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Abstract

In this paper, we aim to achieve two specific objectives. The first one is to examine the
applicability of the Artificial Neural Networks (ANNs) technique in ore grade
estimation. Different training algorithms and numbers of hidden neurons are applied to
estimate Cu grade of borehole data in the hypogene zone of porphyry copper-gold
deposit, Masjed-Daghi, East Azerbaijan Province (Iran). The efficacy of ANNs in
function-learning and estimation is compared with ordinary kriging (OK). As the kriging
algorithms smooth the data, their applicability in the pre-processing of data for fractal
analysis is not conducive. ANNs can be introduced as an alternative for this kind of
problem. Secondly, we aim to delineate the potassic and phyllic alteration regions in the
Masjed-Daghi Porphyry ~ hypogene zone of Cu-Au porphyry deposit based on the estimation obtained by the
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Copper Deposit ANNSs and OK methods, and utilize the Concentration-Volume (C-V) fractal model. In
this regard, at first, C-V log-log is generated based on the ANN results. The plots are
Ordinary Kriging then used to determine the Cu threshold values for the alteration zones. To investigate

the correlation between the geological model and C-V fractal results, the log ratio matrix
is applied. The results obtained show that Cu values less than 0.38% from ANNs have
more overlapped voxels with phyllic alteration zone by an overall accuracy of 0.72.
Spatial correlation between the potassic alteration zones resulting from 3D geological
modeling and high concentration zones in C-V fractal model show that Cu values
greater than 0.38% have more voxels overlapped with the potassic alteration zone by an
overall accuracy of 0.76. Generally, the results obtained show that a combination of the
ANNs and C-V fractal methods can be a suitable and robust tool for quantitative
modeling of alteration zones instead of the qualitative methods.

1. Introduction

Porphyry copper deposits are usually generated in
the process of cooling, depressurization, and
reaction between the hydrothermal fluids and the
wall (host) rocks causing assemblage of different
alterations, and consequently, different grade
distribution in each of them. In other words, grade
distribution is related to alteration gradient [1-3].
As each alteration has specific geochemical,
mineralogical, and petrological characteristics,
their delineating can be useful in geo-metallurgy,
mineral processing, and mine planning [4-9].

E Corresponding author: ardehez@aut.ac.ir (A. Hezarkhani).

In the past few decades, many attempts have been
made to achieve a reliable model of ore grade
distribution. At the beginning, the conventional
methods such as core drilling combined with
chemical analysis would be applied to achieve an
ore grade model. However, too much core drilling
without considering the spatial dependency is
expensive and time-consuming. Therefore,
geostatistical techniques were introduced, which
were based upon spatial relationships between the
sample locations and the sample components in
space. Also the wunderlying assumption of
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geostatistics (mean and covariance) is stationary
[10-12]. Using geostatistics for spatial modeling
of resource heterogeneities, predicting spatial
attributes, and assessing uncertainty in reservoir
forecasting has increased significantly since the
1990s [13-18].

Over the past 50 years, many researchers have
used various geostatistical methods such as simple
kriging, Ordinary Kriging (OK), lognormal
kriging, indicator kriging, co-kriging, universal
kriging, residual kriging, moving window
regression residual kriging, disjunctive kriging,
and stochastic simulation such as Sequential
Gaussian Simulation (SGS) and Sequential
Indicator Simulation (SIS) in ore grade modeling.
Kriging, as a group of geostatistical methods, is an
interpolation technique that considers both the
degree of variation and the distance between
known data points in estimating the values in
unknown areas [19-32]. In geostatistical
simulation, reproduction of statistics and spatial
variability takes precedence over local accuracy
[33, 34].

Despite  the  widespread  application  of
geostatistical methods, they suffer from some
limitations: (1) they are based upon certain
stationary assumptions like being a second-order
stationary random field with an unknown constant
mean; (2) they use a linear correlation between
any two points in space; (3) they require abundant
data to be processed, which restricts their learning
and efficient application; and (4) they require
deep mathematical thinking and skills and taking
too much time to get the preferred solution [10,
26, 30].

Due to the aforementioned problems, many
research works have been conducted to inspire
from nature. One of the methods inspired from
nature is Artificial Neural Networks (ANNSs).
Over the years, various types of ANNs have been
used in the geoscience field [35-40]. ANNs have
shown a great importance in mining engineering
due to their capability to analyze complex and
non-linear problems. In the neural network
diagrams, ore grade variability is considered as
non-linear input—output mapper of a set of
connection weights. ANNs seems to work like a
parametric non-linear global fitting model, while
geostatistics methods work as non-parametric
local fitting models that restrict the fit of the
model to a local data point neighborhood. Hence,
ANNs is expected to provide improved
performance in the presence of a non-linear
spatial trend in the data wvariability [41].
Furthermore, ANNs, unlike the geostatistical

884

methods and techniques, is not based on the
assumption of stationary. Regarding the
mentioned advantages along with the high
accuracy, ANNs is an appropriate alternative for
the conventional methods [30].

In addition, fractal and multi-fractal theories
based on the drill core data can provide
quantitative modeling for determining alteration
zones in the porphyry deposits. The fractal
geometry is specifically able to discern the natural
populations as several ore grades within a deposit
[42]. The fractal theory introduced by Mandelbrot
(1983) became an important tool for studying
non-linear and complex sciences  [43].
Fractal/multi-fractal modeling has been a
powerful tool in geoscience for identifying
anomalies [44, 45], evaluating the vertical
distribution of geochemical data [46 47], image
processing of the satellite information [48, 49],
and characterizing the properties of mineralization
and mineral deposits. There are different types of
fractal and multi-fractal models such as the
concentration-area [50], concentration-distance
[51], power spectrum-area [52], concentration-
number [53], and concentration-volume models
[42], which have been reported in processing the
earth science data.

In this work, ANNs and OK were applied to
estimate cu grade in a hypogene zone. After
comparing the results obtained, ANNs and C-V
fractal modeling were used to delineate the
alteration regions in the hypogene zone of the
porphyry ore deposit in the Masjed-Daghi district,
NW Iran.

This article is organized as what follows. In
section 2, the case study is investigated from the
aspects of regional geology, structural geology,
and geological setting. An overview of principles,
advantages, and limitations of the methods are
drawn in Section 3. In Section 4, the borehole
dataset and statistical calculations are described.
The results are discussed in Section 5. Finally,
conclusions are presented in Section 6.

2. Case study

There are many structural and lithotectonical
zones in Iran [54] that are generally divided into
the following categories: 1) Zagros, ii)
Sanandaj-Sirjan, iii) Sahand-Bazman, iv) Central
Iran, v) Alborz, vi) Kope Dagh, vii) Lut block,
vii) Makran, and ix) East-Iranian suture zone. The
Urumieh-Dokhtar Magmatic orogenic zone,
formed as a result of subduction of the Arabian
plate beneath central Iran during the Alpine
orogeny, hosts all the known Iranian porphyry
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copper mineralizations (Figure 1) such as the Sar-
Cheshmeh and Sungun deposits [54].

The copper-gold deposit of Masjed-Daghi area is
located in the east Azarbaijan Province, NW Iran.
The Masjed-Daghi area, as a part of Alborz-
Azerbaijan zone, is in the 1:100,000 geological
sheet [55, 56]. The oldest rock units that have
been cropped out widely in the south and SE of
the area belong to the FEocene flysch-type
sediments. The outcropped rocks including
andesite, trachyandesite, and quartz mostly result
from tertiary volcanic and volcano-sedimentary
activities, which have affected the region and
intersected by late Eocene intrusive [55, 56]. The
mineralographical studies have shown that the
mineralization in the area is of copper sulfide type
in the form of veins, veinlets, and stock works.
Pyrite has been mostly observed alongside the
depth relative increasing amounts of chalcopyrite

and  chalco-pyrrhotite. The  paragenetic
observations of the gangue and alteration
surrounding the veins indicate the presence of the
gold-bearing epithermal veins with a high sulfide
content. The occurrence of the native gold
mineralization has been observed in the siliceous
zone and in the form of inclusions in the host rock
of the veins (about 15 microns) in chalcopyrite.
This phenomenon has been reported for the first
time in this area. The lead and zinc
mineralizations exist in the body of the vein but
not in the altered zone. Moreover, a very small
amount of molybdenite is present adjacent to the
veins and stock works. The existing alteration
types in the area are potassic, phyllic, carbonate-
phyllic, argillic, and propylitic. Furthermore,
selective sericite, sericite-chlorite, and alunite
alterations have been observed around the
mineralized veins [57].
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Figure 1. The structural map of Iran (corrected after [56]).

2.1. Geology and lithology of studied area

The studied area is located in the Central Iran
geological zone regarding Stoecklin (1968), and is
considered as a part of the West Alborz zone
called Alborz-Azerbaijan zone regarding Nabavi
(1976) and Eftekharnejad (1980). According to
the geology, the area is known to be a part of the
Ahar mineralization, and confined by the
Tabriz-Soltanieh fault in the south and SW,
Ardabil-Mianeh fault in the east, and by the EW
fault of Moghan [57] in NE.

Volcanic activity in the area started from the
upper cretaceous era marine facies and reached its
peak in the middle Eocene with Marine-land
facies. In the upper Eocene-Oligocene era,
igneous activities have been plutonism, and in the
neogene era, these activities have continued as
shallow intrusive bodies of dacite-rhiodacite,
trachyte, and andesite and basaltic trachyte.

The effects of volcanism in this area could be
observed in the form of Andesite trachy domes
(Masjed-Daghi heights), which led to the crushing
of the older rocks (Eocene Flysch). These domes
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include andesite, trachy andesite, quartz, and
quartz lattice. The boundary between the altered
trachy andesites and the andesitic lava is not
easily detectable. According to the petrographic
studies, the texture of the rocks are porphyric
microlyte  and  microgranular ~ with  a
microcrystalline matrix. The main minerals
include shaped and non-shaped plagioclase and
have been degraded by the alteration to the clay
and sericitic minerals. Occasionally, delicate
fractures have been observed in the feldspars that

are filled with pyrite, chlorite, epidote, and iron
oxides. Ferromanganese minerals have also been
decomposed and converted to the iron oxides,
calcite, and chlorite. The main factor of the
hydrothermal alteration and mineralization in the
studied area is the intrusive bodies. The main
combination of these rocks is known as quartz-
monzonite. Their color is bright, and their texture
is porphyritic with micro-granular matrix. The
main mineral is quartz (Figure 2) [55, 56].
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Figure 2. Geological map of Masjed—Daghi area in the scale of 1:5,000 [S6].

2.2. Alteration

The dominant alteration in the studied area is of
the argillic type, which often affects the rocks,
especially the trachyandesite and diorite. Other
alterations in the area are potassic, phyllic, and
silica. The most important alteration products in
the studied area are Argillic alterations, which are
gradually converted to sericitic alteration and
cover a wide part of the trachyandesite rocks.
Based on the petrography studies, mafic minerals
(amphibole) have been decomposed into a series
of chlorite, calcite and clays, sericite, and epidote,
and feldspar (plagioclase) minerals have also been
completely decomposed into a set of carbonate,
sericite, jarocite, alunite, and hematite minerals in
these specimens. The Argillic alteration intensity
is very strong, and only the shape of the early
minerals have remained in this alteration. The
results of XRD studies showed the presence of
abundant clay minerals such as jarocite,
pyrophyllite, kaolinite, and alunite. In addition,
based on the results of mineralogy studies,
minerals such as pyrite, chalcopyrite, Sphalerite,
and rutile exist in this region [57].

The Potassic alteration zone in the studied area
shows a small outcrop in the Arpachay region.
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The studied samples, however, show fine-grain
and amorphous alkaline feldspars, which are
decomposed into clay minerals. In this area, the
rocks that consist of andesite and trachyandesite
are affected by the phyllic alteration. Moreover,
plagioclase is completely altered to carbonate and
chlorite, and the mafic minerals (amphibole) have
been converted to muscovite and sericite. The
primary biotite in this zone is decomposed into
chlorite, muscovite, and oxide minerals. The
presence of pyrite in the alteration zone is an
evidence of crystal conversion to hydrophilic
oxides and secondary iron oxides. In some
samples, concentrations of carbonate are found in
the matrix of the rock. Yet, carbonate sometimes
has been observed as veins and veinlets.
Therefore, this zone is divided into two parts,
phyllic and phyllic carbonate [57].

Silica alteration around the mineralized veins is
high in the form of veinlets in the dacite of the
area, which is an appropriate environment for the
mineralization of gold. High amounts of silica in
the region are considered as an indicator of the
hydrothermal solution saturation from silica after
hydrothermal alteration. The mineralization of
samples in this altered zone shows the minerals of
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pyrite, chalcopyrite, and marcasite. The samples
that are taken and analyzed from the trenches
indicate a high concentration of gold, which is
directly related to silicification.

Propylitic alteration has been observed in the
andesitic volcanic rocks and margin of siliceous
veins. One of the most significant indicators of
this alteration is the presence of the epidote,
which is in green color along with chlorite. This
green band is observed on the edge of the
andesites. Gold mineralization concentrates are
highly in the propylitic alteration due to the
presence of zirconia, barite, and quartz-containing
veins [57].

2.3. Mineralization

The most significant forms of mineralization in
the Masjed-Daghi area are the rutile, magnetite,
pyrite,  chalcopyrite, calcopyrotit,  bornite,
sphalerite, covillite, and chalcocite minerals. The
last two minerals have been formed as secondary
crystals of the alteration in the region. In the
Masjed-Daghi area, mineralization of gold, lead,
and zinc has been formed along with the siliceous-
barite veins. Molybdenum mineralization is
associated with the vein deposits and copper stock
works. Along with this mineralization, there are
also tin and tungsten traces. Gold mineralization
in this area can be observed in both the epithermal
and the copper mineralizations [57].

3. Methods

3.1. Ordinary kriging (OK)

Over the past few decades, different spatial
interpolation methods have been presented by
numerous researchers. However, most of them are
related together and have similar principles.
Spatial interpolation models can be categorized
into two classes: (a) mechanical/deterministic and
(b) statistical/probability groups. The mechanical
models are based upon empirical model
parameters, which include techniques like Inverse
Distance Weighting (IDW) and Splines. They do
not consider the error estimation. In contrast, the
parameters of the statistical/probability techniques
are estimated based on the probability principles
and consider the error estimation. One of the most
important statistical/probability models is kriging,
which is based on the“Theory of Regionalized
Variables” [58, 59]. The technique was first
introduced by Krige (1951) but in 1963, G.
Matheron derived the formulas and founded the
linear geostatistics [60, 61]. The kriging
technique, which is commonly known as a
‘minimum variance estimator’, consisting of two
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basic steps. The first is an estimation of the
semi-variogram using sample data, given by:

n(h)

1 . . 2
v(h)= 2n(h) g {2(1) —z(i+h)}

(1)
where y(h) is the estimate of semi-variance, n(h) is
the number of pairs observed [z(i), z(i+h)], and h
is the distance between the pairs.

The second is predicting the value at unknown
spatial coordinates through a linear combination
of measured values shown by:

z (%) = Z;\'i z(X;) (2)
i=1

where z*(xp) is the estimated value for any
location X,, n is the number of measured value
7(1), z(x;) is the value involved in the estimation,
and )A; is the weight attached to each measured
value z(1).

The best estimator is always unbiased and has a
minimum variance. Therefore, the kriging system
can be deduced as:

Zn:kj.y(xi,xj)zu+y(xi,xo) 3)

where v (X;, X¢) is the semi-variance function of a
vector with an origin at x; and extremity at Xo;
Y(Xi , Xj) is the semi-variance function of a vector
with an origin at x; and extremity at x;j; and p is
the Lagrangian multiplier [59].

OK is an appropriate geostatistical estimator and
the most useful technique among the different
kriging methods [59, 62]. OK, as a linear
estimation method, assigns weights to the sample
locations inside the estimation neighborhood,
which are independent from the data values at
these locations. OK is a moving average method
satisfying the different types of data dispersion,
e.g. sparse sampling points [63-65]. The technique
minimizes the conditional bias and estimation
variance for each single estimate at each location
[61, 66]. Most of the theories about OK rely on
the work of Georges Matheron (1963), and have
been developed by some others [67-71].

In mathematical terms, OK is a spatial
interpolation estimator z"\(x,) that is used to find
the best linear unbiased estimate of a second-order
stationary random field with an unknown constant
mean, as follows:

27 (x) =Y 2(x,) 4
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where z"(Xo) = kriging estimate at a non-sampled
location x¢; Z(Xo) = sampled value at location x;;
and A; = weighting factor for Z(x;).

The estimation error is:

2" (%) =2(%,) =R(x¢) = D A 2(x) ~2(X,)  (5)

where Z(xo) = unknown true value at x,; and R(Xo)
= estimation error. For an unbiased estimator, the
mean of the estimation error must equal zero.
Therefore:

E{R(xy)} =0 (6)
and
2=l (7)

A minimum variance of estimation error is
required for solving the interpolation problem by
kriging [62-64, 69, 70].

3.2. Artificial Neural networks (ANNSs)

A very powerful method that has attracted the
attention of the researchers over the past few
decades is ANNs, which has been used for ore
grade modeling [72]. ANNs has a non-linear
mathematical structure that is able to perform any
curve-fitting operation in a multi-dimensional
space. Hence, it is able to represent an arbitrarily
complex data generating a process that links the
inputs and outputs of that process [73].

In ore grade modeling/estimation, it is supposed
that the attributed grade value in an ore deposit
varies from one location to another, and this will
be reflected in a complex input and output spatial
relationship between grade values and spatial
coordinates in the area of interest. Therefore, the
output grade is considered to be a function of
spatial coordinates like X, Y, and Z [74, 75].
There are many ANNs types such as feed-forward
neural network, Radial Basis Function (RBF)
network, and Kohonen self-organizing network
[76]. Three major components are particularly
important in every ANNs system: (a) structure of
the nodes, (b) topology of the network, and (c)
learning algorithm used to find the weights of the
ANN:S.

On the other hand, in an ANNSs, each processing
unit acts as an idealized neuron, receives input,
computes activation, and transmits that activation
to other processing units. A weight value, defined
to represent the connection strength, is associated
with each connection between these processing
units. The connection weight of each processing
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unit is optimally determined through the
presentation of known examples, and application
of a learning rule. Once the connection weight is
determined  through NN  learning, the
inter-connection between input and output
embedded in the data is captured [77].

An architecture of ANNs with a sigmoid
activation function is presented in Figure 3.

Input layer

Hidden layer Output layer

Figure 3. Architecture of ANNs with sigmoid
activation function.

It contains an input layer, a hidden layer, and one
output layer, which are connected by modifiable
weights and represented by links between the
layers. Each input vector is presented as the input
layer, and the output of each input unit equals the
corresponding elements in the vector. Each hidden
unit computes the weighted sum of its input to
form its net activation [78]. The above-mentioned
subjects can be expressed in mathematical terms

by Eq. (8):

d d
netj = ZXiWij Wi, = ZXin
i=0

i=1

(®)

where the subscripts i and j are indexed units in
the input and hidden layers, respectively, Wj
denotes the input to the hidden layer weights at
the hidden unit j, and net j is the activation for
hidden j. Each hidden unit emits an output that is
a non-linear function of its activation, f(net), in
the form of Eq. (9):

y; =f(net;) ©)

Each output unit similarly computes its net
activation based on the hidden unit signals as Eq.

(10):
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Ny Ny
net, =) YWy + W, = D YWy

j=1 j=0

(10)

where the subscript k indexes the units in the
output layer and ny denotes the number of hidden
units. An output unit computes the non-linear
function of its net, as Eq. (11):

z, =f(net,) (11)

where 7, is the k output unit. Therefore, the total
network output for a three-layer model can be
calculated in the form of Eq. (12) [74]:

ny d
zZ, = f(Zwkjf(Zwﬁxi + W)+ W) (12)
j=1 i=l

3.3. Concentration-volume (C-V) fractal model
The C-V fractal modeling, which was first
proposed by Afzal et al. (2011) for identification
of different mineralization zones in porphyry Cu
deposits, can be generally expressed as Eq. (13)
[42, 79, 80]:

Vip<v)ocr™; V(p=v)ocr ™ (13)

where V(p < v) and V(p > v) represent the
volumes with concentration values (p) less than or
equal to and greater than or equal to the contour
values (v); and a; and a, are the characteristic
exponents. The contour value (v) in this model
explains the boundaries that separate various
mineralized (alteration) zones and concentration
populations. In this work, the OK and ANNSs
outputs (block model) were processed by the C-V
fractal method, and V(p < v) and V(p > v) (the
volumes enclosed by a concentration contour)

4304200

were calculated in a 3D space [42].

4. Borehole dataset

The borehole dataset plays an important role in
geoscience investigations in both the mineral
exploration and grade estimation. A total of 50
boreholes were drilled in the studied area in
which, 16 of them belonged to the pre-drilled
boreholes (BH series) with a total length of
1882.3 m and 34 boreholes were related to MAD
series with a total length of 15015.95 m (Figure
4). The dataset included the collars, lithology,
down-hole survey, and assay. The other acquired
data was zone, alteration, mineral, and recovery.
The dataset for assay was analyzed by the
ICP-MS method at the Zarazma laboratory,
Tehran. Based on the mineralogical, geological,
and geochemical results, it was found that the case
study was favorable for the mineralization of Cu.
The data was validated and subjected to statistical
analysis. The histogram, Q-Q plot, and descriptive
statistics of the copper grades from 8267 samples
in the hypogene zone of the case study are shown
in Figure 5 and Table 1. The statistical parameters
of Cu grade based on the alteration in the
hypogene zone of the case study are also shown in
Table 2. Accordingly, two alteration zones
composed of potassic and phyllic accounted for
more than 90% of the data length. The Cu
regionalized variable was modeled by a second-
order stationary random function. There was no
trend of Cu concentration in any direction; this
means that Cu concentration does not depend on
the coordinates of the samples (Figure 6 (a-c)).
Consequently, assumptions of the stationary are
tenable.
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Figure 4. Borehole location map of the studied Cu porphyry deposit.
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Table 1. Statistical parameters of the Cu element in the boreholes (raw data).
Variable Length (m) Mean Minimum Maximum Std. Deviation Variance Skewness

Cu (%) 15952 0.643 0.001 4.8 0.480 0.231 1.011
Table 2. Statistical parameters of the Cu grade based on the alteration in the hypogene zone.
. o Cu
Alteration type Length Length% Min. Max. Mean
ARG 84.3 0.49 0.072 0.784 0.325
CHL 44 0.26 0.02 0.1 0.058
NA 1151.45 6.81 0 1.22 0.15

PHY 3705.9 21.93 0 1.04 0.158
POT 9847.45 58.32 0 1.38 0.248
PRP 16.1 0.09 0.009 0.023 0.0137
SER 8.4 0.04 0.181 0.419 1.246
SLC 158.35 0.93 0.007 0.93 0.134

ARG = Argillic; CAL = Calcified; CHL = Chloritic; PHY = Phyllic; POT = Potassic; PRP = Propylitic; SLC =
Silicified; and NA = Not Applicable.
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Figure 6. Variability of Cu concentration in a) east-west direction, b) north-south direction and c) depth within
the hypogene zone of Masjed-Daghi deposit
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5. Results and discussion

5.1. OK results

Here, the data in Section 3 is used to estimate the
Cu grade. However, prior to the kriging
calculations, it is necessary to carry out a series of
data pre-processing. The first step is to determine
and correct the outlier values. These values
dramatically impact the statistical analysis and
result interpretation. High-grade values as outliers
are able to transform a mineral occurrence into an
economic mineral deposit, and may be sufficient
to justify the development of a mining project [81,
82]. There are several ways to deal with the
effects of the outlier values and control them. In
this work, the box plot (Figure 7) is applied to
remove the outlier values [83]. Another important
issue in the pre-processing is the composite data.
In other words, it is very important to work with
equal volume samples [84]. In this work, the data
for the analysis of Masjed-Daghi reservoir using
the OK method is divided into 2 m composites.
According to the composite length, the lowest loss
length is obtained, while the Cu grade and
variance of Cu are similar to the original data.
Data variography for OK is the next step after
data pre-processing. Given the spatial variability
and randomness, the variogram function can
reflect the structure of the spatial variability of the
regional variable. The best way to describe the
spatial dependencies in the process of stationary is
covariance variogram.

Since mineralization does not have the same
behavior in each direction, it will be anisotropic.
Consequently, in order to determine the spatial
structure correctly, it is necessary to perform a
single analysis in several directions. As the
experimental variograms show different behaviors
in different directions, the anisotropic variogram
model should be fitted to them. In general, the
variogram has orientational properties in a more
than one direction. In this work, the variogram
was performed using the high-power Datamine
software.

An omni-directional semi-variogram of raw data
along azimuth of 00°, Plunge of 00°, spread of
90°, and lag spacing of 40 m follows a spherical
model with a nugget effect of 0.052 (%)’, which
reaches a sill of 0.02 (%)* at a range of 204 m
(Figure 8-a). To investigate anisotropy, directional
semi-variograms are thereafter calculated and
modelled in  different  directions  with
30°horizontal angular increments, 15°horizontal
angular tolerance, 30°vertical angular increments,
and 15°vertical angular tolerance in the hypogene
zone of the porphyry ore deposit. Because of the
different ranges of variograms, the ore deposit has
anisotropy. The main resulting directions from
variography for the three principal directions of
the search ellipsoid are presented in Figure
8 (b)-(d). The directional semi-variogram model
parameters are shown in Table 3.

2.50+

2.00

1.507

Cu

1.00

.50+

583
*

00

Figure 7. The box plot used to remove the outlier data.
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Figure 8. Experimental semi-variogram and appropriate fitted model of the (a) omnidirectional semi-variograms
and (b) directional semi-variograms with Azimuth = 60; Dip = 30 (c¢) directional semi-variograms with Azimuth
= 150; Dip = 0 (d) directional semi-variograms with Azimuth = 240; Dip = 0 for the 3 main directions of the
search ellipsoid in the hypogene zone of Masjed-Daghi porphyry ore deposit.

Table 3. Directional Semi-variogram parameters for three principal directions of the search ellipsoid in the
hypogene zone of the porphyry ore deposit.

Variogram model Azimuth Dip nugget effect (%)’ Range (m) Threshold (%)’

Spherical 60 30
Spherical 150 00
Spherical 240 60

0.004 147 0.03
0.004 238 0.03
0.004 223 0.03

The cross-validation method is used to validate
the fitted model to the variogram of the hypogene
zone. The correlation coefficient of the estimated
values and actual values was partially acceptable
and about 80%.

To confirm the practicality of OK in estimating
the unsampled locations, this method was applied
in the hypogene zone of the porphyry ore deposit.
The estimation of Cu (%) is performed on a 10 %
10 x 10 m grid. The estimation and 3D modeling
process are commenced from the elevation of 0 to

Legend B
Cu
[ABSENT]
[FLOOR0.1]
M 0103
10.3,05)
B [05CEILING]

800 m above the sea level in the mine. It also
began from 581113 to 582043 m in the east
direction and from 4303279 to 4303279 m in the
north direction. 3D modeling in the mineral
deposit has many advantages. Therefore, if this
process is carefully performed, evaluations and
judgments on the different parts of the deposit
will be more accurate. The 3D model of the Cu
grade by OK in the Cu copper deposit is shown in
Figure 9.

Figure 9. 3D model of Cu concentration estimation by OK.
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5.2. ANN results

There are a lot of types of ANNs. The most
popular and the best-known ANNs are feed
forward neural network, Radial Basis Function
(RBF)  network, Kohonen self-organizing
network, and modular neural networks. Generally,
three elements are particularly important in every
model of ANNSs: the structure of the nodes, the
topology of the network, and the learning
algorithm used to find the weights of the network.
The learning algorithm is an adaptive method by
which a network of computing units organizes
itself to implement the desired behavior. This is
performed in some learning algorithms by
presenting some examples of the desired
input—output mapping of the network. In this
work, instead of using complex ANNs like RBF
and WNN, Multi-Layer Perceptron (MLP) with
Levenberg—Marquardt (LM) and scaled gradient
descent (SGD) algorithms are applied to estimate
the Cu grade based on the borehole dataset.

Although the network used in this work has a
simple structure, the learning algorithm is
powerful and sufficient for the purposes (a
comparison between ANNs and OK for ore grade
estimation) of this article. For modelling based on
MLP, the following steps are followed.

5.2.1. Sample data acquisition

A sufficient amount of data is required for ore
grade estimation in the train, validation, and test
steps in ANNs. In this work, data on
Masjed-Daghi porphyry copper deposit has been
used. According to the available reports, the
deposit is non-homogeneous. The applied values
in the deposit are divided into blocks of 10 x 10 x
10 m. The borehole coordinates and actual grade
were used as the input and output data for
training, respectively. Figure 10 shows an
example of the arrangement of the points that are
utilized to estimate the central point from the
surrounding data.

Figure 10. Input and output data arrangement.

5.2.2. Data preparation

Data pre-processing that is applied to train and
validate the ANN topologies is discussed after
selection of the source data deposits. At the first
stage of the modeling, the data is normalized,
which helps to scale the inputs and output, and
consequently, leads to a better prediction [85, 86].
Different methods have been developed to
improve the network training in data
normalization. In this work, the input and output
data is normalized by Eq. (14):

(14)
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where x is the data that should be normalized, and
Xmax aNd Xmin are the maximum and minimum of
the original data, respectively. Moreover, Xom 18
the transformed normalized data.

Divisionism as one of the most important issues
would lead to inaccurate and illogical results if it
has not been considered properly. The ANNs data
is divided into three groups: 1) training data, 2)
testing data, and 3) validation data [87, 88]. In this
work, at first, 5402 Cu data with 2 m composites
are used for training, testing, and validation of
ANNSs; all the datasets are divided into three
distinct subsets consisting of the training data
(70%), testing (15%), and validation (15%). After
training the neural network, the coordinates of the
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block centers (90352 sample) were given as a new
input to the neural network, and the amount of
copper was estimated as the output.

5.2.3. Performance of ANNs

There are various indicators to evaluate the
accuracy of the models [89]. A complete
description of these indicators can be found in
[90]. In this work, the coefficient of determination
(R%) and Root Mean Square Error (RMSE) are
applied. The degree of correlation between the
observed and predicted values as well as a model
strength through developing a relationship
between the input and output variables are
measured by R”. The values of R* range from 0 to
1, in which 1 indicates a perfect fit between the
data and the line drawn through it, and 0
represents no statistical correlation between the
data and the line. R* is calculated by Eq. (15) [91]:

(15)

where t, and yy are target and network outputs for

the kq, output, respectively; t is the average of

the targets, and N is the total number of the
considered events.

RMSE indicates the difference between the
observed and calculated values. The lower the
RMSE, the more accurate is the prediction. RMSE
is calculated by Eq. (16):

(16)

Z(Yi - yi )2

RMSE =
N

where y; is the observed data, V. is the calculated
data and N is the number of observations.

5.2.4. Modeling of ANNs

As stated earlier, there is no clear linear
relationship between the coordinates of the points
and corresponding grades but the relation between
them is non-linear and complex. In this work, the
2017 version of the MATLAB software was used
for ANNs modeling. The ANNs model is based
on a neural network of back-propagation with a
hidden layer. The optimum number of the hidden
layers was estimated to be 9 neurons by
trial-and-error (Table 4). At the beginning, the
back propagation method is implemented by the
Levenberg—Marquardt (LM) and scaled gradient
descent (SGD) algorithms. The sigmoid and linear
functions are used for the hidden and output
layers, respectively. The learning and momentum
parameters that obtained the best results were
estimated to be 0.05 and 0.7, respectively. An
early stopping technique is applied to ensure that
the network is not over-fitted. The 3D model of
the Cu grade by the ANNs method for the
Masjed-Daghi porphyry deposit is shown in
Figure 11.

A comparison between the two methods ANN and
OK showed that both methods were able to
estimate Cu grade very well. The advantage of the
ANNs method is that it does not require any pre-
processing or need to carry out variogram
operations. It also can be used for initial data
without any special pre-processing. However, the
OK algorithm smooths the data, and thus its
application to pre-processing of data for fractal
analysis is not suitable. In the next sub-section,
the ANN results are used for the determination of
alteration zones in the Masjed-Daghi porphyry
copper-gold deposit.

Table 4. Results of the observed and predicted data obtained from ANNs. The best network obtained is in bold.

Number of . . Train Test Validation
Number neurons in hidden Tralr‘ung 2 2 2
layer algorithm R SSE RMSE R SSE RMSE R SSE RMSE
1 2 SCG 0.66 1.71 0.61 0.53 1.80 0.63 0.57 1.82 0.63
2 3 SCG 068 1.68 055 059 174 0.6l 0.58 1.72 0.6
3 4 LM 072 1.62 0.51 0.64 1.73 054 0.73 1.61 0.57
4 5 LM 079 159 049 072 1.62 058 0.64 166 0.58
5 6 LM 081 154 044 073 1.63 056 0.78 1.55 0.54
6 7 LM 0.87 1.41 0.43 0.78 1.59 050 0.73 1.55 0.54
7 8 LM 0.89 1.37 039 0.81 1.49 048 0.84 159 0.59
8 9 LM 093 1.24 037 0.88 1.14 035 089 1.56 0.54
9 10 SCG 090 146 0.63 0.84 1.59 044 085 156 0.54
10 11 SCG 0.87 1.51 072 0.81 1.62 054 079 176 0.68
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Figure 11. 3D model of the Cu concentration estimation by ANNs in the Mashhad-Daghi porphyry deposit.

5.3. Results of C-V fractal model

After grade estimation, the volume of each block
is calculated in order to be used in the C-V fractal
modeling. The C-V log-log plots show a
power-law relationship between the copper
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contents and the volumes corresponding to them.
Threshold values of Cu are identified in the C-V
plots (Figure 12). According to this plot, a
threshold value of 0.28 (%) Cu and two
communities are obtained.
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Figure 12. Log-Log plot of C-V fractal model based on the ANNs estimations.

5.4. Comparison between fractal and spatial
alteration models

In order to validate the results obtained through
the C-V fractal modeling, the models are
compared with the 3D alteration zone models for
the Masjed-Daghi porphyry copper deposit’ zone
comprising the phyllic and potassic zones (Figure
13). The models are generated by applying the
Datamine studios software and the geological drill
core data.

To calculate the spatial correlations between the
two binary models, especially the mathematical
and geological ones, the logratio matrix [80] can
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be applied. A comparison between the C-V fractal
model results and the geological model of the
alteration zones is carried out to obtain the
number of overlapped voxels (A, B, C, and D).
Using the numbers obtained, Type I error (T1E),
Type II error (T2E), and overall accuracy (OA) of
different fractal populations are estimated for each
one of the alteration zones [92].

According to the C-V fractal modelling result of
ANNSs, the phyllic alteration zone is correlated
with Cu values less than 0.38% (Table 5). By
comparing the C-V fractal model thresholds with
the alteration zone generated by 3-D geological
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modeling, it was found that the Cu values less drilling point to provide a low cost and risk of
than 0.38% had more overlapped voxels with OA estimating the mineralization of the area. In
equal to 0.72. Figure 14, a 2D model presenting exploration
Comparison between the potassic alteration zones targets are shown, which could be used to define
resulting from 3D geological modeling, and the further drilling sites. For this aim, at first, using
high concentration zones in C-V fractal model the geochemical data at deposit-scale and C-A
shows that Cu values greater than 0.38% with the fractal method, the anomaly's threshold (Cu
highest OA (0.71) could recognize the potassic threshold = 0.1998) was determined and then a
alteration better (Table 6). prospectivity map (Cu > 0.01998) was drawn.
One of the most important goals in the According to the map, further drilling sites should
exploratory work is the choice of the optimum be defined in NW corner of the map.

a) b)

By
M ‘

B

Figure 13. Alteration zones in hypogene zone based on the geological model a) Potassic and b) phyllic alterations.

Table 5. Matrix for calculating spatial correlation between alteration models resulting from C-V fractal
modeling and geological model. A and D show the number of voxels that are estimated correctly, and B and C
represent the number of voxels with different results in C-V fractal in comparison with the geological model.
Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively) resulted from the comparison
between the phyllic alteration zone in 3D geological model and the first Cu threshold values in the C-V fractal

model obtained by ANNs in the hypogene zone.
Geological model

Inside the zone outside the zone
Inside the model True positive (A) False positive (B)
Fractal model Outside the model False negative (C) True negative (D)
Type I error Type II error
C/(A +C) B/(B + D)

Overall accuracy = (A + D)/(A+ B+ C+ D)
Phyllic alteration of geological model

Inside the zone Outside the zone
Inside the model A 7829 B 7294
Fractal model of areas with low mineralization Outside the model C 2158 D 17568
TIE 0.21 T2E 0.30
OA 0.72

Table 6. OA, T1E, and T2E resulting from the comparison between the potassic alteration zone in 3D geological
model and threshold values of Cu in the C-V fractal model obtained by ANNs in the hypogene zone.
Geological model

Inside the zone Outside the zone
Inside the model True positive (A) False positive (B)
Fractal model Outside the model  False negative (C) True negative (D)
Type I error Type II error
C/(A+0O) B/(B + D)

Overall accuracy = (A + D)/(A+B+C+D)
Potassic alteration of geological model

Inside the zone Outside the zone
Inside the model A 7001 B 3025
. . . .. Outside the model C 1213 D 8143
Fractal model of areas with high mineralization T1E 014 T2 028
OA 0.76
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Figure 14. a) Log-Log plot of C-A fractal model, b) a 2D model presenting exploration targets.

6. Conclusions

One of the most important stages in mineral
exploration projects is the alteration zone
modelling. Alteration modeling is a complicated
process, which should be consistent with the
geological interpretation. Conventional modeling
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based on the drill core logging is often descriptive
and consists of the uncertainties and lack of the
proper recognition of the alteration zones. This
type of modeling does not take into account the
ore grade, whereas it is a significant variable with
an obvious correlation between the alteration
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patterns and their distribution. In this work, a
combination of ANNs and C-V fractal model was
applied to delineate the alteration zones in the
hypogene zone of the porphyry copper-gold
deposit, Masjed-Daghi, East Azerbaijan Province,
Iran. Initially, the efficiency of ANNs was
investigated for grade estimation, and the results
obtained were compared with OK. The results
showed that the kriging algorithm smoothed the
data, and thus its application in pre-processing of
data for fractal analysis was not conducive.
ANNs, which does not require any
pre-processing, is known as an alternative in
handling such issues. It is not required to carry out
variogram operations, and can be used for raw
data without any special pre-processing.
Secondly, the results obtained from the ANNs
estimation along with the concentration-area
fractal model were used to delineate the potassic
and phyllic alteration areas in the hypogene zone
of the Cu-Au porphyry deposit. By comparing the
C-V fractal model thresholds with the alteration
zone generated by 3-D geological modeling via
logratio matrix, it was found that the Cu values
less than 0.38% had more overlapped voxels with
OA equal to 0.72. Moreover, comparison between
the potassic alteration zone resulted from 3D
geological modeling, and the high concentration
zones in the C-V fractal model showed that Cu
values greater than 0.38% with the highest OA
(0.71) could recognize potassic alteration better.
The overall results showed that the combination
of neural network methods and the concentration-
area fractal model could be a functional tool for
quantitative modeling of the alteration zones
instead of the qualitative methods.
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