mud viscosity (V). In this paper, we propose an approach based on the 
model selection criteria such as various statistical performance indices mean squared 
error (MSE), variance account for (VAF), root mean squared error (RMSE), squared 
correlation coefficient (R2), and mean absolute percentage error (MAPE) to select the 
most appropriate model among a set of 20 candidate ones to estimate RT, given a set of 
observed data. Once the most appropriate model is selected, a Bayesian framework is 
employed to develop the predictive distributions of RT, and to update them with new 
project-specific data that significantly reduce the associated predictive uncertainty. 
Overall, the results obtained indicate that the proposed RT model possesses a 
satisfactory predictive performance. 

1. Introduction 
The horizontal directional drilling has been used 
extensively throughout the world to construct 
underground pipeline systems [1-3]. Most 
pipelines including those employing horizontal 
directional drilling are installed in soil formations, 
for which engineers have accumulated a great 
amount of experience [4-8]. Reasonable 
mechanical models and corresponding equations 
have, therefore, been developed to calculate 
various construction-related parameters. However, 
there is a lack of such a methodology in more 
difficult situations. A major concern of many 
horizontal directional drilling projects is what 
amount of rotational torque (RT) should be used. 
However, relatively little quick research works 
have been done in this area. In this field, Lan et al. 
[4] have used the regression model for prediction 
of RT. Fattahi [9] has utilized rock engineering 

systems for estimation of the required RT to 
operate horizontal directional drilling. Akin and 
Karpuz [10] have utilized artificial neural 
networks for estimating the drilling parameters for 
diamond bit drilling operations. Adel and Zayed 
[11] have used the adaptive neuro-fuzzy inference 
system model to design the horizontal directional 
drilling productivity prediction model for 
underground pipe installations in clay soil. Feili 
Monfared et al. [12] have presented an adaptive 
neuro-fuzzy inference system model for an 
advanced prediction of bottom hole circulating 
pressure in under-balanced drilling operations. 
In this paper, a new methodology based on the 
Bayesian model (using free software package 
WinBUGS [13-15]) is proposed aimed at 
identifying the most appropriate models to predict 
RT among several selected candidate models. The 
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Bayesian inference is a method of statistical 
inference that uses the well-known Bayes' 
theorem to update the probability for a hypothesis 
as more information becomes available. This 
Bayesian updating is particularly important to 
predict the parameters of a model, and has been 
used for a wide variety of rock engineering 
projects [16-18]. In order to validate the 
performance of the proposed models, it is applied 
to field data given in the open source literatures. 

2. Methodology 
2.1. Bayesian statistics 
Suppose that the observed data and unknown 
parameters are y and θ, respectively. The Bayesian 
approach to statistics is to treat all unknown 
quantities as random variables, and assign a prior 
probability distribution to each. By also 
specifying a joint probability distribution for the 
data, i.e. a likelihood, then obtain a full 
probability model for all the observable and 
unobservable quantities. In order to make 
inferences about θ used, the Bayes’ theorem was 
used to construct the posterior distribution, i.e. the 
joint distribution of all the model parameters 
conditional on the observed data: 

( ) ( ) ( ),p y p y p    (1) 

where throughout, p(.|.) and p(.) denote the 
conditional and marginal probability distributions, 
respectively. Thus the posterior is proportional to 
the likelihood p(y|θ) multiplied by the prior p(θ). 
An excellent introduction to the Bayesian data 
analysis has been given by Gelman et al. [19]. 

2.2. Markov chain Monte Carlo 
In many realistic modeling situations, the joint 
posterior distribution p(θ|y) is high-dimensional, 
complex, and unavailable in a closed form. The 
Bayesian inference entails the evaluation of 
various summaries of the posterior. This requires 
integration, with respect to θ, of functions 
involving p(θ|y); it is these integrals that, until 
recently, have rendered the Bayesian analysis 
problematic. The Markov chain Monte Carlo 
(MCMC) methods alleviate these difficulties. 
Integrals are evaluated via Monte Carlo 
simulation from a Markov chain that is 
constructed so that its stationary distribution is the 
posterior [13]. Various algorithms exist for 
carrying out the required simulations including 
Gibbs sampling [13, 20, 21], which is particularly 
useful for exploiting conditional independence 
assumptions. The algorithm proceeds by iterative 
simulation from the full conditional distributions 

of each unknown stochastic quantity given the 
current values of all other terms (nodes) in the 
model. A detailed description of MCMC can be 
found in [22]. 

2.3. WinBUGS software 
The BUGS (Bayesian inference using Gibbs 
sampling) language and program was developed 
by epidemiologists in Cambridge, UK, in the 
1990s [23]. In the later years, a Windows version 
called WinBUGS was developed [24]. Despite 
imperfections, WinBUGS is a ground-breaking 
program; for the first time, it has made a really 
flexible and powerful Bayesian statistical 
modeling available to a large range of users, 
especially for users who lack the experience in 
statistics and computing to fit such fully custom 
models by maximizing their likelihood in a 
frequentist mode of inference. WinBUGS lets one 
specify almost arbitrarily complex statistical 
models using a fairly simple model definition 
language that describes the stochastic and 
deterministic “local” relationships among all the 
observable and unobservable quantities in a fully 
specified statistical model. These statistical 
models contain prior distributions for all top-level 
quantities, i.e. quantities that do not depend on 
other ones. From this, WinBUGS determines the 
so-called full conditional distributions and then 
constructs a Gibbs or other MCMC sampler and 
uses it to produce the desired number of random 
samples from the joint posterior distribution. A 
detailed description of WinBUGS can be found in 
[24, 25]. In this work, the WinBUGS software 
that uses the Bayesian analysis of complex 
statistical models and MCMC techniques was 
employed to compute the posterior predictive 
distributions. The mean values for the model 
parameters obtained via MCMC simulations are 
considered for the model prediction performance 
evaluation. 

3. Database information 
The required RT at the drill rig depends on 
various factors including geological conditions, 
drilling method, reamer cutter/bit size and type, 
rotary speed, axial force on bit, drilling mud 
properties, borehole diameter, length of drill string 
in the borehole, and borehole trajectory [4, 26, 
27]. 
To establish the Bayesian method for prediction 
of RT to operate horizontal directional drilling, 
providing dataset that includes a wide geographic 
distribution is the most important requirement. To 
achieve this, the datasets given in a previous paper 
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is borrowed [4]. The data (84 datasets) has been 
collected from nine projects using horizontal 
directional drilling for the China west–east natural 
gas transmission pipeline. Information regarding 
the mechanical parameters of rock strata (mainly 
sandstone, mudstone, gravels) has also been 
collected from these projects. However, due to 

different measurements made in each project, and 
practical difficulties in attempting to collect the 
wide range of information, some data is limited. A 
detailed description of the database can be found 
in Section 3.1 from [4]. Table 1 shows the 
statistical description of the datasets used in this 
work. 

 
Table 1. Statistics description of input and output dataset. 

Parameter Symbol Min Max Average Std. Deviation 
Axial force on the cutter/bit (KN 10)  P 2 30.50 13.84 5.71 
Rotational speed of the bit (r/min) N 15 50 31.58 12.38 

Length of drill string in the borehole (m) L 116.68 586.06 322.56 129.03 
Total angular change of the borehole KL 1.09 3.54 2.42 0.5366 

Radius for the ith reaming operation (mm) Di 457.2 1117.6 760.79 185.33 
Mud flow rate (L/min) W 500 4000 2233.09 1033.04 

Mud viscosity (s) V 42 88 63.51 14.13 
Rotational torque (KN.m) RT 4 40 21.02 8.0132 

 
4. Establishing Bayesian prediction of RT 
4.1. Regression analysis and parameter 
selections 
First of all, the correlation between the dependent 
variable (RT) and the independent ones was 
explored through a quick regression analysis. 

Overall, a weak linear correlation was found 
suggesting a non-linear relationship between the 
dependent variable (RT) and the independent 
variables. The results obtained are summarized in 
Table 2. 

 
Table 2. Correlation between the model parameters (using the correlation coefficient). 

 P (KN10) N (r/min) L (m) KL Di (mm) W (L/min) V (s) RT (KN.m) 
P (KN10) 1.00 0.64 0.58 0.58 -0.3 -0.49 -0.58 0.67 
N (r/min)  1.00 0.63 0.57 0.32 -0.77 0.58 0.55 

L (m)   1.00 0.77 0.57 0.22 0.58 0.82 
KL    1.00 0.52 0.2 0.41 0.72 

Di (mm)     1.00 -0.14 0.14 0.66 
W (L/min)      1.00 0.39 0.44 

V (s)       1.00 0.35 
RT (KN.m)        1.00 

 
Next, the database containing 84 datasets were 
divided into two. The first part representing 80% 
of the total datasets (i.e. containing 67 datasets) 
was used to establish the model, while the second 
part served for the model performance evaluation. 
Based on the training database, a Bayesian 
predictive model was proposed. Firstly, a 

preliminary correlation analysis was performed to 
investigate the possible type of relationships 
between RT (dependent) and each one of the 
independent variables (P, N, L, KL, Di, W, and V) 
in order to explore the potential candidate terms in 
developing the correlation for RT. The following 
candidates are used: 

Model #1 31 2 4

5 6 7
3

1 2 1

4 2

.( . ) .( . )
.( . )

bb b b

b b b
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 

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Model #5   . . .. .exp( ( ))
.

a d e f g

c b

V P L KL DiRT a b
W N c
   

     
   

 

Model #6 3 5 6 7 82 4
1. . . . .exp( ). . aa a a aa aRT a P N W V L Kl Di  

Model #7 3 5 6 72 4
1 8. . . . . . .exp( . )a a a aa aRT a P N L KL Di W V a  

Model #8 3 5 6 7 82 4
1. . . . . . .exp( )a a a a aa aRT a P N L KL Di W V  

Model #9 3 5 6 7 82 4
1. . . . . .exp( ).a a a a aa aRT a P N L KL V Di W  

Model #10 3 5 6 7 82 4
1. . . . . .exp( ).a a a a aa aRT a P KL V Di W N L  

Model #11 3 6 7 82 4
1 5. . . .exp( . ). . . aa a aa aRT a P N L KL a Di W V  

Model #12 3 5 6 7 82 4
1. . . . . .exp( ). aa a a aa aRT a P N Di W V L KL  

Model #13 1 2 3 4 5 6 7 8RT a P a N a L a KL a Di aW aV a         

Model #14 31 2 4
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3

1 2 1
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.( . ) .( . )
.( . ) exp( . )
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 
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b b b
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   

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Model #16 3 5 6 82 4 7
1. . . . . .exp( ). aa a aa a aRT a P N L KL Di V

W
  

Model #17 
3 5 61 2 4

3

7

1 2 1

4 2

.( . ) .( . ) .( . )b b bb b b

b

a P N a L KL a Di V c
RT

aW c
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


 

Model #18 ln( ) ln( ) ln( ) ln( ) ln( )RT a b P c N d L e KL f Di       

Model #19 . . . . .b c d e fRT a P N L KL Di  

Model #20 
3 51 2 4

6 7

1 2 3 1

4 2

.( . ) .( . )
.( . )

b bb b b

b b

a P N a KL Di aV cRT
a W L c
  




 

In this work, the unknown parameters of the 
different candidate models are considered as 
random variables. The aim of this work, as stated 
earlier, is to identify objectively the most suitable 
models that fit best the RT datasets using a 
Bayesian framework, where the inference of 
model parameters is conducted in the WinBUGS 
software based on the MCMC methods. 
Therefore, one of the essential tasks in this work 
is to sample values of the unknown parameters 
from their conditional posterior distribution given 
the stochastic nodes that have been observed after 
having specified the model as a full joint 
distribution on all quantities for both parameters 
and observables. 

4.2. Results 
After specifying the models in the WinBUGS 
language at the logical nodes, normal (or 
lognormal or other distributions) was selected at 
the stochastic nodes for P, N, L, KL, Di, W, and 
V, respectively. Subsequently, the first group of 
the datasets was loaded and the models compiled 

and the MCMC sampler was applied to compute 
the model parameters. A trial-and-error approach 
was used to identify the optimal settings of the 
modeling. It can be seen that for model #2, the 
mean values of the unknown parameters a1, a2,…, 
a7, b1, b2, …, b7 and c1, c2 are -35.16, 7.298, -
40.13, -0.1251, -0.1167, 47.44, -0.4808, -1.087, 
0.3373, -20.7, -26.56, 0.3145,-0.6951,-25.39, -
2.538 and 1.298, respectively. These values are 
the most probable that the model parameters 
would take for the predicted RT to have a 
maximum accuracy since those values correspond 
to the peak of the posterior distributions that are 
plotted in Figure 1. As seen in this figure, the 
posterior sampling distributions (or kernel 
density) of a3, a4, a7 and c1 are unimodal and are 
distributed normally. The unimodal distributions 
of a3, a4, a7 and c1 also indicate a good 
convergence of the model. The trace plots that 
examine sample values versus iteration provide a 
diagnostic of evidence of convergence. Also the 
summaries of Model #2 are provided in Table 3. 
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As the models contain a maximum number of 20, 
checking the convergence for every parameter 
could be afforded and were monitored. If the trace 
plots move around the mode of the distribution 
and do not show a trend in the sample space, then 

the model has converged as shown in Figure 2. As 
seen in this figure, an example of the dynamic 
traces of the model parameters corresponding to 
model #2 indicate convergence. 

 
a1 sample: 10000

 -150.0  -100.0   -50.0

    0.0
   0.01
   0.02
   0.03
   0.04

 

a2 sample: 10000

    0.0    10.0    20.0    30.0

    0.0
   0.05
    0.1
   0.15

 
a3 sample: 10000

 -200.0  -100.0     0.0

    0.0
   0.01
   0.02
   0.03

 

a4 sample: 10000

 -200.0  -100.0     0.0   100.0

    0.0
  0.005
   0.01

  0.015
   0.02

 
a5 sample: 10000

   -0.3    -0.2    -0.1

    0.0
    5.0
   10.0
   15.0

 

a6 sample: 10000

    0.0    50.0   100.0

    0.0
   0.01
   0.02
   0.03

 
a7 sample: 10000

 -200.0  -100.0     0.0   100.0

    0.0
  0.005
   0.01

  0.015

 

b1 sample: 10000

   -5.0    -4.0    -3.0    -2.0    -1.0

    0.0
   0.25
    0.5
   0.75
    1.0

 
b2 sample: 10000

    0.0     0.2     0.4     0.6

    0.0
    2.0
    4.0
    6.0

 

b3 sample: 10000

 -100.0   -50.0

    0.0
   0.02
   0.04
   0.06
   0.08

 
b4 sample: 10000

 -200.0  -100.0     0.0

    0.0
   0.01
   0.02
   0.03

 

b5 sample: 10000

    0.1     0.2     0.3     0.4

    0.0
    5.0
   10.0
   15.0

  
Figure 1. Posterior distributions of the model parameters (a1, a2,…, a7, b1, b2, …, b7 and c1, c2) corresponding to 

model #2. 
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b6 sample: 10000

   -1.0    -0.8    -0.6

    0.0
    2.0
    4.0
    6.0

 

b7 sample: 10000

 -150.0  -100.0   -50.0     0.0

    0.0
   0.01
   0.02
   0.03

 
c1 sample: 10000

  -60.0   -20.0     0.0    20.0

    0.0
   0.02
   0.04
   0.06
   0.08

 

c2 sample: 10000

    0.5     1.0     1.5     2.0

    0.0
    1.0
    2.0
    3.0

 
Figure 1. Continued. 

 
Table 3. Summary statistics for the model #2 parameters computed with WinBUGS using MCMC. 

Model Parameters Mean Std. Dev. MC error Percentiles (%) Start Sample 2.50% 50% 97.50% 
a1 -35.16 13.79 1.056 -69.93 -32.87 -16.29 4001 10000 
a2 7.298 4.775 0.4439 1.935 6.182 21.87 4001 10000 
a3 -40.13 20.15 0.5207 -83 -38.58 -5.965 4001 10000 
a4 -0.1251 31.67 0.7172 -62.01 -0.01581 61.94 4001 10000 
a5 -0.1167 0.04491 0.004463 -0.1991 -0.1044 -0.05498 4001 10000 
a6 47.44 18.93 1.673 18.47 45.26 90.79 4001 10000 
a7 -0.4808 30.54 0.6486 -59.05 -0.6268 57.91 4001 10000 
b1 -1.087 0.4978 0.04484 -2.183 -1.037 -0.3948 4001 10000 
b2 0.3373 0.09076 0.008908 0.1752 0.3376 0.5165 4001 10000 
b3 -20.7 8.376 0.3493 -40 -19.68 -8.749 4001 10000 
b4 -26.56 18.37 0.4852 -69.37 -22.95 -2.361 4001 10000 
b5 0.3145 0.06538 0.006512 0.2211 0.3308 0.413 4001 10000 
b6 -0.6951 0.08901 0.008387 -0.8717 -0.6954 -0.5227 4001 10000 
b7 -25.39 18.07 0.4169 -68.88 -21.73 -2.161 4001 10000 
c1 -2.538 7.531 0.6414 -21.1 -1.323 9.456 4001 10000 
c2 1.298 0.2503 0.02455 0.9057 1.249 1.852 4001 10000 

 
a1

iteration
139501390013850

 -100.0
  -80.0
  -60.0
  -40.0
  -20.0
    0.0

 

a2

iteration
139501390013850

    0.0
    5.0
   10.0
   15.0
   20.0

 
a3

iteration
139501390013850

 -150.0
 -100.0
  -50.0
    0.0
   50.0

  100.0

 

a4

iteration
139501390013850

 -100.0
  -50.0
    0.0
   50.0

  100.0

 
Figure 2. Dynamic trace of the model parameters (a1,a2,…, a7,b1, b2, …, b7 and c1, c2) corresponding to model #2. 

The dynamic trace plots of the sample values versus iteration suggested that the simulation appears to have 
stabilized. 
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a5

iteration
139501390013850

   -0.1
  -0.08
  -0.06
  -0.04

 

a6

iteration
139501390013850

    0.0
   25.0
   50.0
   75.0

  100.0
  125.0

 
a7

iteration
139501390013850

 -200.0
 -100.0

    0.0
  100.0
  200.0

 

b1

iteration
139501390013850

   -2.5
   -2.0
   -1.5
   -1.0
   -0.5

 
b2

iteration
139501390013850

    0.2
    0.3
    0.4
    0.5
    0.6

 

b3

iteration
139501390013850

 -125.0
 -100.0
  -75.0
  -50.0
  -25.0
    0.0

 
b4

iteration
139501390013850

 -100.0

  -50.0

    0.0

 

b5

iteration
139501390013850

  0.325
   0.35

  0.375
    0.4

  0.425
   0.45

 
b6

iteration
139501390013850

   -0.9
   -0.8
   -0.7
   -0.6
   -0.5
   -0.4

 

b7

iteration
139501390013850

 -150.0
 -100.0
  -50.0
    0.0

 
c1

iteration
139501390013850

  -40.0
  -20.0
    0.0
   20.0

 

c2

iteration
139501390013850

    1.0
   1.25
    1.5
   1.75
    2.0

 
Figure 2. Continued. 

 
4.3. Evaluation criteria 
To verify the performance of the models, four 
statistical criteria viz. mean squared error (MSE), 
variance account for (VAF), root mean squared 
error (RMSE), squared correlation coefficient 
(R2), and mean absolute percentage error (MAPE) 

were chosen to be the measure of accuracy. Let tk 
be the actual value and k̂t be the predicted value 
of the kth observation and n be the number of 
observations; then RMSE, VAF, MSE, R2, and 
MAPE could be defined, respectively, as follow: 
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 (6) 

With the purpose of evaluating the prediction 
performance of the model, the datasets (training 

and testing datasets) were used to assess the 
optimal model. The performance analysis of 20 
models for training and testing datasets is shown 
in Table 4. 
In general, the results obtained indicated that the 
proposed model (model #2) could be used to 
predict RT. Finally, model #2 is ranked the best 
candidate, while model #20 is the worst candidate 
for predicting RT using the training and testing 
datasets. 
In addition, the results obtained were compared 
with the results obtained by Lan et al. [4]. This 
comparison is demonstrated in Table 5. As it can 
be seen, model #2 indicates better results relative 
to the previously published model. 

 
Table 4. A comparison between the results of six models for training and testing datasets. 

Model No. Training datasets Testing datasets 
RMSE MSE MAPE VAF R2 RMSE MSE MAPE VAF R2 

#1 0.1578 0.0249 64.4796 61.6523 0.6881 0.1474 0.0217 64.7961 67.5951 0.8760 
#2 0.1571 0.0247 26.7129 73.1925 0.7394 0.1249 0.0156 28.4332 86.2933 0.8632 
#3 0.2108 0.0444 80.5169 61.7842 0.6196 0.2145 0.0460 81.4396 82.0713 0.8419 
#4 0.1717 0.0295 44.5368 69.9661 0.7116 0.1918 0.0368 46.4248 83.3083 0.8334 
#5 0.1717 0.0295 44.5368 69.9661 0.7116 0.1918 0.0368 46.4248 83.3083 0.8334 
#6 0.1267 0.0161 30.2042 68.4167 0.7036 0.1269 0.0161 31.5555 82.7554 0.8285 
#7 0.1280 0.0164 49.6406 67.6059 0.7016 0.1307 0.0171 50.8921 73.7563 0.8240 
#8 0.1279 0.0163 49.9066 67.7681 0.7018 0.1308 0.0171 51.1494 73.7501 0.8204 
#9 0.1286 0.0165 30.4016 68.2533 0.6949 0.1311 0.0172 31.5286 80.5804 0.8086 
#10 0.1274 0.0162 53.5853 65.9231 0.6990 0.1335 0.0178 54.4063 69.9905 0.8072 
#11 0.1273 0.0162 51.0052 66.9145 0.7001 0.1295 0.0168 51.8745 71.1380 0.8055 
#12 0.1413 0.0200 45.2216 67.9629 0.6815 0.1585 0.0251 46.2444 78.6955 0.8028 
#13 0.1380 0.0191 18.4506 47.1539 0.6556 0.1512 0.0228 13.6838 72.9684 0.7821 
#14 0.1711 0.0293 21.4498 62.4917 0.6889 0.1633 0.0267 19.0889 69.8855 0.7605 
#15 0.2293 0.0526 35.5587 33.9040 0.6516 0.2176 0.0474 22.7701 34.0474 0.7595 
#16 0.1397 0.0195 24.9485 68.1942 0.7033 0.1712 0.0293 26.6563 75.7761 0.7578 
#17 0.1998 0.0399 28.7060 50.3312 0.6807 0.1995 0.0398 31.5621 58.2597 0.7471 
#18 0.1651 0.0272 18.4760 23.3014 0.6412 0.1897 0.0360 16.5530 43.2724 0.7102 
#19 0.1465 0.0215 29.0990 52.6001 0.6186 0.1461 0.0213 30.2096 67.4126 0.7071 
#20 0.2346 0.0551 45.0154 38.1944 0.5546 0.2014 0.0406 46.6454 62.2617 0.7001 

 
Table 5. Comparison of performance of model #2 

and the previously presented model. 
Description R2 

Model #2 (Proposed in this work) 0.8632 
Results obtained by Lan et al. [4] 0.8051 

 
5. Conclusions 
In this work, a new methodology based on the 
Bayesian inference was implemented to identify 
the most appropriate models for estimating RT 
among several candidate models that had been 
analyzed using the WinBUGS software. The input 
of the predictive model included the P, N, L, KL, 
Di, W, and V. Overall, the results obtained 
suggest that the proposed models RT possess a 

satisfactory predictive performance. Based on the 
R2, VAF, MSE, MAPE, and RMSE, model #2 
was the most adequate one (among those 
considered) that was in agreement with the 
performance indices. This work shows that 
MCMC can be applied as a powerful tool for 
modeling some problems involved in drilling 
engineering. 
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  چکیده:

مـورد نیـاز در    یچرخش ـ گشـتاور بینی  شناسی پیش در شرایط مختلف زمین .ودش یم مهندسی حفاري استفاده در معمول طور به یانحراف يحفار اتیعمل امروزه
 ارائـه  براي حل ایـن مشـکل در پـژوهش حاضـر بـراي      .ستین دسترس در کار نیا انجام يبرا مناسب روش حاضر حال در. است يضرورعملکرد عملیات حفاري 

 ،يحفـار  رشته طول مته، چرخش سرعت ،يمحور يروینهفت پارامتر شامل  ریتأث ،یانحراف يحفار در ازین مورد یچرخش گشتاور ینبی شیپ يبرا دیجد يراهکار
هـاي   بر مبناي معیار انتخاب مدل، شاخص پژوهش نیا در .است شده لحاظ يحفار گل تهیسکوزیو و گل انیجر سرعت برقو، نیام i قطر گمانه، یکل هیزاو رییتغ

 نیتر مناسببراي انتخاب  مطلق درصد يخطا نیانگیم و یهمبستگ بیضر مربع، يخطامجذور میانگین  ،حساب واریانس براي مربع، يخطامیانگین  آماري شامل
 ـا از حاصـل  جینتـا آمد.  دست به شده مشاهده يها داده از يا مجموعه به توجه با یچرخش گشتاور برآورد يبرا مدل 20 از يا مجموعه انیم در مدل  پـژوهش  نی

 ی را ارائه دهد.بخش تیرضانتایج  تواند یمبه کمک آنالیز بیزي  يشنهادیپ مدل که است آن انگریب

  بینی. آنالیز بیزي، پیش ،یانحراف يحفار ،یچرخش گشتاور کلمات کلیدي:

 

 


