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Abstract 
Upscaling based on the bandwidth of the kernel function is a flexible approach to 
upscale the data because the cells will be coarse-based on variability. The intensity of 
the coarsening of cells in this method can be controlled with bandwidth. In a smooth 
variability region, a large number of cells will be merged, and vice versa, they will 
remain fine with severe variability. Bandwidth variation can be effective in upscaling 
results. Therefore, determining the optimal bandwidth in this method is essential. For 
each bandwidth, the upscaled model has a number of upscaled blocks and an upscaling 
error. Obviously, higher thresholds or bandwidths cause a lower number of upscaled 
blocks and a higher sum of squares error (SSE). On the other hand, using the smallest 
bandwidth, the upscaled model will remain in a fine scale, and there will be practically 
no upscaling. In this work, different approaches are used to determine the optimal 
bandwidth or threshold for upscaling. Investigation of SSE changes, the intersection of 
two charts, namely SSE and the number of upscaled block charts, and the changes of 
SSE values versus bandwidths, are among these approaches. In this particular case, if 
the goal of upscaling is to minimize the upscaling error, the intersection method will 
obtain a better result. Conversely, if the purpose of upscaling is computational cost 
reduction, the SSE variation approach will be more appropriate for the threshold setting. 

1. Introduction 
In porous media, because of a large volume of 
data, upscaling as a pre-processing stage can 
reduce the volume of computations, and 
consequently, decrease the cost of the 
computations in the later stages, especially in fluid 
flow simulation. New geologic modeling 
techniques produce reservoir models consisting of 
up to 108-1010 cells, each populated by different 
properties such as permeability, porosity, and 
fluid saturation. However, numerical reservoir 
simulations are usually performed with fewer than 
100,000 cells, a factor of 10,000 down on the 
geologic grid [1]. Upscaling in reservoir 
simulation is a process that scales-up all 
properties at a fine-scale model to equivalent 

properties defined at a coarse-scale model such 
that the two models act as most similarly as 
possible [2]. 
Many upscaling techniques have already been 
introduced in the literature such as analytical 
methods, single-phase upscaling methods, and 
two-phase upscaling methods. The analytical 
methods (e.g. arithmetic and geometric averaging) 
are very simple to apply, and they are attractive 
methods for upscaling but for performance, they 
are not suitable for complex reservoirs. For  
single-phase flow upscaling, the only parameters 
to be upscaled are the absolute permeability or 
transmissibility and porosity. In two-phase 
methods, in addition to these parameters, relative 
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permeability can also be upscaled. Upscaling 
results, especially in complex reservoirs, are 
strongly dependent on boundary conditions [3, 4]. 
Single-phase upscaling methods have been 
classified by Durlofsky (2003), and according to 
the selection of the appropriate boundary 
conditions, are set to local, extended-local, global, 
and quasi global (also called local-global) [5]. 
The upscaling method has been used by 
substituting a heterogeneous region consisting of  
fine-scale cells into a homogenous region 
comprising of coarse-scale cells to decrease the 
calculation and computation time. The properties 
of the coarse-scale cells are calculated from the 
average values of the fine-scale cells [6-8]. 
Wavelet transform and its extensions are one of 
the most important methods used in oil and gas 
reservoirs for upscaling reservoir data [9-11]. 
Chen et al. (2018) compared a novel upscaling 
method called multiple boundary method in  
three-dimensional fractured porous rocks with the 
commonly used Oda upscaling method, and also 
with the volume averaging method. The results 
computed by the multiple boundary method are 
comparable with those of the other two methods 
and fit best the analytical solution for a set of 
fractures. The errors in flow rate of the equivalent 
fracture model decrease when the multiple 
boundary method [12] is used. 
The coarse model result may be inaccurate due to 
heterogeneity loss, connectivity distortion, and 
numerical dispersion [13]. The accuracy of the 
upscaling method depends on the approach of grid 
scaling; otherwise, all methods that are applied for 
upscaling are based on averaging. If the gridding 
and coarsening processes are carried out based on 
variability, we can expect that the accuracy of the 
upscaling method will be increased. The new 
upscaling method presented in this paper is 
referred to as the kernel function method with 
adaptive bandwidth. Given that in the primary 
model the upscaling is related to the cell 
variability, the kernel function bandwidth can be 
considered as a function of variability. On the 
other hand, due to the varying intensity of 
variability in different regions, it uses a variable 
bandwidth approach and the bandwidth of the 
variable in the kernel method that represents the 
system variability, and it is the essence of 
upscaling. 
In areas with high variability, by choosing a small 
bandwidth, we will have the smallest upscaling; 
therefore, these areas will remain fine-scale. 
Conversely, in areas with a low or smooth 
variability, by choosing a high bandwidth, most 

blocks will be merged and then coarsened. In this 
method, by determining a bandwidth or threshold, 
which is a function of cell variability, we can 
control the number of upscaled blocks and the 
computational error. Clearly, in an upscaling 
process, using the kernel function bandwidth, an 
upscaled model will be obtained for each 
bandwidth. An optimal bandwidth should be 
determined to determine the optimal upscale 
model. If one can choose the optimal bandwidth, 
s/he can expect the least amount of data to be 
wasted in the upscaling process. Thus 
determination of the optimal threshold in the 
upscaling algorithm based on the kernel function 
bandwidth is a major challenge in the  
kernel-based upscaling process. The threshold is 
actually a function of the system variability. 
Naturally, with a higher threshold, the number of 
cells reduces from a fine scale to a coarse scale. 
However, in this case, the amount of 
computational error also increases. 
In this paper, we first focus on the kernel adaptive 
bandwidth method as a new upscaling method. In 
this regard, we consider the kernel  
bandwidth-based upscaling. Then the effect of 
threshold value on the upscaling results will be 
examined. In the next step, the optimal threshold 
in different upscaling approaches will be 
determined. Three upscaling approaches that will 
be examined in this paper are the SSE differential, 
intersection of SSE, and number of upscaled block 
charts and the SSE changes versus thresholds. 

2. Research data 
In order to investigate the upscaling algorithm 
based on the bandwidth of the kernel function in 
one dimension, we used a well dataset with 1613 
data. The data used in this work is a density log 
with a resolution of about 15 cm (Figures 1). The 
number of samples is 1613. The depth of the 
studied well varies from 2605 to 2847 m in length. 
In order to simplify the process, the data of the 
density log in this work is presented as a signal. 
The mean and the variance of the data are 2.7070 
and 0.0572, respectively. The purpose of 
upscaling the data is to convert the scale of data 
from cell to block or from fine-scale to  
coarse-scale, while retaining the main 
characteristics of the data. As it is clear from the 
data, the initial section of well is highly variable, 
and in the middle and the end, the variability is 
smooth. 
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Figure 1. Density log data. 

 
3. Research method 
Kernel density estimation (KDE) is a very 
important statistical technique with many practical 
applications. It has been applied successfully to 
both the univariate and multivariate problems. 
There exists extensive literature on this issue 
including several classical monographs; see  
[14-16]. There are two main computational 
problems related to KDE: (a) the fast evaluation 

of the kernel density estimates,  and (b) the fast 
estimation (under certain criteria) of the optimal 
bandwidth matrix H (or scalar h in the univariate 
case) [17]. 
The bandwidth of the kernel function can be 
defined as a variability parameter. In an upscaling 
process, if cells are merged based on cell 
variability, an appropriate pattern will be obtained 
on coarse-scale. Therefore, since upscaling is 
related to the block variability, the bandwidth of 
the kernel method can be considered as a function 
of the variability of the reservoir property. In 
areas with high variability, by considering a small 
bandwidth, we will have the smallest upscaling, 
and these areas will remain fine as much as 
possible. Conversely, in areas with low and 
smooth variabilities, with selection of a high 

bandwidth, most cells will be merged and become 
coarse. Considering the variability, the variable 
bandwidth approach is used in the upscaling 
process. Therefore, due to the variability, the 
bandwidth will be determined for any property. 
The variable bandwidth can directly indicate the 
degree of data variability. How to calculate and 
determine the optimal bandwidth can be 
challenging. In this paper, we propose a new 
method for upscaling based on data variability and 
also a dynamic method for determining the 
optimal bandwidth. Bandwidth in each area can 
control the upscaling. Also the threshold or 
bandwidth defined in this problem is controllable 
so that the rates of change as well as its maximum 
changes are determined by the data. The flowchart 
in Figure 2 shows the steps of the upscaling 
algorithm based on the kernel function bandwidth. 
Changes and maximum threshold or bandwidth 
will be determined from the data. For each 
threshold or bandwidth, the upscaling error, the 
number of upscaled blocks, and the calculation 
time will be different. It will be possible that by 
choosing a specific threshold, one can reach the 
specified number of upscaled blocks and the 
upscaling error. 
The stages of the kernel-based upscaling 
algorithm are as follow: 

1. Calculate the difference between two 
consecutive data and compare it with the 
threshold or bandwidth value defined in each step. 

2. If the difference between the two values 
of the first and second cells is less than the 
threshold, the first and third data are compared. 

3. If the difference between the two data is 
more than the threshold, then the upscaling will be 
carried out and all the previous cells of this stage 
are merged together. Therefore, an equivalent 
value for these cells is calculated and will be 
allocated to the entire block. 

4. The square of the difference between the 
actual value and the obtained value in each block 
is considered as the error of the block and the sum 
of these squared differences is equivalent to SSE. 
For all the data, this operation is performed and 
the upscaling process will be completed. 

5. Then the threshold is increased by a 
defined step, and steps 1 through 4 will be 
executed for the new threshold. 

6. The operation is performed for all the 
cells, and at the end, for each threshold, a SSE 
value and the number of upscaled blocks are 
calculated. 

7. Finally, the graph of the error variation 
against the threshold and also the graph of the 
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error variation versus the number of upscaled 
blocks will be plotted. 
It should be noted that in the kernel-based 
upscaling, the defined threshold controls the 
computational efficiency. Moreover, in this 
upscaling method, the threshold can be simulated 
as a function of the number of required cells, and 
the number of cells will be as a function of time. 
By changing the threshold, the error value and the 
number of blocks will be changed accordingly. 
The main idea behind using kernel is to run a 
simulator that takes a reasonable time with the 
highest accuracy. Increasing the accuracy requires 
an increase in the number of cells, thus when the 
sizes or dimensions of the cells are kept small, 
what happens on the other side is that the large 
number of cells will greatly reduce the 
computational efficiency. In fact, computational 
efficiency depends entirely on the number of cells. 

In the process of upscaling using the kernel 
bandwidth, we can see the results based on the 
number of upscaled blocks. If the goal of 
upscaling is to obtain a cell number that can 
manage the variance of the fine scale model and 
also provide the appropriative precision, it can 
also be achieved through the process of upscaling 
based on the bandwidth of the kernel function. In 
this regard, by considering the kernel evaluation 
criteria such as the mean square error (MSE), sum 
of square error, (SSE), and threshold defined, the 
number of upscaled blocks can be controlled. 
With this process, the variability of the considered 
feature in the reservoir is a function of the 
threshold, and by controlling this threshold, the 
number of final blocks of model is determined. 
This is the main difference between the kernel and 
the other upscaling methods such as wavelet 
transformation. 

 
Figure 2. Kernel-based upscaling process. 

 

 

Depending on the data variability, the 
threshold and incremental step are 

determined 

The difference between two successive data is 
calculated (1) 

If it was bigger than bandwidth 

Each cell is known as a block and return to 
(1) and the next cell is selected 

If it was lower than bandwidth 

The difference between the second cell and next 
cell is calculated 

The process continues until the difference between two 
cells exceeds the bandwidth or threshold 

All of data in previous stage will make an upscaled block 

All data is tested and then calculate the upscaling error 
and the number of upscaled block 



Azad et al./ Journal of Mining & Environment, Vol. 10, No. 3, 2019 

617 
 

4. Upscaling based on kernel function 
bandwidth 
For the data described in this research work and 
based on the upscaling algorithm introduced in 
this paper, the threshold or adaptive bandwidth 
was changed from 0 to the maximum value of 
0.17 with an incremental step of 0.0044. 
Naturally, in the minimum threshold value, the 
number of upscaled blocks will be equivalent to 
the cells of the fine scale model, and the error rate 
will be zero. Figures 3 and 4, respectively, show 
the number of bands (upscaled blocks) and the 
error rate for each threshold value. 
As one can see in Figures 3 and 4, with decrease 
in the number of bands, the bandwidth increases 
and the upscaling error rate, namely SSE, will 
increase accordingly. It is obvious that in the first 
step, the minimum error will be obtained with the 
highest number of bands; we will have the lowest 
bandwidth and the least error. However, in the 
final steps, the highest error rate will be obtained 
with the least number of bands. In this process, it 
is possible to determine the number of upscaled 
blocks based on the error rate in the simulator 
model. For example, if the error is assumed to be 

equal to 0.1, based on the information given in 
Figures 3 and 4, this error rate will be reached at a 
threshold of approximately 0.07, which means 
that the final block number of the upscaled model 
will be 239. In fact, by accepting an error up to 
0.1 for the simulator model, we can reduce the 
number of fine scale model cells from 1613 to 239 
blocks in a coarse scale model. According to the 
opposite of this view, if the goal of upscaling is to 
reach the number of final blocks 150, in this case, 
the bandwidth of the kernel function will be 0.11 
and the error rate obtained for this value will be 
about 0.661. For each one of these two states, the 
upscaling results are shown in Figure 5. This 
Figure shows the upscaling signal with 
bandwidths of 0.022, 0.044, 0.088, and 0.132, and 
the upscaled blocks in these states are 691, 398, 
186, and 122, respectively. 
Clearly, for each bandwidth, the simulator or 
coarse scale model will be different. In order to 
reach a unique answer to scale up the model, we 
need to determine the bandwidth or threshold 
optimal. Here are some approaches to determine 
the optimal bandwidth parameter. 

 

 
Figure 3. Variation in the number of blocks versus bandwidth. 

 

 
Figure 4. Variation in SSE versus bandwidth. 
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(d) (c) (b) (a) 
Figure 5. Upscaled signals with a) threshold of 0.022, b) threshold of 0.044, c) threshold of 0.088, and d) 

threshold of 0.132. 
 
5. Determination of optimal threshold 
As mentioned earlier, for each threshold value, the 
number of upscaled blocks and SSE values can be 
obtained from Figures 3 and 4. Choosing the 
optimal threshold is a key parameter in the 
upscaling process. In the upscaling process based 
on the kernel bandwidth, there is an upscaled 
model for each threshold or bandwidth. To 
determine the coarse scale optimal model, it is 
necessary to determine the optimal threshold. One 
of the easiest methods available to select the 
optimal bandwidth is the number of upscaled 
blocks. With regard to what has been said, each 
bandwidth has its own upscaling parameters. 
Given the ability to select the number of blocks in 
this method, depending on the number of blocks, 
the optimal bandwidth can be selected, i.e. if the 
goal of upscaling is to convert the fine-scale 
model to a coarse-scale model with n upscaled 
blocks, then the appropriate bandwidth can be 
obtained based on this value. For example, if we 
want a coarse-scale model with 300 blocks, the 
bandwidth for this number will be 0.05. 

Furthermore in this work, three different 
approaches are used to determine the optimum 
threshold, referred to as below. 
The first approach is to show variation in the 
upscaling error rate versus bandwidth. Figure 6 
shows the variation in bandwidth or threshold 
against SSE. According to this approach, the point 
at which the upscaling error increases suddenly is 
selected as the optimum. The break point in this 
graph occurs in the bandwidth of 0.132, which is 
shown in Figure 6. After this point, SSE varies 
more severely. In a threshold of 0.132, the 
computational error is 1.08, and in the next step, 
i.e. at a threshold of 0.164, the error rate increases 
to 1.98. This increase in error results from a 
change in the number of upscaled blocks from 
122 blocks to 115 ones. The challenge ahead in 
this approach is the number of breakpoints. To 
solve this problem, we can use the SSE 
differential method. However, according to the 
first approach, the first breakpoint can be 
considered as the optimum threshold. 
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Figure 6. Determination of optimal threshold from the chart of SSE variation versus bandwidth. 

 
When upscaling is carried out with a threshold of 
0.132, the number of final upscaled blocks is 122 
and the SSE value is equal to 1.08. Thus in this 
case, using the threshold value obtained from the 
proposed method, the number of 1613 cells in the 
fine-scale model becomes 122 blocks in the 
coarse-scale model and with only 7.5% of the 
initial data, and the simulation model can be 
presented from the main signal. In this case, in 
addition to maintaining the main features and 
variability in the log data, the computational time 
in the next steps (fluid flow simulation) will be 
much lower than the initial model with the 
number of initial cells. 
The second approach is to examine the SSE 
differential versus the variable bandwidth. As 
noted, the SSE criterion is suitable to validate a 
coarse-scale model. If at each step the difference 
between the two successive SSE values is 

calculated and then these differences are plotted 
against the bandwidth, then we can get an idea of 
the optimal threshold, as shown in Figure 7. As it 
can be seen in this figure, at a threshold of 0.13, 
the SSE differential dramatically increases. At a 
point with a bandwidth of 0.13, the difference 
between two SSE values in two consecutive 
points is equal to 0.11 but in the next step of the 
bandwidth, this value increases to 0.9, which is a 
significant amount. The first extreme pick in the 
SSE differential can be considered as the optimum 
threshold. The results of the first and second 
approaches, presented above, are roughly the 
same but the SSE differential can provide a more 
appropriate pattern in the optimal bandwidth 
selection. Figure 7 shows the upscaled mode of 
the selected optimal threshold using the approach 
of SSE variation versus bandwidth. 

 

 
Figure 7. SSE differential versus bandwidth. 

 
The third approach for determination of the 
optimal threshold is to find the intersection 
between two graphs. For this, it is necessary to 
draw up the SSE changes and the number of 
upscaled block versus bandwidth. Since the scale 
of these two parameters is different, it must first 
perform a normalization operation and convert all 
the data (N and SSE values) to N [0, 1]. Then by 
plotting these two graphs simultaneously versus 

the bandwidth changes, the intersection is where 
(normalized SSE = normalized N) can be 
considered as a criterion for determination of the 
optimum threshold. The intersection point of the 
two graphs occurs at a bandwidth of 0.10. When 
the upscaling based on this threshold is made, it is 
observed that at this point the number of upscaled 
blocks is equal to 158 and the calculation error 
rate is 0.61. 
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In summary, three methods have been used to 
determine the optimal threshold in the upscaling 
process based on the kernel function bandwidth. 
Based on different approaches, the upscaling 
results are presented and are shown in Table 1. 
Specifically, a higher threshold will result in a 
more upscaling error and a smaller number of 
upscaled blocks. In this particular case, if the goal 
of upscaling is to minimize the upscaling error, 
the intersection method will obtain a better result. 
Conversely, if the purpose of upscaling is 
computational cost reduction, the SSE variations 
approach will be more appropriate for the 
threshold setting. 
The results of the signal upscaling with 
optimal threshold obtained from the SSE 
method and the intersection of the two 

diagrams are shown in Figure 8. The sections 
b and c in Figure 8 represent an upscaled 
signal with thresholds 0.10 and 0.132, 
respectively. 
As shown in Figures 8, the regions with high 
variability (the beginning of the well) with 
both bandwidths remain fine scale so that up 
to a height of 2650 m, the fine-scale model 
has 266 cells, and in the coarse-scale model 
based on optimum bandwidth preserved 250 
cells. However, in the middle part of the well, 
due to the smooth variability, 200 cells in the 
fine-scale model without loss of too much 
information have become 2 cells in the coarse 
model with 0.132 bandwidth. 

 
Table 1. Determination of threshold and upscaling results with three approaches. 

 
 
 
 
 

 
(a) (b) (c) 

Figure 8. a) Original signal, b) Upscaled signal with threshold 0.11, and c) Upscaled signal with threshold 0.132. 
 
 

Approach 
Parameter SSE versus bandwidth SSE differential Intersection between SSE and N 

Optimum threshold 0.132 0.13 0.10 
SSE 1.08 0.98 0.61 

Upscled blocks 122 128 158 
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6. Conclusions 
In the upscaling process with the bandwidth of the 
kernel function, choosing the optimal bandwidth 
or optimum threshold is a key point so that for 
each threshold value, the parameters of the 
upscaled model will be different. There are two 
important parameters in each upscaling model: the 
number of upscaled blocks and the upscaling 
error. Three different approaches have been 
investigated in the path of choosing the optimal 
threshold. The first approach is based on SSE 
changes versus bandwidth. In this approach, the 
first breakpoint is considered as the optimal point. 
The second approach is based on the intersection 
of two diagrams of upscaled block changes and 
SSE changes versus bandwidth or threshold. In 
this method, the intersection point of the two 
graphs will be an optimal threshold. Finally, the 
SSE differential is proposed as the criterion for 
optimal threshold selection. In choosing the 
optimal threshold, if the purpose of upscaling is 
decreasing the computational cost, the differential 
SSE method is more appropriate, and if the 
upscaling goal is to increase the accuracy, the 
intersection method will be better. The optimum 
threshold obtained by these methods is the 
maximum threshold that we can have in the 
upsclae process. Any amount below this optimal 
limit can be used for upscaling. Sometimes the 
optimum threshold can be determined by 
changing the target. If the acceptable error rate is 
specific in the model, we can easily determine the 
optimal threshold for the upscaling process, and 
this is one of the most important capabilities of 
upscaling based on the bandwidth of the kernel 
function, which is especially important in 
simulating fluid flow in reservoirs. 

References 
[1]. Christie, M.A. (1996). Upscaling for reservoir 
simulation. Society of Petroleum Engineers. 48 (11): 1-
4. 

[2]. Li, D., Cullick, A.S. and Lake, L. (1995). Global 
scale up of reservoir model permeability with local grid 
refinement. Journal of petroleum science and 
technology. 14 (1-2): 1-13. 

[3]. Christie, M.A. and Blunt, M.J. (2001). Tenth SPE 
comparative solution project: A comparison of 
upscaling techniques. Society of Petroleum Engineers. 
4 (4): 1-10. 

[4]. Durlofsky, L.J. (1992). Representation of grid 
block permeability in coarse scale models of randomly 
heterogeneous porous media. Journal of Water 
Resources Research. 28 (5): 1791-1800. 

[5]. Durlofsky, L.J. (2003). Upscaling of geocellular 
models for reservoir flow simulation: a review of 
recent progress. 7th International Forum on Reservoir 
Simulation, Bühl/Baden-Baden, Citeseer, Germany. 
pp. 23-27. 

[6]. Chen, T., Clauser, C., Marquart, G., Willbrand, K. 
and Mottaghy, D. (2015). A new upscaling method for 
fractured porous media. Journal of Advances in Water 
Resources. 80 (2): 60-68. 

[7]. Farmer, C.L. (2000). Upscaling: a review. 
International Journal for Numerical Methods in Fluids. 
40: 63-78. 

[8]. Dadvar, M. and Sahimi, M. (2007). The effective 
diffusivities in porous media with and without 
nonlinear reactions. Chemical engineering science. 62 
(3): 1466-1476. 

[9]. Sahimi, M. and Rasaei, M.R. (2008). Upscaling 
and simulation of waterflooding in heterogeneous 
reservoirs using wavelet transformations: Application 
to the SPE-10 model. Transport in Porous Media. 72 
(3): 311-338. 

[10]. Jain, P.K. and Tiwari, A.K. (2017). An adaptive 
thresholding method for the wavelet based denoising of 
phonocardiogram signal. Biomedical Signal Processing 
and Control. 38 (8): 388-399. 

[11]. Vahedi, R., Tokhmechi, B. and Koneshloo, M. 
(2016). Permeability upscaling in fractured reservoirs 
using different optimized mother wavelets at each 
level. Journal of Mining & Environmental. 7 (2): 239-
250. 

[12]. Chen, T., Clauser, C., Marquart, G., Willbrand, 
K. and Hiller, T. (2018). Upscaling permeability for 
three-dimensional fractured porous rocks with the 
multiple boundary method. Hydrogeology Journal. 26 
(4): 1-14. 

[13]. Ganjeh- Ghazvini, M. (2019). The impact of 
viscosity contrast on the error of heterogeneity loss in 
upscaling of geological models. Journal of petroleum 
science and engineering. 173 (5): 681-689. 
[14]. Silverman, B.W. (1986). Density Estimation for 
Statistics and Data Analysis. Chapman & Hall/CRC. 

[15]. Wand, M.P. and Jones, M.C. (1995). Kernel 
Smoothing, Chapman & Hall. 

[16]. Scott, D.W. (1992). Multivariate Density 
Estimation: Theory, Practice, and Visualization. John 
Wiley & Sons, Inc. 

[17]. Raykar, V.C., Duraiswami, R. and Zhao, L.H. 
(2010). Fast computation of kernel estimators. Journal 
of Computational and Graphical Statistics. 19 (11): 
205-220. 



  1398وم، سال سدوره دهم، شماره زیست، پژوهشی معدن و محیط - و همکاران/ نشریه علمی آزاد

 

  

 هاي مخزن با استفاده از پهناي باند تابع کرنلتعیین پهناي باند بهینه در فرآیند افزایش مقیاس داده

  

  3و محمد آرشی *2چی، بهزاد تخم1، ابوالقاسم کامکار روحانی1محمدرضا آزاد

 دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، ایران - 1

 دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، ایران، قطب علمی مهندسی معدن - 2

  دانشکده علوم ریاضی، دانشگاه صنعتی شاهرود، ایران -3

  14/5/2019، پذیرش 24/10/2018ارسال 

 tokhmechi@ut.ac.ir* نویسنده مسئول مکاتبات: 

  

  چکیده:

شـان درشـت خواهنـد    ها بر اساس تغییرپذیريها است، چرا که سلولعطف براي افزایش مقیاس دادهافزایش مقیاس بر اساس پهناي باند تابع کرنل، یک روش من
هاي زیادي ادغام خواهنـد شـد و   شود. در نواحی با تغییرپذیري هموار، سلولها در این روش، با پهناي باند تابع کرنل کنترل میشد. میزان افزایش مقیاس سلول

بنابراین، تعیین  ؛باشد رگذاریتأثتواند بر نتایج پهناي باند ها به صورت ریز باقی خواهند ماند. تغییرات پهناي باند میي شدید، سلولبرعکس در نواحی با تغییرپذیر
اي افزایش افزایش مقیاس یافته و یک خط پهناي باند بهینه در این روش امري ضروري است. براي هر پهناي باندي، مدل نهایی افزایش مقیاس، یک تعداد سلول

خواهد شد. از طرف دیگر، با  اسیمق بزرگهاي منجر به افزایش خطا و همچنین کاهش تعداد سلول تر بزرگیا پهناي باند  مقیاس دارد. بدیهی است که حد آستانه
ی انجام نخواهـد شـد. در ایـن پـژوهش،     توجه بلقاو در واقع افزایش مقیاس  مانده یباق، مدل نهایی افزایش مقیاس در مقیاس ریز تر کوچکاستفاده از پهناي باند 

هـاي افـزایش   و تعداد بلوك SSE، تقاطع دو نمودار SSEرویکردهاي متفاوتی براي تعیین پهناي باند یا حد آستانه بهینه استفاده شده است. بررسی دیفرانسیل 
کـردن   نـه یکمآن رویکردها هستند. در عمل، اگر هدف از افـزایش مقیـاس   در مقابل پهناي باند از جمله  SSEمقیاس در مقابل پهناي باند و همچنین تغییرات 

دهد. در مقابل اگر هدف از افزایش مقیاس، کاهش هزینه محاسباتی باشد، رویکرد تغییرپـذیري  خطاي افزایش مقیاس باشد، روش تقاطع نتایج بهتري را ارائه می
SSE تري براي انتخاب حد آستانه خواهد بود.روش مناسب  
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