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Abstract

Gravity data inversion is one of the important steps in the interpretation of practical
gravity data. The inversion result can be obtained by minimization of the Tikhonov
objective function. The determination of an optimal regularization parameter is highly
important in the gravity data inversion. In this work, an attempt was made to use the
active constrain balancing (ACB) method to select the best regularization parameter for
a 3D inversion of the gravity data using the Lanczos bidiagonalization (LSQR)
algorithm. In order to achieve this goal, an algorithm was developed to estimate this
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Balancing parameter. The validity of the proposed algorithm was evaluated by the gravity data
acquired from a synthetic model. The results of the synthetic data confirmed the correct
Gravity Data performance of the proposed algorithm. The results of the 3D gravity data inversion

from this chromite deposit from Cuba showed that the LSQR algorithm could provide an
adequate estimate of the density and geometry of sub-surface structures of mineral
deposits. A comparison of the inversion results with the geologic information clearly
indicated that the proposed algorithm could be used for the 3D gravity data inversion to
estimate precisely the density and geometry of ore bodies. All the programs used in this
work were provided in the MATLAB software environment.

Holguin Ore Deposit

1. Introduction

The gravity data inversion problem is the inversion [3]. There are two major ambiguities in
estimation of the unknown sub-surface density the inversion of gravity data. Theoretical
and its geometry from a set of gravity ambiguity is caused by the nature of gravity;
observations measured on the surface. Since the many different sources in the sub-surface can

problem is underdetermined and non-unique,
finding a stable and geologically plausible
solution is feasible only with the imposition of
additional information about the model [1].
Inversion is defined as a mathematical technique
that automatically constructs a sub-surface
physical property model using the measured data
by incorporating a priori information. The
recovered models must be capable of predicting
the measured data adequately [2]. Determination
of an optimal regularization parameter is highly
important in gravity data inversion. There are
different methods available for an automatic
estimation of the regularization parameter in a 3D
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produce the same data at the surface. Algebraic
ambiguity occurs when parameterization of the
problem creates an underdetermined situation
with more unknowns than observations [4].

In an inverse problem, the regularization
parameter balances the effects of data misfit
function and measure of some properties of the
earth model. For linear inverse problems, several
approaches have been developed for automatically
estimating an appropriate regularization parameter
when the observations are contaminated with
Gaussian noise of uniform but an unknown
standard  deviation [3]. The  Tikhonov
regularization is a well-known and well-studied
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method for stabilizing the solution of ill-posed
problems [5]. Many researchers such as Wahba
(1990) [6] and Hansen (1997) [5] have used the
value for the regularization parameter that
minimizes the generalized cross-validation (GCV)
function. Hansen (1997) has chosen the value
corresponding to the point of maximum curvature
on the ‘L’-shaped curve obtained when ¢, is
plotted as a function of ¢,, for all the possible
values for the regularization parameter [5].

In any regularization method, the trade-off
between the data fit and the regularization term is
controlled by a regularization parameter. The
methods wused to find this regularization
parameter, called the parameter-choice methods,
can be divided into two classes (Hansen (1997)
[5]: (i) those that are based on knowledge of, or a
good estimate of, the error in the observations
such as the discrepancy principle, and (ii) those
that, in contrast, seek to extract such information
from the observations such as the L-curve or the
GCV methods. In many practical applications,
little knowledge is available about the noise or
error in the data measurements. In contrast,
regarding the regularization parameter as a
spatially varying function A(X,y,z), the method
used is called active constraint balancing (ACB),
and A(x,y,z) is determined through the parameter
resolution analysis [7]. In the ACB method,

spatially ~ varying  Lagrangian  multipliers
(regularization parameters) are obtained by a
parameter  resolution  matrix and  the

Backus-Gilbert spread function analysis [8]. Due
to the iterative nature of the algorithm, the
regularization parameter is determined in each
iteration.

In this work, it was attempted to use the ACB
method to choose the best value for the
regularization parameter for the 3D linear
inversion of gravity data using the Lanczos
bidiagonalization algorithm. For getting the target,
an algorithm was developed, which estimated this
parameter. The validity of the proposed algorithm
was evaluated by the gravity data acquired from a
synthetic model. Then the algorithm was used for
inversion of the real gravity data from the Cuba
chromite deposit. The results obtained from the
3D inversion of the gravity data from this mine
show that this algorithm can provide good
estimates of density anomalous structures within
the sub-surface.

2. Methodology
To perform inverse modeling, the sub-surface
under the survey area 1is discretized into
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rectangular prisms of known sizes and positions.
The density contrasts within each prism is an
unknown parameter to be estimated by solving the
inverse problem. A linear relationship between the
density and gravity anomaly is a valid
approximation; therefore, the inverse solution was
obtained by solving a linear system of equations
[9, 10].

d =Gm (1)

In Eq. (1), G is the forward operator matrix (also
called the sensitivity matrix or Kernel matrix) that
maps the physical parameter space into the data
space. The m vector denotes the unknown model
parameters, and dis the data vector [11]. The
inverse problem goal in geophysics is determining
by a plausible spatial variation of one or more
physical properties within the Earth, which is
consistent with a finite set of geophysical
observations that can be solved by formulating it
as an optimization problem for an objective
function such as [3-12]:

$(m)=¢,(m)+24,(m) 2)

The vector m contains the M parameters in the
Earth model, ¢, is a measure of the data misfit,
¢m 1s a measure of some properties of the Earth
model such as density, and D depicts the
regularization matrix. Here, A is the regularization
parameter that balances the effects of ¢y
and¢,, [3]. The typical sum-of-squares misfit is
called the misfit function:

2
¢, (m)=|p, [a” —d (m)], 3)
#(m)=loml O
W,is the data weighting matrix, given by
w, =a’iag(i L, ........ ,L) Also o0; is a
0, O, Oy

standard deviation for noise that is defined for
each datum. We can replace the regularization
matrix (D) with the depth weighting matrix

W e ) which is given by
1 1 1
W orin =4diag ( , yeeeeees ) The
@) @) T2

use of a (W"“P’h) matrix in constructing a model
prevents the kernel decay [11]. The inverse
problem in this work was solved as an
optimization of a global objective function Eq. (1)
using the iterative LSQR algorithm based on the
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Lanczos bidiagonalization [13, 14]. Determination
of the regularization parameter, which balances
the minimization of the data misfit and model
roughness may be a critical procedure to achieve
both the resolution and stability.

2.1. Regularization parameter

Estimation of the regularization parameter
(Lagrangian multiplier), which balances the
minimization of the data misfit and model
roughness, may be a critical procedure to achieve
both resolution and stability.

Uchida (1993) [15] used the statistical criterion
Akaike’s Bayesian Information Criterion (ABIC)
to determine the optimum regularization
parameter. In contrast, Yi et al. (2003) [7]
regarded the regularization parameter as a
spatially varying function A(X,y,z), which is
named as ACB, and determines M(X,y,z) through
the parameter resolution analysis [16].

In our implementation, we adopted the spatially
variable regularization parameter algorithm, in
which 1 was regarded as a spatial function,
determined by the parameter resolution analysis
[7]. According to the ACB algorithm, the
regularization parameter can be set optimally by
the spread function SP; of the ith model
parameter, which is defined by the parameter
resolution matrix R. The parameter resolution
matrix R can be obtained in the inversion process
with pseudo-inverse G ~9 multiplied by the kernel
G [16].

R=G*G 5)

In this work, we used the LSQR method for
computation of the resolution matrix R in Eq. (5),
This method can be be improved for a large-scale

problem. where:
G*=G'G+ac’C)'G" (6)

The spread function, which accounts for the

inherent degree of how much the it" model
parameter is not resolvable, is defined as:

N 2
SP =Y fw, (1-5;)R, | (7)

1

In Eq. (7), Nis the number of parameters and
w;jis a weighting factor, computed from the
spatial distance between the two parameters i
and j. Here, S;jis a matrix used to take into
account the constraint or regularization in the
inversion. The value for S;; is unity if C;;is not
zero, while it is zero when C;; equals zero. In this
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approach, the regularization parameter A(x,y, z) is
set by a value from the log-linear interpolation

[7]:

log(4,) =log(4,;,) +
log(Ay,) —log(Z,,;,)

log(SP_. )—log(SP

max min )

®)

x{log(SP,) - log(SP,;)}

where SP,,;, and SP,., are the minimum and
maximum values for the spread function SP;,
respectively, and A,,,;, and A4, are the minimum
and maximum values for the regularization
parameter MX,y,z) that must be provided by the
user. With this method, we can automatically set a
smaller value for A(x,y,z) of the regularization
parameter to the highly resolvable model
parameter, which corresponds to a smaller value
of the spread function SP; in the inversion process,
and vice versa. The users can choose these
minimum  and  maximum  regularization
parameters by setting the variables LambdaMin
and LambdaMax.

3. Inversion tests for synthetic models

We applied our algorithm to a synthetic test to
evaluate the reliability of the introduced method.
The true model consisted of two different bodies
embedded beneath the surface so that the density
of the uniform background was zero. The density
of the rectangle block was 1.0 and the square
block was 2.0 g/cm’. These bodies were buried at
different depths. Figure la shows a perspective
view of the synthetic model. The data was
gathered over a grid of 1000 x 1000 m with a
sample spacing of 50 m. There was 441 data, and
5% Gaussian noise of the accurate datum
magnitude was added. The gravity anomaly
produced by the synthetic model is shown in
Figure 1b. There were 4 horizontal cross-sections
in different depths for the recovered model
(Figure 1c). The sub-surface was discretized into
20 x 20 x 10 = 4,000 rectangular prisms with the
same size of 50 m in the x, y, and z directions. In
this case, we chose the minimum and maximum
values for A to be 1 and 4, respectively. The
values for A, and A,,,, were based upon the
best results. Also the choice of values was the
responsibility of the user. The results obtained
were compared with the results of the GCV
method. The maps of depth slices through the
recovered model of the GCV method are shown in
Figure 2a. Figure 2b shows the maps of depth
slices through the recovered model from the ACB
method. The scatter plot of the predicted data
versus the observed Bouguer anomaly is shown in
Figures 3a and 3b, indicating a good fitness of
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data in both methods. The results obtained
indicate an acceptable reconstruction of the
synthetic multisource bodies at different depth
levels below the surface. The solution was blocky
and defined the depth to the top and bottom of
deep bodies adequately.

The results obtained indicate an acceptable
reconstruction of the synthetic multisource bodies
at different depth levels below the surface.
According to Figure 2b, the ACB method can be
an efficient model from the proposed LSQR
algorithm.

Table 1. Parameters of the synthetic model.

Model number
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Figure 1. (a) Perspective view of the synthetic model. (b) Gravity anomaly produced by the synthetic model with
3% Gaussian noise.
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Figure 2. (a) Plan sections through the recovered density model obtained from inversion of gravity anomaly by
the GCV method. (b) ACB method.
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Figure 3. (a) Plot of the predicted gravity synthetic data versus the observed real data by the GCV method. (b)
ACB method.

Table 2. Comparison of parameter regularization results in inversion of synthetic for the ACB and the GCV

methods.
Regularization method Time (s) Number of iterations Misfit
ACB 12.36 11 1.41
GCV 14.73 13 7.24
4. Inversion of field gravity data between the chromite and the surrounding country
The chromite deposits are in serpentinized rocks. The difference in density between the

Peridotite and Dunite near their contact with
feldspathic rocks. The serpentinized rocks
underlie the Savannah and contain feldspathic
rocks, mainly Gabbro, Troctolite, and Anorthosite
as well as chromite. Many feldspathic masses are
not well-exposed but can be delineated by small
outcrops, float, and a characteristic flora. Most of
the chromite deposits are oriented so that the long
axis parallels the strike of the nearest contact
between the feldspathic or volcanic rocks and the
serpentinized peridotite. In this work, we used a
residual gravity anomaly over chromite deposits
in the Holguin district, Cuba, measured by the US
Geological Survey. The areas investigated were in
the chromite district of the Holguin Province. The
residual gravity anomaly map digitized at a grid
interval of 0.2 mgal is shown in Figure 5. For a
3D inversion of the data, the sub-surface of the
studied area was discretized with 28 x 23 x 10
cells in the x, y, and z directions, respectively. We
The sampling data of 7 x 7 m in the digitized grid
and the applied gravity method in prospecting for
chromite deposits in the Holguin chromite district
depends fundamentally upon the density contrast
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chromite contained in the commercial deposits of
the district and the country rock, which were
serpentinized peridotite and dunite, was about 1.5
g/cm’. The feldspathic rocks in the serpentinized
peridotite and dunite had an average density of
about 2.7 g/em’, which provided a sufficient
density contrast with respect to the serpentinized
rocks to cause anomalies of much the same size
and magnitude as the chromite. In Figure 4, we
can see the distribution of ophiolits in Cuba, and
also an anomalous body with a high density
contrast around the center of the studied area,
which represents the Holguin deposit (Figure 5).
Figure 6 shows the maps of depth slices through
the recovered model from the proposed inversion
methods. We can clearly see the lateral shape and
extent of the main body of the deposit
well-defined but for comparison, the inverse
problem with the ACB method is more accurate
than the GCV method for the recovered model.
We obtained a good solution in agreement with
the true geologic shape of chromite body and
other geological studies in the area.



Moghadasi et al./ Journal of Mining & Environment, Vol. 10, No. 2, 2019

0 100 200 km

La Habana

Matapzas
j ) - Iguaré-Perea
Cajélban:. e linlQ Bu:
b A\
v Santa Clara

Section of ophiolites
in Camagiiey

Jagua Islade la A
Juventud Mabujina

[ SEPTENTRIONAL OPHIOLITES Yayabo Camagiiey
Moa -
(I AMPHIBOLITIZED OPHIOLITES Holgul g s
Mayari,
ntiago de T
Cubay Sierra del Giiira
Convento de

Jauco

Figure 4. Distribution of ophiolits in the Holguin of Cuba.
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Figure 6. (a) Plan sections through the recovered density models obtained from the 3D smooth inversion of
gravity anomaly using the GCV method at different depths. (b) The ACB method.
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Figure 7. Data misfit between the predicted field gravity data with observed gravity data (a) GCV method. (b)
ACB method.

Table 3. Comparison of parameter regularization results in inversion of real data for the ACB and the GCV

methods.
Regularization method Time (s) Number of iterations Misfit
ACB 9.36 9 3.42
GCV 15.61 13 8.26

The results obtained show that all the inverse
algorithms with the ACB method detect the
position of the orebody well, especially depth to
top of the orebody.

5. Conclusions

We have developed a new algorithm for inversion
of gravity data using the LSQR method. We used
the active constraint balancing regularization
method to choose the regularization parameter in
each iteration, which is a fast and effective
method for choosing the regularization parameter.
In the ACB algorithm, we used the LSQR
program for resolution matrix. Therefore, the
proposed algorithm is efficient for large-scale
problems. One of the advantages of the ACB
method is the proper estimation of the lower depth
of the model.

The results obtained show that the new developed
3D inversion method can produce a smooth
solution, which defines the shape and extent of
synthetic bodies adequately. Furthermore, this
inversion algorithm was applied for inversion of a
field gravity data from the Holguin deposit. It
produced a model that was consistent with the
available geological information of the deposit.
Compression of the ACB method with other
methods such as Generalized Cross-Validation

363

(GCV) showed that the ACB method was more
efficient than the GCV method for smooth
inversion of gravity data.
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