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Abstract

Recognition of ore deposit genesis is still a controversial challenge for economic
geologists. Here, this task was addressed by the virtue of Bayesian data fusion (BDF),
implementing available proofs: sesthematic examples wittvo (Cu and Pb + Zn) and
three (Cu, Pb + Zn, and Ag) evidences. The data, in the current paper being just
concentrations of the indicated elements, was collected from the Angouran deposit in Iran
at the prospecting and general exploration stages. BDF veaksfas discrimination
between the three geneses of Massive Sulfide, Mississippi, and SEDEX types. A better
genesis recognition with clear discrimination between the geneses was achieved by BDF,
as compared to the earlier studies. The results obtained dtibateuncertainties were
reduced from 50% to less than 30%, and deposit recognition was greatly improved.
Furthermore, we believe that using more properties can have a beneficial effect on the
overall outcome. The comparison made between 2 and 3 prepshtisved that the
amount of probable belonging values to any type of deposit was greater in 3 properties. It
was also confirmed that using the completed information from the various stages of

exploration progress can be amplified and be used for genesigniton via BDF.

1. Introduction

Identificationof the ore depositgenesisone of the
main duties of economic geologistsan important
step in exploration, surveying, samplingnd
reserve modelingFor a proper identificationas
proposed elsewhe [1-5], numerous information
databanksas listed belowneeds to be put in place.
The necessary information dteetectonic regime
(magma tekton),mineral host rock and age,
ateration or metasomatizonesof mineral host
rock by hydrothermal omagmaic fluids, overall
figure of the deposit gg. vein, layer, mass,
porphyry) mineralization tissue (how deposit is
placed inthe host roclsuch adispersd, mass/e

| Corresponding author: tokhmechi@ut.ac.ir (Bokhmech

or vein typs), ore and gangue mineral
(mineralizationg.g iron, which might beasoxide,
carbonateor sulfide as well as type of gang,
grade andore deposit tonnage and physico
chemical properties of fluid or magm@luid
inclusion and sustainable isotogesh aH, C, Q
and Sstudies.

Intheearlier methodologiesheuse ofa univaiate
data analysigo explore ore deposit genesis was
common.As a result,the researcher could have
ignoredvast amourd of information and existing
complexites, leading to probablmisinterpretation
and poor comprehension of what has happened
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during tre course of genesj6-13]. In contrast, the
shift towards multivariate analysapproaches such
as pattern recognition vigenesis classification
[14], mapping neural networl{15], dynamic
clustering [16], and hybrid clusterind17] has
revolutionized ouwview towards recognition of ore
deposit genesifNeverthelesseven in the case of
multivariate analysisthe resulting informations
heavily dependent on the implemented statistical
approach. This soalled fuzzy genesis recognition
can be misleadingaisng questios in regards to
uncertainties and how to obtain more reliable
information out othe considerecevidences

A relatively new concept in geoscience is the use
of sensordata fusionwith earliest applications in
military casegowards promahg machinehuman
relationship andedudéng uncertainties imreliable
decisiors. Data fusion hasound its merits in other
science$18, 19]throughgatheringmore data from

varieties of sensorf20-23]. Such improvements
have allowed optimization of compiational
efficiency, removal ofdata redundancygduction
of uncertainies and costimproving theresolution
for signatto-noise ratio, and achieving more
reliable and comprehensive results.

Pattern fusion, which igeintegration in the level
of decison, is the highest level of data fusifi8,
23]. In this paperBDF wasused for identification
of schematicore depositgenesis It was assumed
that three genesemight be consideredor a
deposit Massive Sulfide, Mississippi and
SEDEX The daractestics of these depositare
summarized in Tablé. The role of data fusion is
to amplify the most possible gened@ a certain
deposit The resultsobtainedwere comparegvith
the common methods to give a clear view of the
benefis for theapplied method

Table 1. Brief characteristics of the MVT, SEDEX, and VMS (Besshi) type deposits.

Main
Type. Host Alteration Form Texture Ore minerals Qangue Metal Second metals References
deposit rock minerals
Carbonate Dolomitizati Strataband Disseminated, Galena, Sphalerite Fluorite, (CSS—OB(?E)Fl to
MVT -Dolomite on Stratform Veinlets Pyrite, Marcasite Bangl,lacr?zlcne, PbZzn 0.05%) (11, 24]
(Ag=1 to 40 ppm)
. Dolomitizati .
Se:rlmem on girr:tt?:r?rrld' fw] ZS;';? de;r:jd Galena, Sphalerite, Calcite, Barite, (ZCnuP:% Mn-Fe, MgAs-Sb-
SEDEX ¥ . solidification . ' ChalcoPyrite, Pyrite Quartz, ’ Tl [11, 25]
Volcanic Tabular Breccia : : 05to _
- h ; Pyrrhotite Dolomite (Ag= 6 to 250 ppm)
rocks e lenses Disseminate 0.5 %)
Sericitizatior
Volcanic The Host Massive Sphalerite, Galena, Zn-Pb-
VMS Sedment Rock Stratiform  Disseminated  Pyrite, ChalcoPyrite, Quartz, (Cu=0. Ti-Au-Bi- Mg-Mn [11, 26]
(Besshi) Metamorphis Lenticular Stockwork Pyrrhotite, Calcite, Barite 5to (Ag=2 to 90 ppm) !
ary ! f
m Brecciater ArsenoPyritt 5%)

2. Bayesian Data Fusion (BDF)

Conditional probability is the basis of BDF. The
Bayes law [19, 23] is:
P(A|B)A(B
P(B 1

(Bl A P(A 1)
inwhich A # $) is a priori probability,2( 9 is the
likelihood function, and2X # is a normalization
factor. A § #), the posteriori probabilityis an
indicator of the correctness of propositiof8oT he
result of the conditional probabilit®( # $) is in

the range of [0, 1]. One means absolute belief to
correctness oA whenB is known. A # $) is equa

to zero when A is absolutely incorrect aBdis
known.

Suppose that propertieof S to S aren-measured
values fromX: to X,. There is a conditional
probability for uncertainty agropertyof S, which

is introduced by theX; value. The likelihood

64

function would be the first parameter to be
calculated intie Bayesian algorithm:

PCX 1Y)

LOGIY) 5o

()

The Priori estimation can be calculated as:

P(Y)

T

©)

where ;) and 2~ ;) are the probability of
occurrence and neoccurrenceY, respectively.
O(Y) represents the odds of the evénisteriori
estimationof propositionY equals to:

O(YI X, %10 %) QAYu— LX|Y @)

where the likelihood funains and priori
estimation are calculated by Equations 2 and 3,
respectively.Posteriori probabilityY) in the case

of knowingX; to X, is equal to:
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O(YI X, %000 X, )

P(Y| X, %, .ens

(Y1 X, %0000 X)) 1 OV X, % X)
Suppose that there are two properties; if the
properties were measuredtwo individual times,
then the equation would be modified as follows
[27]:

(5)

POIY)RYLY) RX9) PH Y PIxYY

P ) RAY)  RYS Y
.P(Xl Y)RAY) RX &) uNormalization Factor
P(XI¥)RAY)

In the case of having three properties or more,
Equation 6 will be modified based on 7 [27]:

POOVRAY) RED PR,
RXYYY) = R ) Ry - NomelztionFed

(7)

Summation ofP(x| ¥ ¥*) has to be equal to one,

achieved with thearmalization factor. To describe
the procedure, an example is solved in Section 4.

3. Problem Definition

The knowledgeabout ore deposit genesis woudd
courise put minersin great advantage in terms of
cost reduction. Thus implementing proper
exploratory techniques will save us the benefits of
doubts during decisiemaking. During the last
half century or soyvarietiesin the exploration
techniques have beetleveloped to be used in
mines and further optimizg@8-31].

Since characteristicoof deposits are uniquésee
Table 2 for example) an identical genesis patber
for each is expected which makes the
identification process associatesvith great
amouns of uncertaintiesTo be clear, irFigurel,

three triangles are extracted from the information
in Table 2, which displays similarity betweéme
numbereddeposits and three wdthown geneses
of sulfide depositsi.e. Mississippi Valley (MV),
Massive Sulfile (MS) and SEDEX (S)In Figure

1, concentration of the characteristic elements in
MVT, SEDEX, and VMS are displayed, whettee
numbers correspon the depositvaluesin Table

2. Centes of different panels inFigure 1 are
considered asthe absolute uncertainty point
(33.3% membershipto three genesis types)
Accordingly in places within Table ,2vherethe
values for metal contents are missiagpot has
appeared in the middle of triangl€igure 1), i.e.
considered asa dummy spat Location of the
circles and squarén all panelsin Figure 1 are
assignedased on the analysis of Cu, Zf®b, and

Ag, respectively.

Often evidencesare present that approve and
simultaneously reject belonging of a deposit to a
certain type, which shows uncertaintiesoatsted
with genesis cognition. For instance, suppose that
Zn in one deposit is around 5%. Based on Table 3,
extracted from Table 2, rough ranges of some
parameters in three wekhown geneses of sulfide
deposits are shown. The genesis migtsBBEX,
MVT or VMS.

The aim of the current paper is to find an answer
this question that how is possible to consider a
unique reliable and reproducible genesis for a
deposit based on the visible evidencdse results

of the BDF approach will be presented. €br
evidences are considered for the study: Cu, Pb +
Zn, and Ag their rough ranges are abstracted in
Table 3.

Table 2. Selected properties of MVT, SEDEX, and Besshi type deposits.

Main Minor
Number_anq Type O.f Host rock Alteration Form Ore mineral G_angue metals metals References
name of district  deposit mineral
(ppm) (ppm)
1. Tyndrum, Quartzite, Galena, Sphalerite, .
Scotland MVT Carbonate Strataband ChalcoPyrite QuartzBarite Zn-Pb [32]
2. BlaznaGustet, Carbonate, . Galena, Sphalerite, Calcite, Barite, Cu-Ag-Ba
Romania MVT Dolomite Metamorphic ~ Strataband ChalcoPyrite Quartz, Dolomite Zn-Pb Ti [33]
. i I Pyrite, Galena, . . Mn-Fe-
3. Iberian, SEDEX Vollcanlc S|I|c!f|lctatt|lon, Strataband Sphalerite, Cal(inebislrnf, Pb-Zn-Cu Mg-Ag (34]
Germany sedimentary  sericitation ChalcoPyrite ~ Quartz, Déomite
Ag-Sb-Se
. . Te
4. Fankou, China MVT Carbonate o iization  Stratabang G21€N@ Sphalerite Quartz, Calcite, Pb-zn Ag=21-210 [35]
’ Shale Pyrite Dolomite ol
-(Cu=76)
Carbonate Sphalerite, Galena, Calcite, Barite ZrPb>30% Mn-Fe
5. Navan, Ireland SEDEX Shals)\ﬁ(lgamc Dolomitization ~ Strataband Pyrite, Marcasite Dolomite cu Mg-Ag [36]
6. Benue Trough Shale, Siltstone Galena, Sphalerite, Quartz, Calcite, PbZn (,':Z':hg;-
. . ' MVT L ! Strataband ChalcoPyrite, Dolomite, Barite, [37]
Nigeria limestone bornite, Pyrite Fluorite 140)
' (Cu=350)
7. Broken Hill, Siltstone . Strataband, Galena, Sphalerite, Carbonate, Pb-Zn-Ag-Cu
Australic SEDEX sandston- Metamorphic Stratiform Pyrite Fluorite, Dolomite F-Mn- Fe [25]
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8. Pyreneez,
France

9. Malines,
France

10. Zlate Hory,
Czechoslovakia

11. Tharsismine,
Spain

12. Bleikvassili,
Norway

13. Malmani,
South Africa

14. Yindongzi,
China

15. Ponferrada,
Spain

16. Pucara Basin,
Peru

17.Lengenbach,
Switzerland

18. Santa Lucia,
Cuba

19. Yenefrito,
Spain

20. Damaran
Lufilian, Central
Africa

21. Kuh-e-
Surmeh, Iran

22. Angouran,
Iran

23. George
Fisher, Awstralia

24. Nanisivik,
Canada

25. Mount Isa,
Australia

26. Upton,
Canada

27. Red Gog,
Northern Alaska

28. McArthur,
Australia

29. Maestrat
basin, Spai

SEDEX

MVT

Besshi

VMS

SEDEX

MVT

SEDEX

MVT

MVT

SEDEX

SEDEX

SEDEX

SEDEX

MVT

MVT?
SEDEX?
Massive
Sulfide?

SEDEX

MVT

SEDEX

MVT

SEDEX

SEDEX

MVT

claystone
volcanic rocks

Carbonate
Shalerhyolite

Carbonate
Shale
Schist,
Quartzite,
marble

Carbonaceous
black slate
volcanic group

Amphibolites
schist, gneiss,
marble

Carbonate
Dolomite

Meta Siltstone,
Shale, limestone

Carbonate
dolostoneShale

Carbonate
Dolomite

Dolostone-
green schist
amphibolites

Dolostone
Shalelimestone
schist
Siltstones, marls
and limestone
porphyritic sills

MetaCarbonates,
Dolomite

Carbonate

Amphibolites,
gneiss, marble

Shale, Siltstone,
Carbonate, tuff

Dolomitic
Mudstone
Dolomitic Shale,
Siltstones, and
Mudstone

Limestone,
Clastic Rocks

Chert,
Carlonate,
Mudstone and
Shale

Dolomitic
Siltstone

Limestones

Dolomitization ~ Stratiform
R Strataband,
Stratiform
Metamorphic Stratapand
Massive
Metamorphic  Stratiform
Metamorphic Stratiform
Lenses
Stratiform,
Strataband
Argillic -
silicic- Strataband
albitization
Strataband
- Strataband
. Strataband
Silicic Stratiform
- Stratiform
L Stratiform
Propylitized Lenticular
Epigenetic,
‘Metamorphism  Massive,
PipeLike
- Strataband
. Strataband
Metamorphism Stratiform
Dt?lltljlrcnﬁte Strataband,
Alteration Lenses
: Strataband
Lenses
Silica-
Dolomite StrataBound
- Strataband
: Stratiform—
Lens
Silica- .
Dolomite Stratiform
- Strataband

1, 2020

Sphalerite, Galena, Calcite, Barite,
Pyrite, Marcasite Quartz

Galena, Sphatite,  Quartz, Calcite,

Pyrite Dolomite
Spgﬁﬁg:ﬁsﬁs:na’ Quartz, cQaIcite,

Pyrite Dolomite
Pyrite, Sphalerite,

Galena, Calcite, Dolomite,
ChalcoPyrite, Quartz
ArsenoPyrite

Pyrite, Sphalerite,

Galena,

ChalcoPyrite, Quartz
ArsenoPyrite

Sphalerite, Galena,
ChalcoPyrite,
Pyrite

Calcite, Ddomite

Galena, Sphalerite,

ChalcoPyrite,  Carbonate, Barite,
ArsenoPyrite, Quartz
Pyrrhotite

Pyrite, Sphalerite, .
Galena Calcite, Quartz
Sphalerite, Galena

Marcasite, Pyrite Calcite, Dolomite

Galena, Sphalerite,Carbonate, Barite,
Pyrite Quartz

Galena, Sphalerite
Pyrite,
ChalcoPyrite
Sphalerite,
Arsenopyrite,
Galena, Pyrite,
Chalcopyrite
Galena, tennantite,
Sphalerite,
Chalcocite,
bornite, and
enargite
Sphalerite and
Galena,Pyrite,

'Carbonate, Barite,
Quartz

Quartz, Calcite

Quartz, Calcite

ChalcoPyrite, Dolomite, Barite,
Covellite, gypsum
Chalcocite,
Marcasite
Sphalerite, Quartz, Dolomite,

Galena,Pyrite  anhydrite, Calcite

Sphalerite, Galena,Calcite Dolomite,
Pyrrhotite, Pyrite  Quartz, Fluorite

Sphgleme, Galgna, Dolomite, Calcite
Pyrite, Marcasite

Pyrite, Sphalerite Calcite Dolomite,
and Galena,Barite Quartz, Fluorite

Sphalerite, Pyrite,

Calcite, Barite
Galena

Sphalerite, Galena,
Pyrite, Marcasite
ChalcoPyrite

Barite, Calcite

Pyrite, Sphalerite,

ChalcoBrite,
GaIeFZa Quartz
ArsenoPyrite
Sphalerite, Galena, Dolomite

Pyrite, Marcasite

66

Zn-Pb<10%
-Ba
Zn-Pb

Zn-Pb-Cu

Pb-Zn< 2.6%
(Cu=8000)

Zn-Pb<12%
(Cu=4000)

Pb-Zn<4.3%
-F
Pb-Zn<11%

-Cu

Zn—
Pb<17.6%

Pb-Zn<10%

Pb-Zn-Cu

Zn- Pb<6%
(Cu=1600)

Zn-Pb-Cu

Pb-
Zn<35.9%
-Cu

Zn-
Pb<17.5%

Zn-Pb<29%
(Ag=210)

Zn-

Pb<16.5%
(Cu=5000)

Pb- Zn<10%

Zn-Pb<13%
(Cu=3000)

Zn-Pb<2.1%
Ba

Zn-Pb<21%
(Cu=1000)

Zn-Pb<19%-
Cu

Zn-Pb<8%

Ni-Co-Ti

F-Ba

Au-Bi-Ag

Bi-Te

Ag-Sb

Fe-Mn-
(Ag=70
300)

Fe- Na—
Mg
(Ag=54-
100)
(Ag=48)

F-Ba-
(Ag=31)

As-Tl-Ba-

(Ag=10-
426)

Ba-(Ag=3-
120)

Ge, Cd, As,
Sh, Ag, Au

Co, Ni,
(Cu=250)

Ag=93-150

(Cu=46}
(Ag=35)

Ag=150
(Ag=13.5}

(Cu=130}
cd

(Ag=230)
Au

(Ag=60)
TI-Fe

Cu

[38]

[39]

[28]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[24]

(53]

[54]

[55]

[56]

[57]
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30. Basque

H . MVT Limestones Dolomitized Strataband
Cantabrian Spain
31. lllinois- Carbonate,
Kentucky USA MVT Clastic Units ) Strataband
32Corrdileran, MVT Limestones Dolomitized ~ Strataband
Canada
33. McArthur ) Sphalerite
River (HYC), SEDEX LimestoneShale Stlr::]'g? and Galena,
Australia Pyrite
. Volcano

34.‘Lengshmkeng, SEDEX sedimentary - Strataband
China

rocks
35.‘Wu3|he, MVT Carbonate - Stratiform
China

voleano - giication

36.Chahmir, ran SEDEX sedimentary carbonitizatic;n Strataband

rocks

Volcano

37Howards Pass, SEDEX sedimentary - Strataband
Yukon rocks

Sphalerite and ey
Galena, Marcasite, Barite, Calcite ~ Zn-Pb<9.4% (Ag—5_) Au [58]
X -(Cu=50)
Pyrite
Spha'g”“?v Galena’Dolomite, Fluorite Zn-Pb Cu-Ag [58]
yrite
Sphalerite, Galena, Quartz, Calcite, Zn-Pb<7.1% R [59]
Pyrite Dolomite
Barite, Calcite, Barite, Calcite, Zn-Pb (Ag=41) [60]
Dolomite Dolomite (Cu=2000) Au
Spha';’)',‘rié Galena, - \cite. dolomite  Zn-Pb<4.6%  (Ag=204) 61]
Pyrite, gallena, Calcite, dolomite  Zn-Pb<11% - [62]
Sphalerite
Pyrite, galena, Calcite, dolomite, o
Sphalerite quartz Zn-Pb<8% B [63]
Pyrite, galena, Calcite, dolomite  Zn-Pb<6% - [64]

Sphalerite

3.1.Case Study

The Angouran Z#b-Ag deposit is located ithe
Western Zanjan Province, NW Iran, about 450 km
NW Tehran (Figre 2; compiled from [65, 66]
The Angouran deposit is aavld class andhe
largest zinc deposit in IranThe ae deposit
resources are about 14.6 MT with 22.6% zinc,
4.6% leadand 110 ppm silver [67TheAngouran
deposit is located withinthe Sanandafirjan
metamorphic beltand the host rocks are marble,

micaschist, amphibolites, and gneiss of Cambrian.

Many have workedon the genesis othe

MVT

Cu= <0.05%

SEDEX

Angouran deposit since 1968 with numerous
developed models, to be named a few Proterozoic
volcanogenic massive sulfide (VM8)pe
mineralization [68], sedimentamxhaldive
(SEDEX) process during the Mesozoic [67], and
the Mississippi Valley type (MVT) deposit [51].
Therefore, it seenthatthe genesis for this deposit
is rather conflicting between reports app@gin
the early 2000s. Something we believe tlist
requiredto be rectifieds through implementing a
proper methodology that minimizes the
uncertainty during identification of a deposit.

VMS  SEDEX VMS
Cu= <05 (ﬂ) Cu 5% Pb+Zn 30% (b) ,»};./-,, <10%
MVT
Ag= <40 ppm
SEDEX VMS
Ag= <250 ppm Ag<100 ppm
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Figure 1. Three weltknown geneses of P&n type deposits.Concentrations of characteristic elements in MVT,
SEDEX, and VMS are displayed. Numbers correspond to the numbesf deposits in Table 2, first column.
Square is Angouran’s deposit. Location of the circles and square are based on the average analysi§ Gu, b)
Zn + Pb, and c) Ag, reported for each mine.

Table 3. The rough ranges of Cu, Pb, Zn, Pb + Zn,
and Ag extracted from Table 2, for tiree welkknown
geneses of sulfide deposijtse. Mississippi Valley
(MV), Massive Sulfide (MS), and SEDEX (S).

SEDEX MVT VMS

Cu (%) 0.05-0.5 Up to 0.05 0.5-5
Pb (%) 0.1-15 1-6 0.01-0.1
Zn (%) 1-16 1-16 0.1 -6
Pb+Zn (%) 1-31 2-22 0.1 -6
Ag (ppm) 1-25C 0.1-4cC 1-10C

4. Schematic dataset

Properties(3), Cu, Pb+Znand Ag, are listed in
Table3 for analysis otheAngouran’s genesisThe
datawasanalyzed andampared for the case of 2,
CuandPb + Zn (Table 4), and @operties(Table

5), as indicatedFurthermore, prospecting aride
general exploration stages were considered for
analysis viaBDF with the assumptions ofl)
availability of the information for only 3
properties Cu, Pb + Znand Ag 2) considéng
only 3 genesis types, Mississippi Valley, Massive
Sulfide or SEDEX Sulfide, according Eagure 1.
Results of analysis dhe prospecting stagevere
fused togetheusing Equations2, 3, 4 and 5,and
these results were reported in the lastows of
Tables4 and5. A priori knowledge forthe three
commondeposit typeswvas considered the same
and equal to

P(MV) P(M9 F€$%

The ®©mparison of the Angouran deposit
belongingprobability with three genes based on
theprevious datasef{first row in Table4) and the
results of data fusiofwhen Cu and Pb + Zn are
available) (third row in Table5) show thatthey
have changed as follow:

X Mississippi Valley Typefrom 50% (average
of two properties) to 70.5%,

X Massive Sulfide: from 35% (average of two
propertie} to 26.5%, and

x SEDEX Sulfide: from 15% (average of two
propertie3 to 3.0%.

This shows that data fusion has amplified the
probability of Mississippi Vallg Type for
Angouran, while it has been attenuated for the two
other types.

68

Comparisons between Tables 4 and 5 are
interesting. The probabilities of thipdoperty(Ag,

in this case) were consideredbeequal to average

of propertiesl and 2 (Cu and Pb2n, in this case).
Thereforeit is anticipated that the results of fusion
of threeproperties(third row, Table 5) should be
similar to the results of fusion of twaroperties
(third row, Table 4). However, the results were
completely differentData fuson when Cu, Pb +
Zn, and Ag are available

X Mississippi Valley Type: from 50% (average
of two propertie} to 81.7%,

X Massive Sulfide: from 35% (average of two
propertiey3to 17.7%, and

x SEDEX Sulfide: from 15% (average of two
propertie3 to 0.6%.

It should ke emphasized that in bathse studies (2
or 3 propertie}, basedon the situations the
average belonging probabilityasconsideredo be
the same f{rst row in Tables4 and 5). The
comparison  shows that BDF amplifies
discrimination between geress when more
propertiesare used Of a great interest is the
considerable reduction of uncertaintiésmaller
than 30%)in both cases with 2 and@operties
For the sake of clarification, the average belonging
value improved from 50% to 70.5% for 2
properties(Table 4) and 81.7% for Broperties
(Table 5).

5. Result of data fusion

In this part, the results tifie previous datasets and
current datasets (prospecting and general
exploration in Tables 4 and 5) are fused. The
following equation is used for fusion dfe results
for two properties (in different exploration stages)
in theMississippi Valley type:

2181;8:¢8:5:H=
Ed8 27;9%d 8 zoKd 8 25A

£/ 8 ‘;ZSIEI(/B ‘;£6}
OKNI=FPE (=?F

(8)

where all the terms were calculated in Tables 4 and
5. It should be reiterated that the summation of
probabilities have to be equal to one, which is the
role ofthe normalization factor. The equation for
thedata fusion calculatn result in the case of three
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properties inthe Mississippi Valley type is All terms were defined in Tables 4 and 5.
abstracted as follosv

A18 45550500 =

- - 5. 6. 75 - 50 6 5= -7 (9)

Ed8 7z red8zorEd 8 z5¢d 8 A

Ed 8z Ed 8z rEd 8 A
OKNI=HEV (=?P
(@)
(b)

Figure 2. a) Simplified tectonic map of Iran (compiled from [65- 66]). The star shows the location of
the Angouran deposit. b) A panorama photo of Angouran lead and zinc mine.
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Table 4. Fuzzy values for a schematic study on Angouran’s deposit considering all 3 geneses (Figlydmsed
on the results of analysis of two sensors: Cu and Pb + Zn.

Dataset

First Sensor (Cu)

Second Sensor (Pb+2n)

Previous Dataset
(Prospecting)

«/18];)=04
«H;)=04
2(/5];)=02

21819 =06
{4;H=03
2(/5];9 =01

Current Dataset
(General Exploration)

A18];9) =07
{59 =017
«/5];f) =013

«/8];5 =08
24;H=015
«/5];9 =005

1(/8|'E‘E)=£’—O'6 —0'4205
44T 8047060
.75. __05 _
20vaazacnuiddBlss s = 1705 0.333

E(/8|;E.E —

0.333
= 0.706 = 70.5%

‘477 0333+ 0125+ 0014

Fusion of Previous Dataset
(Prospecting stage)

850 =

2500aamaacsuiddbadid) =

. - 03 04
10854534 = 5705 0143
7
0143 _ .
1+ 0143~

0.125
= 0.265 = 26.5%

0.333+ 0.125+ 0.014

10/51:4:8 =

- 0102

7

0.014

2pvaamaacnuiddPlasd) = 1+ 0014 0.014

(151538

0.014
= 0.030 = 3.0%

~ 0333+ 0125+ 0014

MV, MS, and S stad for Mississippi Valley, Massive Sulfide and SEDEX types, respectively

The msults of applying BDFto all data are
summarized in Tables 6 (in the case of two
properties, Cu and Pb + Zn) and 7 (in the case of
three properties, Cu, Pb + Zand Ag). Ofa great
interest is the fact that the application of data fusion
improved the probability of the belonging from an
average of 75% to nearly 100% (99.6%, 99.36%
for 2 and 3 properties, respectivelyhich means
less uncertainties in identification of tldeposit
(Tables 6 and 7).

Results of the Angouran deposit belonging
probability to three genesasebased on fusion of
prospecting and general exploration dataset (first
and second rows in Tables 6 and 7), in the cases
that two or three properties genemitinteresting
results. BDF concluded that with a probability
more than 99%theAngouran’s type is Mississippi
Valley, with an uncertainty in decisianaking
close to zero. As a result, in the detailed exploration
procedure, the patterns tfe Mississipp Valley
type must be utilized.

When twostage datasets are available, numbers of
properties are not so important, and there are no
significant differences between the final results. In
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the case study, the Angouran’s belonging
probability to the Mississippi Valley type were
equal to 99.6 % and 99.36 % for two and three
properties, respectively.

6. How proposed method could be applied to
exploration programs

Identification ofthe ore deposit genesis, which is
one of the main duties of economic geologisss, i
an important step in exploration, surveying,
sampling and reserve modeling. There are also
usually evidences for known genesis (e.g. Tables 1
and 2) the similarity between those evidences and
field observations hefpto identify ore deposit
genesis. Té scientists have often different idea
about the genesis of a certairdeposit (more
example is in case 3.Ihis uncertainty makes the
exploration activities rather costly with disparity in
classification outcome. The introduced procedure
helps to integate the evidences or even different
hypothess about the genesis of ore deposits in
order to decrease the uncertainty associated with,
which lead to utilize the suggested exploratory
pattern forthe identified genesis type.
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Table 5. Fuzzy belonging valug of schematic study on Angouran’s deposit considering all 3 geneses (Figures 1)
based on the results of analysis of three sensors: Cu, Pb+Zn, and Ag.

Datase

First Sensor (Cu Second Sensor (Pb+Z1 Third Sensor (Ag)

Previous Dataset
(Prospecting)

2(/81;5 = 040
AH;7) =040
215];9) =020

2/8]:5 =060
2(%;5H =030
2/5]:5 = 0.10

A181;/) =050
«4;/) =035
2(/5]:/) =015

Current Dataset
(General
Exploration)

2(/8];9) =070
«f;9) =017
2/5];5 =013

A18];H =080
A4:;H=015

A18];)=075
2(Y ;) =o.16

2(/5] ;8 = 0.05 2(/5] ;) = 0.09

. i} - 06 0. .
118l:4:4:d) = §55 72z =05
-

o
~
o
13

04'06°0.

o
o ol

5
1+05

= 0.817 = 81.7%

2pvaamaacnvidd@lss:d:d) = 0.333
0.333

/8| E-E-7) =
Z( [:5:4:0 0333 + 9.072+ 0.0025

o6y 1 o U0 USS
Fusi _ ( 44 ,4) 50607 065 0.077
usion of Previous 7
Dataset 5.6. 0.077
(Prospecting stage) Bovaamaadnu i&gﬁ) aifd) = 1+ 0077 0.072

8550 = 0072 = 0177 = 17.7%
ANt T 5333+ 0072+ 00025 1~ T
107151543454 = 10201015 000
4040477 6°08°09°085

7
0.0025
250uaamacsuiddPlssisid = 1+ 00025 0.0025
o 0.0025
2(15];5:4:0 = = 0.006 = 0.6%

0.333 + 0.072 + 0.0025

MV, MS, and S sind for Mississippi Valley, Massive Sulfide, and SEDEX types, respec!

Table 6. Summarized results of data fusiofbased genesis recognition of the studied schematic deposit using the
dataset for two sensors: Cu and Pb + Zn.

Data Fusion
of Previous Current Dataset (General Exploration Stage)
Genesis Type Dataset

(Prgfsgegting First Sensor (Cu)  Second Sensor (Pb +Zn)

Final Data Fusion

2600 aaaaonuic(/8l5c 00
0.705 x 0.80 x 0.70
=——=1645

040 x 0.60

S
Valley | 70.5% 70% 80% 2189350

~ 16.45+ 00563 + 0.00975
= 0.996 = 99.6%

260042220 ocu( 48555500

_0.265% 0.17 x 015 _ 0.0563

- 040x 030 -
0.0563

~(t -5-6.5.6 —
CE Rt 16.45+ 0.0563 + 0.00975
= 0.0034 = 0.34%

SEDEX 26.5% 17% 15%

2600 aaaaonuic( /55000

_ 0.03 x 0.13 x 0.05 — 000975

Massive 3% 13% 50 i LA o
i 0 0 0 I5]:2:5:2:4

Sulfide .

~ 16.45+ 00563 + 0.00975
=~0.0006 = 0.06%
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Table 7. Summarized results of data fusion based genesis recognition of the studied schematic depssig the
dataset for three sensorsi.e. Cu, Pb + Zn, and Ag.

Current Dataset (General

Data Fusion of

Exploration Stage)

Genesis . . .
Previous Dataset  First Seconc . Final Data Fusion
Type (Prospecting Stage) Sensor Sensor (Pb + ThlrszS;ansor
(Cu) Zn) 9
EOQU‘ aaa aOBU|(( /8| !': ‘: !': !Z ) !Z)
_ 0.817 x 0.70 x 0.80 x 075_ 28595
Mississippi - 0.40 x 0.60 x 0.50 oo
Valle 81.7% 70% 80% 75% /8| ,55,56;57;45;4 ;47)
Y 2.8595
~ 28595+ 0.0172 + 0.00975
= 0.9936 = 99.36%
CTUN () E i E €
‘ozu;aaéaorzu.’(( fq JE 9E 9E 9l a2 i)
O 177 x 0.17 x 0.15 % 0.16 - 00172
- 0.40x 0.30x 0.35 -
SEDEX 17.7% 17% 15% 16% A4:2 = 5 ,5 b4 47)
2.8595 + 0.0172 + 0.00975
= 0.006 = 0. 6%
Zopuiaaaaonuic(/5l:e e A5 500)
_ 0.006 x 0.13 x 0.05 x 009_ 0.00117
Massive - 0.20 x O 10 x 0.15 -
Sulfide 0.6% 13% 5% 9% A15];8;8; S 0011747)

~ 28595+ 0.0172 + 000117
= 0.0004 = 0.04%

For example, as implied in Tables 6 and 7, data
fusion has beertoncluded that with a probability
more than 99%, Angouran’s type is Mississippi
Valley. Therefore, it means that certainfenesis

is Mississippi Valley typ and uncertainty in
decisioamaking nears zero. As a result, in the
detailed exploration procedure, the patterns of
Mississippi Valley type must be utilized.

On the other hand, the introduced procedure might
help to recognize the belts of lead and ziittthe
geneses MVT, SEDE)@and Massive Sulfide. This
will lead to useful prospecting patterns. Similar
procedure could be developed for Porphyye
Copper deposits, Mantype Copper deposits, Iron
ore deposits, et

7. Conclusiors

Identification of theore deposigenesis which is
important in optimization of exploraticactivities

is a challenging decision in economic geology.
There are usually evidences for knowanesis
similarity between those evidences and field
observations help taentify ore deposit genesis.
The scientists have often different idea about
genesis of a certain deposit. This uncertainty makes
the exploration activities ratheicosty with
disparity in classification outcome
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In the current paperBayesianDataFusion(BDF)
was introduced and applied to achiegeunique
genesis type for a deposit based on vargiages

of exploration datasets. A schematic problas
designed to show hoBDF works and how it helps

to discriminate between various possible geneses.
Angouran’s chdenge matched with the designed
problem in order to make a walkfinad issue.The
resultsobtainedshowthat data fusion amplifiabe
deposit belongingprobability to a genesis and
attenuation of other types. Therefore, it helps to
decrease the uncertiyn associated with
knowledge of scientistsjudgments and further
helpedenormouslyin identification ofa deposit.
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