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Abstract

Delineation of oxide and sulfide zones in mineral deposits, especially in gold deposits, is
Oxide and Sulfide Zones ~ one of the most essential steps in an exploration project that has been traditionally
carried out using the drilling results. Since in most mineral exploration projects there is a
limited drilling dataset, application of geophysical data can reduce the error in
delineation of the sulfide and oxide zones. For this purpose, we produced a 3D model of
Induced Polarization (IP) data using the ordinary kriging technique. Then the modelling
results were compared with the drilling data. The results obtained showed that the 3D
geophysical models would properly delineate the sulfide and oxides zones. This work
presents a new application of the IP results for separation of these zones. In addition, the
conducted variography in this work suggests reducing the profile spacing of
dipole-dipole IP arrays down to 25 m. This would properly enrich the integration of
geophysical and geological results in the modelling of gold deposits.

Keywords

Geophysical Model
Vein-Type Gold Deposit

Ordinary Kriging

1. Introduction

The delineation of sulfide and oxide zones during
a reserve estimation is an essential problem for
designing a mineral processing plant. The
geological datasets used for zone delineation in
mineral deposits are usually based on mineralogy,
petrography, and the study of grades and
alteration mineral assemblages [1-5]. In addition,
fluid inclusion studies. (e.g. [6-9]) and **S isotope
investigations (e.g. [10]) are other methods that
have been used for separation of different zones in
mineral deposits. Gold deposits are highly
variable in form, ranging from thin quartz veins to
large disseminated deposits, and are located in a
variety of geological environments. Consequently,
they exhibit a wide range of geophysical
signatures. Geophysical methods and tools
including different techniques such as magnetic,
self-potential, induced polarization (IP), and
resistivity are important techniques in mineral
exploration [11-18]. It is almost impossible to get
a direct geophysical response from gold because
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of the low grades in deposits, except when
electromagnetic detectors are used for individual
shallow nuggets. However, indirect geophysical
indications may occur through association of gold
with particular host rocks, marker beds or
structures that are, for example, of unusual
magnetization, density, electric polarization or
conductivity—resistivity [19-20] Resistive
gold-bearing silicified zones and shallow quartz
vein systems are commonly detectable by
conventional galvanic or inductive resistivity
techniques [21].

There are many techniques that estimate or
simulate the geosciences datasets. For instance,
geostatistical techniques are widely used in
geophysical mineral explorations [22-28].
Delineation of oxide and sulfide zones has been
traditionally carried out using the drilling results.
The present work focused on using geological,
dipole—dipole IP data through geostatistical
processing to separate sulfide and oxide zones at
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the Charbakhshi gold deposit in NE Iran. To the
best of our knowledge, so far, no specific research
work has been carried out to use the IP data in the
separation of sulfide-oxide zones in gold deposits.
The integration geophysical data with the existing
drilling data can help engineers separate the
sulfide and oxide zones more precisely. Therefore,
in this work, we tried to present a new application
of IP results for separation of these zones.

2. Case study and geological setting

The Chahar Bakhshi area is located in the north of
the Kaboodan Village, 14 km north of the
Bardaskan City, in Khorasan-e-Razavi Province
(Figure 1). From the geological viewpoint, the
Precambrian Taknar Formation is the most
dominant outcropped unit in the studied area. It
consists of green schist associated with
meta-rhyodacite and meta-rhyolite layers, and
submarine acidic tuffs. The Taknar Formation in
this area is more than 2000 m thick, and it has
experienced a weak metamorphism. In the west of
the area of interest, the relatively large outcrops of
granitic  (Precambrian) and  gabbro-dioritic
(Tertiary) rocks have intruded the Taknar
Formation. In addition, thick limestone units
(Cretaceous) and the Kerman conglomerate
(Paleocene) outcropped in the north of the studied
area. Smaller parts of the Soltanich dolomitic
formation (Cambrian) outcrop in SE and NW of
the area as well. Copper oxide and sulfide
mineralization occur in chloritic, sericitic, and
kaolinitic zones. Moreover, the silicification and
kaolinitization as well as iron oxides occur in

other parts, and the iron caps form on sericitic
zones [29, 30]. Figure 2 shows the details of
geological units. The location of the conducted
dipole-dipole arrays and the outcropped
mineralization are illustrated in this figure as well.

3. Methods

The methods used in this work include two parts.
The main part involves the geostatistical
processing on geophysical data including data
checking and data selection, preparing a block
model, variography, and estimation. The 3D
geophysical model is the result of this part. The
second part uses the borehole geological logs to
validate the model. Figure 3 illustrates the
workflow (methods and stages) chart of the
current work. After the data selection step, a data
variography was carried out. Afterwards, a block
model of an estimation space was created as the
basis of kriging estimations. Next the ordinary
kriging (OK) technique was applied on the data
over the estimation space to create a 3D model of
the IP wvalues. OK operates under simple
assumptions of stationary, and requires no
knowledge of the average. Assuming that the
region is a second-order stationary space, the OK
method implicitly evaluates the mean in a moving
neighborhood, and thus minimizing the estimation
variance [33]. The estimation results were later
validated and then used in the preparation of 3D
geophysical models. The model was integrated
with borehole geological logs to delineate the
sulfide and oxide zones.
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Figure 1. Gt;;éraphical location of the studied area (modified from [31]).
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4. Results and discussion

4.1. Data selection

In this work, the geophysical dataset includes the
IP and resistivity imaging data obtained from
seven profiles of dipole-dipole array reported by
[34]. In this array, the electrode spacing value was
20-40 m, and the profile spacing varied between
50 and 250 m (Table 1). The location of arrays is
shown on the geological map of the area in Figure
2. The geophysical data consists of 3270 points
generated by dipole-dipole chargeability and
resistivity techniques. The 2D chargeability model
of field surveys was obtained through the
inversion functions.

In order to select the most appropriate data for
later analyses, the resistivity, chargeability, and

2019

the chargeability to resistivity ratio sections were
drawn. The results, in conjunction with field
investigations, show that the IP data best separates
the sulfide anomalies. Therefore, in this work, the
chargeability data was selected for further
processes. For instance, Figure 4 shows the
prepared sections for Profile DD 450E. In
addition, Figure 5 presents the histogram of IP
imaging data. The important statistical
characteristic of this histogram includes the
number of data, mean, standard deviation,
skewness, kurtosis, minimum, and maximum,
which are equal to 3270, 6.1, 4.9, 1.7, 3.4, 0.19,
and 33.7, respectively.

Table 1. Array configuration.

No Profile name

Survey area

Electrode spacing Dipole lag

1 DD50W 420N 60N
2 DD200E 480N 40N
3 DD300E 500N 140N
4 DD450E 500N 60N
5 DDS500E 540N 80N
6 DD600E 520N 100N
7 DD700E 540N 80N

20-40 M 20M
20-40 M 20M
40 M 20M
20-40 M 20M
40 M 20M
40 M 20M
40 M 20M

100

()

(b)

300

0019

0.008

(©)

Figure 4. Profile DD-450E. (a) IP to resistivity ratio section; (b) IP section; and (c) resistivity section.
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4.2. Variography

A variogram is a structural analysis tool, and it is
the first step in a geostatistical process through
using regional variables [35]. In geostatistics, the
location of points relative to each other is very
important. The variogram is plotted based on
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sample locations and the differences between the
values [36-38]. In this work, the variography
process was conducted on the IP data in different
directions. The results of the main directions are
illustrated in Figure 6. As shown in this figure, the
red-colored variogram was drawn along the
profiles and perpendicular to the mineralization.
The gray variogram is an omni-directional, and
the green one is along the mineralization.

The variogram parallel to the profiles matches the
omni-directional one but it does not show a
hole-effect. Based on the dataset jumps from one
profile to another, the omni-directional variogram
shows a hole-effect. The variogram along the
mineralization, however, is 100% stochastic (pure
nugget). Since the dipole-dipole arrays were
implemented on the same direction and
perpendicular to the mineralization, the acquired
data was already directional. The data along the
mineralized zones had a larger distance. If the
profile spacing was smaller, considering the
geological nature of the mineralization, the
variogram would be anisotropic.
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Figure 6. Various variograms of IP data.

It should be noted that the data of each single
profile was recorded on the same direction with a
profile spacing of 50-250 m, which is considered
a large spacing in respect with the mineralization
type (Table 1). Therefore, we used the
omni-directional variogram to estimate the IP
data. Figure 7 illustrates the variogram of the
whole IP dataset. As shown, the variogram curve
for the first 100 m represents a single structure.
As the variography window moves toward farther
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profiles, the data of those profiles affect the
variogram, which is depicted as if there is another
structure. In fact, such identical fluctuations in a
variogram curve is caused by the repetition of the
same structure, and is called hole-effect [39].
Finally, an experimental spherical model was
fitted on this variogram. This model shows a
nugget effect of 2.3, a sill of 27, and a range of
100 m.
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Figure 7. Variogram model of IP data.

4.3. 3D Modeling using OK

The estimation phase consists of four basic steps:
theoretical geostatistics, data processing, kriging,
and estimation [40]. Kriging requires an
estimation space, which is determined using block
models. These models are the basis of data
analysis. In this work, the block model was
produced using the geophysical data, topography
of the area of interest using the cell size selection
approach. According to the data spacing and the
thickness of the mineralization, a cell size of 5 x 5
x 5 m was chosen for the modelling blocks.

The estimation process is conducted after
preparing the estimation space (block model). In
this work, considering the fact that the mean value
was unknown, the ordinary kriging (OK) method
was used to transform the 2D data into a 3D
space, assuming a normal distribution for the IP
data (see Figure 5). Having conducted the
estimation process, a total of 65535 data cells
were estimated. The histogram of the estimation
results is shown in Figure 8. Important statistical
properties of the estimated IP data include the
number of data, mean, standard deviation,
skewness, kurtosis, minimum, and maximum,
which are equal to 65535 (number of block), 7.5,
3.79, 1, 1, -1, and 32, respectively.
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Figure 8. Frequency histogram of IP estimation
data.
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4.4. Cross-validation

The cross-validation is a tool to verify the
accuracy of estimation conditions based on the
estimations made at the given points. Variogram is
the only tool available to represent the type of
spatial change of selected samples from a
population [39]. Sometimes the samples do not
represent the actual conditions of spatial variables,
and only the other samples of the population can
satisfy the conditions. To understand how good an
estimation method can express the spatial changes
of a variable, one has to evaluate the validity of
the estimation method used. In the validation
process, the value of a sample is eliminated and
then the value of that sample is estimated using
the surrounding samples through the estimation
method. Based on the results, the uncertainty
(error value) is determined for that sample. Figure
9 shows the cross-validation of the IP data, in
which the estimated value is close to the real data.
This means that the estimation has been
conducted properly.
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Figure 9. Cross-validation diagram of the IP data.
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4.5. Delineation of sulfide and oxide zones and
comparison with borehole loggings

Usually the boundary between the oxide and
sulfide zones is determined based on the existing
boreholes and their logging data. The drilling data
shows the information related to the drilling
station. If a sulfide zone is observed in a specific
depth of a borehole, the zone would exist in the
upper levels as well. Suppose that the drilling is
being carried out on two topographical levels. If a
borehole drilled in a higher altitude cuts an oxide
zone at a depth of 30 m, for example, and a
borehole drilled in a lower altitudes cuts a sulfide
zone at 60 m, one can expect to find the
oxide-sulfide boundary at a depth between 30 m
and 60 m. However, it should be noted that in
most of the deposits, due to financial
considerations, the drilling is carried out only on
one topographical level. Since geophysical data is

IP Value
(mviv)

affordable and continuous, it can facilitate this
challenge. The comparison of this data with the
drilling logs can suggest a given value to the
delineation of sulfide and oxide zones. Obviously,
this value is not certain and can change depending
on the geophysical instruments and the geological
nature of deposits.

In this work, the 3D geophysical model of the
data was prepared using the geostatistical
processes (Figure 10). According to the
experimental and drilling data, a value of 12
mV/V was selected for the chargeability variable,
based on which the sulfide and oxide zones were
discriminated.

In order to provide a detailed perspective of the
model, multiple sections along and perpendicular
to the mineralization were drawn. Figure 11
depicts the location of the drawn sections.
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X: 588450 E

Y: 3921063 N
Z:1627.5m

UTM Zone 40N
X: 589250 E

Y: 3920443 N
Z:1462.5m
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East

Figure 10. Block model of the deposit. The red and purple colors show the sulfide zone.
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Figures 12-17 show the results of model
validation using the boreholes. In all these figures,
the dark black line on the geological log repre-
sents the mineralized zone. The red-colored box
on the logs shows the sulfide zone. These zones
contain mainly pyrite and rarely chalcopyrite.

In this work, the drilling log data was used to
determine the proper value for delineation of the
sulfide and oxide zones. Sections 1 and 2
(Figurel8) were drawn along the mineralized
zone. The red and purple colors represent the sul-
fide zones.
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Figure 12. (a) 2D model of IP values and (b) geological log of borehole No. 18 and its corresponding mineralized
zones (modified from [32]). As it is shown, the sulfide and mineralized zones lie at the depths of 22 until 32 m and
29 until 31 m, respectively. This means that the geological log confirms the model in the IP section. Dis:
disseminated sulfide.
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Figure 14. (a) 2D model of IP values and (b) geological log of borehole No. 9 and its corresponding mineralized
zones (modified from [32]). As shown, the red-colored box on the logs shows the sulfide zone. The geological log
confirms the presence of an ore zone in a depth of about 56 until 59 m that is shown in the IP section. Dis:
disseminated sulfide; Syn: Syngenetic.
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Figure 15. (a) 2D model of IP values and (b) geological log of borehole No. 10 and its corresponding mineralized
zones (modified from [32]). As seen, the red-colored box on the logs shows the sulfide zone. The mineralized
zones lie at the depths of 15,26,36,51 m. Therefore, the geological log confirms the presence of ore sulfide zone
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Syngenetic.
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Figure 17. (a) 2D model of IP values and (b) geological log of borehole No. 14 and its corresponding mineralized
zones (modified from [32]). As seen, the red-colored box on the logs shows the sulfide zone. The geological log
confirms the presence of an ore zone in a depth of around 74untile 77 m, which is also shown in the IP section.

Dis: disseminated sulfide; Syn: Syngenetic.
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Figure 18. Sections 1 and 2 are drawn along the mineralization zone. The red and purple colors represent the
sulfide zones.

It should be noted that in this work, selection of
the depth at which the sulfide zone starts is
important. The prepared geophysical models were
properly cable of selecting this depth.

5. Conclusions

The results of this research work show that the IP
data is an appropriate regional variable that can be
used in 3D geostatistical modelling of sulfide
zones. This 3D modelling can be very effective in
delineation of the sulfide and oxide zones. We
introduced a new application of IP data through
combining the affordable geophysical and
geological logging datasets.

The profile spacing in this work was 50-250 m,
which is a large distance in the exploration of
vein-type gold deposits. Compared to drillings,
the geophysical surveys are affordable, and it is
suggested to implement a profile spacing of 25 m
to obtain a more detailed data. This data provides
more accurate variograms and 3D geophysical
models that can help engineers delineate the
sulfide and oxide zones economically, effectively,
and efficiently.
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