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Abstract 
Gravity data inversion is one of the important steps in the interpretation of practical 
gravity data. The inversion result can be obtained by minimization of the Tikhonov 
objective function. The determination of an optimal regularization parameter is highly 
important in the gravity data inversion. In this work, an attempt was made to use the 
active constrain balancing (ACB) method to select the best regularization parameter for 
a 3D inversion of the gravity data using the Lanczos bidiagonalization (LSQR) 
algorithm. In order to achieve this goal, an algorithm was developed to estimate this 
parameter. The validity of the proposed algorithm was evaluated by the gravity data 
acquired from a synthetic model. The results of the synthetic data confirmed the correct 
performance of the proposed algorithm. The results of the 3D gravity data inversion 
from this chromite deposit from Cuba showed that the LSQR algorithm could provide an 
adequate estimate of the density and geometry of sub-surface structures of mineral 
deposits. A comparison of the inversion results with the geologic information clearly 
indicated that the proposed algorithm could be used for the 3D gravity data inversion to 
estimate precisely the density and geometry of ore bodies. All the programs used in this 
work were provided in the MATLAB software environment. 

1. Introduction 
The gravity data inversion problem is the 
estimation of the unknown sub-surface density 
and its geometry from a set of gravity 
observations measured on the surface. Since the 
problem is underdetermined and non-unique, 
finding a stable and geologically plausible 
solution is feasible only with the imposition of 
additional information about the model [1]. 
Inversion is defined as a mathematical technique 
that automatically constructs a sub-surface 
physical property model using the measured data 
by incorporating a priori information. The 
recovered models must be capable of predicting 
the measured data adequately [2]. Determination 
of an optimal regularization parameter is highly 
important in gravity data inversion. There are 
different methods available for an automatic 
estimation of the regularization parameter in a 3D 

inversion [3]. There are two major ambiguities in 
the inversion of gravity data. Theoretical 
ambiguity is caused by the nature of gravity; 
many different sources in the sub-surface can 
produce the same data at the surface. Algebraic 
ambiguity occurs when parameterization of the 
problem creates an underdetermined situation 
with more unknowns than observations [4]. 
In an inverse problem, the regularization 
parameter balances the effects of data misfit 
function and measure of some properties of the 
earth model. For linear inverse problems, several 
approaches have been developed for automatically 
estimating an appropriate regularization parameter 
when the observations are contaminated with 
Gaussian noise of uniform but an unknown 
standard deviation [3]. The Tikhonov 
regularization is a well-known and well-studied 
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method for stabilizing the solution of ill-posed 
problems [5]. Many researchers such as Wahba 
(1990) [6] and Hansen (1997) [5] have used the 
value for the regularization parameter that 
minimizes the generalized cross-validation (GCV) 
function. Hansen (1997) has chosen the value 
corresponding to the point of maximum curvature 
on the ‘L’-shaped curve obtained when ߶௠ is 
plotted as a function of ߶௠ 	for all the possible 
values for the regularization parameter [5].  
In any regularization method, the trade-off 
between the data fit and the regularization term is 
controlled by a regularization parameter. The 
methods used to find this regularization 
parameter, called the parameter-choice methods, 
can be divided into two classes (Hansen (1997) 
[5]): (i) those that are based on knowledge of, or a 
good estimate of, the error in the observations 
such as the discrepancy principle, and (ii) those 
that, in contrast, seek to extract such information 
from the observations such as the L-curve or the 
GCV methods. In many practical applications, 
little knowledge is available about the noise or 
error in the data measurements. In contrast, 
regarding the regularization parameter as a 
spatially varying function λ(x,y,z),  the method 
used is called active constraint balancing (ACB), 
and λ(x,y,z) is determined through the parameter 
resolution analysis [7]. In the ACB method, 
spatially varying Lagrangian multipliers 
(regularization parameters) are obtained by a 
parameter resolution matrix and the  
Backus-Gilbert spread function analysis [8]. Due 
to the iterative nature of the algorithm, the 
regularization parameter is determined in each 
iteration. 
In this work, it was attempted to use the ACB 
method to choose the best value for the 
regularization parameter for the 3D linear 
inversion of gravity data using the Lanczos 
bidiagonalization algorithm. For getting the target, 
an algorithm was developed, which estimated this 
parameter. The validity of the proposed algorithm 
was evaluated by the gravity data acquired from a 
synthetic model. Then the algorithm was used for 
inversion of the real gravity data from the Cuba 
chromite deposit. The results obtained from the 
3D inversion of the gravity data from this mine 
show that this algorithm can provide good 
estimates of density anomalous structures within 
the sub-surface.  

2. Methodology 
To perform inverse modeling, the sub-surface 
under the survey area is discretized into 

rectangular prisms of known sizes and positions. 
The density contrasts within each prism is an 
unknown parameter to be estimated by solving the 
inverse problem. A linear relationship between the 
density and gravity anomaly is a valid 
approximation; therefore, the inverse solution was 
obtained by solving a linear system of equations 
[9, 10].  

d Gm  (1) 

In Eq. (1), G is the forward operator matrix (also 
called the sensitivity matrix or Kernel matrix) that 
maps the physical parameter space into the data 
space. The ݉	vector denotes the unknown model 
parameters, and ݀	is the data vector [11]. The 
inverse problem goal in geophysics is determining 
by a plausible spatial variation of one or more 
physical properties within the Earth, which is 
consistent with a finite set of geophysical 
observations that can be solved by formulating it 
as an optimization problem for an objective 
function such as [3-12]: 

      d mm m m    (2) 

The vector m contains the M parameters in the 
Earth model, ߶ௗ 	is a measure of the data misfit, 
߶௠ is a measure of some properties of the Earth 
model such as density, and D depicts the 
regularization matrix. Here, ߣ is the regularization 
parameter that balances the effects of ߶ௗ  
and߶௠ 	[3]. The typical sum-of-squares misfit is 
called the misfit function: 

   
2

2
   

obs
d dm W d d m  (3) 

  2

2
m Dm  (4) 

dW is the data weighting matrix, given by 

1 2

1 1 1( , ,........, )d
N

W diag
  

. Also ߪ௜ is a 

standard deviation for noise that is defined for 
each datum. We can replace the regularization 
matrix (D) with the depth weighting matrix  
( depthW ), which is given by 

     1 2

1 1 1( , ,......, )depth
m

W diag
Z Z Z   . The 

use of a ( depthW ) matrix in constructing a model 
prevents the kernel decay [11]. The inverse 
problem in this work was solved as an 
optimization of a global objective function Eq. (1) 
using the iterative LSQR algorithm based on the 
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Lanczos bidiagonalization [13, 14]. Determination 
of the regularization parameter, which balances 
the minimization of the data misfit and model 
roughness may be a critical procedure to achieve 
both the resolution and stability. 

2.1. Regularization parameter 
Estimation of the regularization parameter 
(Lagrangian multiplier), which balances the 
minimization of the data misfit and model 
roughness, may be a critical procedure to achieve 
both resolution and stability. 
Uchida (1993) [15] used the statistical criterion 
Akaike’s Bayesian Information Criterion (ABIC) 
to determine the optimum regularization 
parameter. In contrast, Yi et al. (2003) [7] 
regarded the regularization parameter as a 
spatially varying function λ(x,y,z), which is 
named as ACB, and determines λ(x,y,z) through 
the parameter resolution analysis [16]. 
In our implementation, we adopted the spatially 
variable regularization parameter algorithm, in 
which l was regarded as a spatial function, 
determined by the parameter resolution analysis 
[7]. According to the ACB algorithm, the 
regularization parameter can be set optimally by 
the spread function SPi of the ith model 
parameter, which is defined by the parameter 
resolution matrix R. The parameter resolution 
matrix R can be obtained in the inversion process 
with pseudo-inverse ିܩ௚ multiplied by the kernel 
G [16]. 

 gR G G  (5) 

In this work, we used the LSQR method for 
computation of the resolution matrix R in Eq. (5), 
This method can be be improved for a large-scale 
problem. where: 

1( )  g T T TG G G C C G  (6) 

The spread function, which accounts for the 
inherent degree of how much the ݅௧௛	model 
parameter is not resolvable, is defined as: 

  2
1 

N

i ij ij ij
i

SP w S R  (7) 

In Eq. (7), ܰ	is the number of parameters and 
௜௝ݓ 	is a weighting factor, computed from the 
spatial distance between the two parameters ݅	 
and	݆. Here, ௜ܵ௝	is a matrix used to take into 
account the constraint or regularization in the 
inversion. The value for ௜ܵ௝  is unity if ܥ௜௝ 	is not 
zero, while it is zero when ܥ௜௝ 	equals zero. In this 

approach, the regularization parameter ݔ)ߣ, y,  is	(ݖ
set by a value from the log-linear interpolation 
[7]: 

 
min

max min
min

max min

log( ) log( )
log( ) log( ) log( ) log( )

log( ) log( )

 


 


i

iSP SP
SP SP

 
   (8) 

where ܵܲ௠௜௡ and ܵ ௠ܲ௔௫ 	are the minimum and 
maximum values for the spread function	ܵ ௜ܲ, 
respectively, and ߣ௠௜௡ and ߣ௠௔௫ 	are the minimum 
and maximum values for the regularization 
parameter λ(x,y,z) that must be provided by the 
user. With this method, we can automatically set a 
smaller value for λ(x,y,z) of the regularization 
parameter to the highly resolvable model 
parameter, which corresponds to a smaller value 
of the spread function ܵ ௜ܲ	in the inversion process, 
and vice versa. The users can choose these 
minimum and maximum regularization 
parameters by setting the variables ݊݅ܯܾܽ݀݉ܽܮ 
and	ݔܽܯܾܽ݀݉ܽܮ.  

3. Inversion tests for synthetic models 
We applied our algorithm to a synthetic test to 
evaluate the reliability of the introduced method. 
The true model consisted of two different bodies 
embedded beneath the surface so that the density 
of the uniform background was zero. The density 
of the rectangle block was 1.0 and the square 
block was 2.0 g/cm3. These bodies were buried at 
different depths. Figure 1a shows a perspective 
view of the synthetic model. The data was 
gathered over a grid of 1000 × 1000 m with a 
sample spacing of 50 m. There was 441 data, and 
5% Gaussian noise of the accurate datum 
magnitude was added. The gravity anomaly 
produced by the synthetic model is shown in 
Figure 1b. There were 4 horizontal cross-sections 
in different depths for the recovered model 
(Figure 1c). The sub-surface was discretized into 
20 × 20 × 10 = 4,000 rectangular prisms with the 
same size of 50 m in the x, y, and z directions. In 
this case, we chose the minimum and maximum 
values for λ to be 1 and 4, respectively. The 
values for ߣ௠௜௡ and ߣ௠௔௫ were based upon the 
best results. Also the choice of values was the 
responsibility of the user. The results obtained 
were compared with the results of the GCV 
method. The maps of depth slices through the 
recovered model of the GCV method are shown in 
Figure 2a. Figure 2b shows the maps of depth 
slices through the recovered model from the ACB 
method. The scatter plot of the predicted data 
versus the observed Bouguer anomaly is shown in 
Figures 3a and 3b, indicating a good fitness of 
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data in both methods. The results obtained 
indicate an acceptable reconstruction of the 
synthetic multisource bodies at different depth 
levels below the surface. The solution was blocky 
and defined the depth to the top and bottom of 
deep bodies adequately. 

The results obtained indicate an acceptable 
reconstruction of the synthetic multisource bodies 
at different depth levels below the surface. 
According to Figure 2b, the ACB method can be 
an efficient model from the proposed LSQR 
algorithm. 

 
Table 1. Parameters of the synthetic model. 

Model number x×y×z dimension (m) Depth to top (m) True density (g/cm3) 
(1) 400×200×200 -50 1 
(2) 200×200×200 -100 2 

 

 
Figure 1. (a) Perspective view of the synthetic model. (b) Gravity anomaly produced by the synthetic model with 

3% Gaussian noise. 
 

 
Figure 2. (a) Plan sections through the recovered density model obtained from inversion of gravity anomaly by 

the GCV method. (b) ACB method. 
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Figure 3. (a) Plot of the predicted gravity synthetic data versus the observed real data by the GCV method. (b) 

ACB method. 
 

Table 2. Comparison of parameter regularization results in inversion of synthetic for the ACB and the GCV 
methods. 

Regularization method Time (s) Number of iterations Misfit 
ACB 12.36 11 1.41 
GCV 14.73 13 7.24 

 
4. Inversion of field gravity data 
The chromite deposits are in serpentinized 
Peridotite and Dunite near their contact with 
feldspathic rocks. The serpentinized rocks 
underlie the Savannah and contain feldspathic 
rocks, mainly Gabbro, Troctolite, and Anorthosite 
as well as chromite. Many feldspathic masses are 
not well-exposed but can be delineated by small 
outcrops, float, and a characteristic flora. Most of 
the chromite deposits are oriented so that the long 
axis parallels the strike of the nearest contact 
between the feldspathic or volcanic rocks and the 
serpentinized peridotite. In this work, we used a 
residual gravity anomaly over chromite deposits 
in the Holguin district, Cuba, measured by the US 
Geological Survey. The areas investigated were in 
the chromite district of the Holguin Province. The 
residual gravity anomaly map digitized at a grid 
interval of 0.2 mgal is shown in Figure 5. For a 
3D inversion of the data, the sub-surface of the 
studied area was discretized with 28 × 23 × 10 
cells in the x, y, and z directions, respectively. We 
The sampling data of 7 × 7 m in the digitized grid 
and the applied gravity method in prospecting for 
chromite deposits in the Holguin chromite district 
depends fundamentally upon the density contrast 

between the chromite and the surrounding country 
rocks. The difference in density between the 
chromite contained in the commercial deposits of 
the district and the country rock, which were 
serpentinized peridotite and dunite, was about 1.5 
g/cm3. The feldspathic rocks in the serpentinized 
peridotite and dunite had an average density of 
about 2.7 g/cm3, which provided a sufficient 
density contrast with respect to the serpentinized 
rocks to cause anomalies of much the same size 
and magnitude as the chromite. In Figure 4, we 
can see the distribution of ophiolits in Cuba, and 
also an anomalous body with a high density 
contrast around the center of the studied area, 
which represents the Holguin deposit (Figure 5). 
Figure 6 shows the maps of depth slices through 
the recovered model from the proposed inversion 
methods. We can clearly see the lateral shape and 
extent of the main body of the deposit  
well-defined but for comparison, the inverse 
problem with the ACB method is more accurate 
than the GCV method for the recovered model. 
We obtained a good solution in agreement with 
the true geologic shape of chromite body and 
other geological studies in the area. 
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Figure 4. Distribution of ophiolits in the Holguin of Cuba. 

 

 
Figure 5. Holguin residual gravity map. 

 

 
Figure 6. (a) Plan sections through the recovered density models obtained from the 3D smooth inversion of 

gravity anomaly using the GCV method at different depths. (b) The ACB method. 
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Figure 7. Data misfit between the predicted field gravity data with observed gravity data (a) GCV method. (b) 

ACB method. 
 

Table 3. Comparison of parameter regularization results in inversion of real data for the ACB and the GCV 
methods. 

Regularization method Time (s) Number of iterations Misfit 
ACB 9.36 9 3.42 
GCV 15.61 13 8.26 

 
The results obtained show that all the inverse 
algorithms with the ACB method detect the 
position of the orebody well, especially depth to 
top of the orebody.  

5. Conclusions 
We have developed a new algorithm for inversion 
of gravity data using the LSQR method. We used 
the active constraint balancing regularization 
method to choose the regularization parameter in 
each iteration, which is a fast and effective 
method for choosing the regularization parameter. 
In the ACB algorithm, we used the LSQR 
program for resolution matrix. Therefore, the 
proposed algorithm is efficient for large-scale 
problems. One of the advantages of the ACB 
method is the proper estimation of the lower depth 
of the model.  
The results obtained show that the new developed 
3D inversion method can produce a smooth 
solution, which defines the shape and extent of 
synthetic bodies adequately. Furthermore, this 
inversion algorithm was applied for inversion of a 
field gravity data from the Holguin deposit. It 
produced a model that was consistent with the 
available geological information of the deposit. 
Compression of the ACB method with other 
methods such as Generalized Cross-Validation 

(GCV) showed that the ACB method was more 
efficient than the GCV method for smooth 
inversion of gravity data. 
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  چکیده:

تواند با کمینه کردن تابع هدف تیخونوف سازي میهاي گرانی است. نتایج وارونمراحل در تفسیر عملی داده ترینسنجی یکی از مهمهاي گرانیسازي دادهوارون
  هاي گرانی از اهمیت بالایی برخوردار است. در این پژوهش، با استفاده از روش سازي دادهسازي در وارونحاصل شود. تعیین مقدار بهینه پارامتر منظم

سازي سازي لنکزوس به محاسبه مقدار بهینه پارامتر منظمهاي گرانی با استفاده از روش دوقطريبعدي دادهسازي سهو الگوریتم وارون سازي قید فعالمتعادل
ست. نتایج هاي حاصل از یک مدل مصنوعی پرداخته شده اسنجی الگوریتم پیشنهادي به ارزیابی این روش با استفاده از دادهپرداخته شده است. به منظور اعتبار

سنجی ذخایر کرومیت در کشور کوبا به هاي گرانیبعدي دادهسازي سهکند. نتایج وارونمی دیتائهاي مصنوعی صحت عملکرد الگوریتم پیشنهادي را حاصل از داده
. مقایسه باشد داشتهسطحی و مواد معدنی تواند برآورد مناسبی از توزیع چگالی و هندسه ساختارهاي زیرسازي لنکزوس میدهد که روش دوقطريخوبی نشان می

ي معدنی ارائه ها تودهتواند تخمین مناسبی از توزیع چگالی و هندسه الگوریتم پیشنهادي می که دهد یمشناسی به خوبی نشان سازي با اطلاعات زمیننتایج وارون
  متلب نوشته شده است. افزار نرمهاي مورد استفاده در این پژوهش در محیط دهد. تمام برنامه

  سنجی، ذخیره معدن هالوگین.گرانی سازي قید فعال، دادهسازي، متعادلمسئله وارون، پارامتر منظم کلمات کلیدي:

 

 

 

 


