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Abstract 
In this paper, we aim to achieve two specific objectives. The first one is to examine the 
applicability of the Artificial Neural Networks (ANNs) technique in ore grade 
estimation. Different training algorithms and numbers of hidden neurons are applied to 
estimate Cu grade of borehole data in the hypogene zone of porphyry copper-gold 
deposit, Masjed-Daghi, East Azerbaijan Province (Iran). The efficacy of ANNs in 
function-learning and estimation is compared with ordinary kriging (OK). As the kriging 
algorithms smooth the data, their applicability in the pre-processing of data for fractal 
analysis is not conducive. ANNs can be introduced as an alternative for this kind of 
problem. Secondly, we aim to delineate the potassic and phyllic alteration regions in the 
hypogene zone of Cu-Au porphyry deposit based on the estimation obtained by the 
ANNs and OK methods, and utilize the Concentration-Volume (C-V) fractal model. In 
this regard, at first, C-V log-log is generated based on the ANN results. The plots are 
then used to determine the Cu threshold values for the alteration zones. To investigate 
the correlation between the geological model and C-V fractal results, the log ratio matrix 
is applied. The results obtained show that Cu values less than 0.38% from ANNs have 
more overlapped voxels with phyllic alteration zone by an overall accuracy of 0.72. 
Spatial correlation between the potassic alteration zones resulting from 3D geological 
modeling and high concentration zones in C-V fractal model show that Cu values 
greater than 0.38% have more voxels overlapped with the potassic alteration zone by an 
overall accuracy of 0.76. Generally, the results obtained show that a combination of the 
ANNs and C-V fractal methods can be a suitable and robust tool for quantitative 
modeling of alteration zones instead of the qualitative methods. 

1. Introduction 
Porphyry copper deposits are usually generated in 
the process of cooling, depressurization, and 
reaction between the hydrothermal fluids and the 
wall (host) rocks causing assemblage of different 
alterations, and consequently, different grade 
distribution in each of them. In other words, grade 
distribution is related to alteration gradient [1-3]. 
As each alteration has specific geochemical, 
mineralogical, and petrological characteristics, 
their delineating can be useful in geo-metallurgy, 
mineral processing, and mine planning [4-9]. 

In the past few decades, many attempts have been 
made to achieve a reliable model of ore grade 
distribution. At the beginning, the conventional 
methods such as core drilling combined with 
chemical analysis would be applied to achieve an 
ore grade model. However, too much core drilling 
without considering the spatial dependency is 
expensive and time-consuming. Therefore, 
geostatistical techniques were introduced, which 
were based upon spatial relationships between the 
sample locations and the sample components in 
space. Also the underlying assumption of 
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geostatistics (mean and covariance) is stationary 
[10-12]. Using geostatistics for spatial modeling 
of resource heterogeneities, predicting spatial 
attributes, and assessing uncertainty in reservoir 
forecasting has increased significantly since the 
1990s [13-18]. 
Over the past 50 years, many researchers have 
used various geostatistical methods such as simple 
kriging, Ordinary Kriging (OK), lognormal 
kriging, indicator kriging, co-kriging, universal 
kriging, residual kriging, moving window 
regression residual kriging, disjunctive kriging, 
and stochastic simulation such as Sequential 
Gaussian Simulation (SGS) and Sequential 
Indicator Simulation (SIS) in ore grade modeling. 
Kriging, as a group of geostatistical methods, is an 
interpolation technique that considers both the 
degree of variation and the distance between 
known data points in estimating the values in 
unknown areas [19-32]. In geostatistical 
simulation, reproduction of statistics and spatial 
variability takes precedence over local accuracy 
[33, 34]. 
Despite the widespread application of 
geostatistical methods, they suffer from some 
limitations: (1) they are based upon certain 
stationary assumptions like being a second-order 
stationary random field with an unknown constant 
mean; (2) they use a linear correlation between 
any two points in space; (3) they require abundant 
data to be processed, which restricts their learning 
and efficient application; and (4) they require 
deep mathematical thinking and skills and taking 
too much time to get the preferred solution [10, 
26, 30]. 
Due to the aforementioned problems, many 
research works have been conducted to inspire 
from nature. One of the methods inspired from 
nature is Artificial Neural Networks (ANNs). 
Over the years, various types of ANNs have been 
used in the geoscience field [35-40]. ANNs have 
shown a great importance in mining engineering 
due to their capability to analyze complex and 
non-linear problems. In the neural network 
diagrams, ore grade variability is considered as 
non-linear input–output mapper of a set of 
connection weights. ANNs seems to work like a 
parametric non-linear global fitting model, while 
geostatistics methods work as non-parametric 
local fitting models that restrict the fit of the 
model to a local data point neighborhood. Hence, 
ANNs is expected to provide improved 
performance in the presence of a non-linear 
spatial trend in the data variability [41]. 
Furthermore, ANNs, unlike the geostatistical 

methods and techniques, is not based on the 
assumption of stationary. Regarding the 
mentioned advantages along with the high 
accuracy, ANNs is an appropriate alternative for 
the conventional methods [30]. 
In addition, fractal and multi-fractal theories 
based on the drill core data can provide 
quantitative modeling for determining alteration 
zones in the porphyry deposits. The fractal 
geometry is specifically able to discern the natural 
populations as several ore grades within a deposit 
[42]. The fractal theory introduced by Mandelbrot 
(1983) became an important tool for studying 
non-linear and complex sciences [43]. 
Fractal/multi-fractal modeling has been a 
powerful tool in geoscience for identifying 
anomalies [44, 45], evaluating the vertical 
distribution of geochemical data [46 47], image 
processing of the satellite information [48, 49], 
and characterizing the properties of mineralization 
and mineral deposits. There are different types of 
fractal and multi-fractal models such as the 
concentration-area [50], concentration-distance 
[51], power spectrum-area [52], concentration-
number [53], and concentration-volume models 
[42], which have been reported in processing the 
earth science data. 
In this work, ANNs and OK were applied to 
estimate cu grade in a hypogene zone. After 
comparing the results obtained, ANNs and C-V 
fractal modeling were used to delineate the 
alteration regions in the hypogene zone of the 
porphyry ore deposit in the Masjed-Daghi district, 
NW Iran. 
This article is organized as what follows. In 
section 2, the case study is investigated from the 
aspects of regional geology, structural geology, 
and geological setting. An overview of principles, 
advantages, and limitations of the methods are 
drawn in Section 3. In Section 4, the borehole 
dataset and statistical calculations are described. 
The results are discussed in Section 5. Finally, 
conclusions are presented in Section 6. 

2. Case study 
There are many structural and lithotectonical 
zones in Iran [54] that are generally divided into 
the following categories: i) Zagros, ii)  
Sanandaj-Sirjan, iii) Sahand-Bazman, iv) Central 
Iran, v) Alborz, vi) Kope Dagh, vii) Lut block, 
vii) Makran, and ix) East-Iranian suture zone. The 
Urumieh-Dokhtar Magmatic orogenic zone, 
formed as a result of subduction of the Arabian 
plate beneath central Iran during the Alpine 
orogeny, hosts all the known Iranian porphyry 
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copper mineralizations (Figure 1) such as the Sar-
Cheshmeh and Sungun deposits [54]. 
The copper-gold deposit of Masjed-Daghi area is 
located in the east Azarbaijan Province, NW Iran. 
The Masjed-Daghi area, as a part of Alborz-
Azerbaijan zone, is in the 1:100,000 geological 
sheet [55, 56]. The oldest rock units that have 
been cropped out widely in the south and SE of 
the area belong to the Eocene flysch-type 
sediments. The outcropped rocks including 
andesite, trachyandesite, and quartz mostly result 
from tertiary volcanic and volcano-sedimentary 
activities, which have affected the region and 
intersected by late Eocene intrusive [55, 56]. The 
mineralographical studies have shown that the 
mineralization in the area is of copper sulfide type 
in the form of veins, veinlets, and stock works. 
Pyrite has been mostly observed alongside the 
depth relative increasing amounts of chalcopyrite 

and chalco-pyrrhotite. The paragenetic 
observations of the gangue and alteration 
surrounding the veins indicate the presence of the 
gold-bearing epithermal veins with a high sulfide 
content. The occurrence of the native gold 
mineralization has been observed in the siliceous 
zone and in the form of inclusions in the host rock 
of the veins (about 15 microns) in chalcopyrite. 
This phenomenon has been reported for the first 
time in this area. The lead and zinc 
mineralizations exist in the body of the vein but 
not in the altered zone. Moreover, a very small 
amount of molybdenite is present adjacent to the 
veins and stock works. The existing alteration 
types in the area are potassic, phyllic, carbonate-
phyllic, argillic, and propylitic. Furthermore, 
selective sericite, sericite-chlorite, and alunite 
alterations have been observed around the 
mineralized veins [57]. 

 

 
Figure 1. The structural map of Iran (corrected after [56]). 

 
2.1. Geology and lithology of studied area 
The studied area is located in the Central Iran 
geological zone regarding Stoecklin (1968), and is 
considered as a part of the West Alborz zone 
called Alborz-Azerbaijan zone regarding Nabavi 
(1976) and Eftekharnejad (1980). According to 
the geology, the area is known to be a part of the 
Ahar mineralization, and confined by the  
Tabriz-Soltanieh fault in the south and SW, 
Ardabil-Mianeh fault in the east, and by the EW 
fault of Moghan [57] in NE. 

Volcanic activity in the area started from the 
upper cretaceous era marine facies and reached its 
peak in the middle Eocene with Marine-land 
facies. In the upper Eocene-Oligocene era, 
igneous activities have been plutonism, and in the 
neogene era, these activities have continued as 
shallow intrusive bodies of dacite-rhiodacite, 
trachyte, and andesite and basaltic trachyte. 
The effects of volcanism in this area could be 
observed in the form of Andesite trachy domes 
(Masjed-Daghi heights), which led to the crushing 
of the older rocks (Eocene Flysch). These domes 
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include andesite, trachy andesite, quartz, and 
quartz lattice. The boundary between the altered 
trachy andesites and the andesitic lava is not 
easily detectable. According to the petrographic 
studies, the texture of the rocks are porphyric 
microlyte and microgranular with a 
microcrystalline matrix. The main minerals 
include shaped and non-shaped plagioclase and 
have been degraded by the alteration to the clay 
and sericitic minerals. Occasionally, delicate 
fractures have been observed in the feldspars that 

are filled with pyrite, chlorite, epidote, and iron 
oxides. Ferromanganese minerals have also been 
decomposed and converted to the iron oxides, 
calcite, and chlorite. The main factor of the 
hydrothermal alteration and mineralization in the 
studied area is the intrusive bodies. The main 
combination of these rocks is known as quartz-
monzonite. Their color is bright, and their texture 
is porphyritic with micro-granular matrix. The 
main mineral is quartz (Figure 2) [55, 56]. 

 

 
Figure 2. Geological map of Masjed–Daghi area in the scale of 1:5,000 [56]. 

 
2.2. Alteration 
The dominant alteration in the studied area is of 
the argillic type, which often affects the rocks, 
especially the trachyandesite and diorite. Other 
alterations in the area are potassic, phyllic, and 
silica. The most important alteration products in 
the studied area are Argillic alterations, which are 
gradually converted to sericitic alteration and 
cover a wide part of the trachyandesite rocks. 
Based on the petrography studies, mafic minerals 
(amphibole) have been decomposed into a series 
of chlorite, calcite and clays, sericite, and epidote, 
and feldspar (plagioclase) minerals have also been 
completely decomposed into a set of carbonate, 
sericite, jarocite, alunite, and hematite minerals in 
these specimens. The Argillic alteration intensity 
is very strong, and only the shape of the early 
minerals have remained in this alteration. The 
results of XRD studies showed the presence of 
abundant clay minerals such as jarocite, 
pyrophyllite, kaolinite, and alunite. In addition, 
based on the results of mineralogy studies, 
minerals such as pyrite, chalcopyrite, Sphalerite, 
and rutile exist in this region [57]. 
The Potassic alteration zone in the studied area 
shows a small outcrop in the Arpachay region. 

The studied samples, however, show fine-grain 
and amorphous alkaline feldspars, which are 
decomposed into clay minerals. In this area, the 
rocks that consist of andesite and trachyandesite 
are affected by the phyllic alteration. Moreover, 
plagioclase is completely altered to carbonate and 
chlorite, and the mafic minerals (amphibole) have 
been converted to muscovite and sericite. The 
primary biotite in this zone is decomposed into 
chlorite, muscovite, and oxide minerals. The 
presence of pyrite in the alteration zone is an 
evidence of crystal conversion to hydrophilic 
oxides and secondary iron oxides. In some 
samples, concentrations of carbonate are found in 
the matrix of the rock. Yet, carbonate sometimes 
has been observed as veins and veinlets. 
Therefore, this zone is divided into two parts, 
phyllic and phyllic carbonate [57]. 
Silica alteration around the mineralized veins is 
high in the form of veinlets in the dacite of the 
area, which is an appropriate environment for the 
mineralization of gold. High amounts of silica in 
the region are considered as an indicator of the 
hydrothermal solution saturation from silica after 
hydrothermal alteration. The mineralization of 
samples in this altered zone shows the minerals of 
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pyrite, chalcopyrite, and marcasite. The samples 
that are taken and analyzed from the trenches 
indicate a high concentration of gold, which is 
directly related to silicification. 
Propylitic alteration has been observed in the 
andesitic volcanic rocks and margin of siliceous 
veins. One of the most significant indicators of 
this alteration is the presence of the epidote, 
which is in green color along with chlorite. This 
green band is observed on the edge of the 
andesites. Gold mineralization concentrates are 
highly in the propylitic alteration due to the 
presence of zirconia, barite, and quartz-containing 
veins [57]. 

2.3. Mineralization 
The most significant forms of mineralization in 
the Masjed-Daghi area are the rutile, magnetite, 
pyrite, chalcopyrite, calcopyrotit, bornite, 
sphalerite, covillite, and chalcocite minerals. The 
last two minerals have been formed as secondary 
crystals of the alteration in the region. In the 
Masjed-Daghi area, mineralization of gold, lead, 
and zinc has been formed along with the siliceous-
barite veins. Molybdenum mineralization is 
associated with the vein deposits and copper stock 
works. Along with this mineralization, there are 
also tin and tungsten traces. Gold mineralization 
in this area can be observed in both the epithermal 
and the copper mineralizations [57]. 

3. Methods 
3.1. Ordinary kriging (OK) 
Over the past few decades, different spatial 
interpolation methods have been presented by 
numerous researchers. However, most of them are 
related together and have similar principles. 
Spatial interpolation models can be categorized 
into two classes: (a) mechanical/deterministic and 
(b) statistical/probability groups. The mechanical 
models are based upon empirical model 
parameters, which include techniques like Inverse 
Distance Weighting (IDW) and Splines. They do 
not consider the error estimation. In contrast, the 
parameters of the statistical/probability techniques 
are estimated based on the probability principles 
and consider the error estimation. One of the most 
important statistical/probability models is kriging, 
which is based on the“Theory of Regionalized 
Variables” [58, 59]. The technique was first 
introduced by Krige (1951) but in 1963, G. 
Matheron derived the formulas and founded the 
linear geostatistics [60, 61]. The kriging 
technique, which is commonly known as a 
‘minimum variance estimator’, consisting of two 

basic steps. The first is an estimation of the  
semi-variogram using sample data, given by: 

n(h)
2

i 1

1(h) {z(i) z(i h)}
2.n(h) 

     (1) 

where (h) is the estimate of semi-variance, n(h) is 
the number of pairs observed [z(i), z(i+h)], and h 
is the distance between the pairs. 
The second is predicting the value at unknown 
spatial coordinates through a linear combination 
of measured values shown by: 

n
*

0 i i
i 1

z (x ) .z(x )


   (2) 

where z*(x0) is the estimated value for any 
location x0, n is the number of measured value 
z(i), z(xi) is the value involved in the estimation, 
and )i is the weight attached to each measured 
value z(i). 
The best estimator is always unbiased and has a 
minimum variance. Therefore, the kriging system 
can be deduced as: 

n

j i j i 0
j 1

. (x ,x ) (x ,x )


       (3) 

where  (xi, x0) is the semi-variance function of a 
vector with an origin at xi and extremity at x0; 
(xi , xj) is the semi-variance function of a vector 
with an origin at xi and extremity at xj; and  is 
the Lagrangian multiplier [59]. 
OK is an appropriate geostatistical estimator and 
the most useful technique among the different 
kriging methods [59, 62]. OK, as a linear 
estimation method, assigns weights to the sample 
locations inside the estimation neighborhood, 
which are independent from the data values at 
these locations. OK is a moving average method 
satisfying the different types of data dispersion, 
e.g. sparse sampling points [63-65]. The technique 
minimizes the conditional bias and estimation 
variance for each single estimate at each location 
[61, 66]. Most of the theories about OK rely on 
the work of Georges Matheron (1963), and have 
been developed by some others [67-71]. 
In mathematical terms, OK is a spatial 
interpolation estimator z^(x0) that is used to find 
the best linear unbiased estimate of a second-order 
stationary random field with an unknown constant 
mean, as follows: 

n

0 i i
i 1

z ^ (x ) .z(x )


   (4) 
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where z^(x0) = kriging estimate at a non-sampled 
location x0; Z(x0) = sampled value at location xi; 
and i = weighting factor for Z(xi). 
The estimation error is: 

N

0 0 0 i i 0
i 1

z ^ (x ) z(x ) R(x ) .z(x ) z(x )


      (5) 

where Z(x0) = unknown true value at x0; and R(x0) 
= estimation error. For an unbiased estimator, the 
mean of the estimation error must equal zero. 
Therefore: 

0E{R(x )} 0  (6) 

and 
N

i
i 1

1


   (7) 

A minimum variance of estimation error is 
required for solving the interpolation problem by 
kriging [62-64, 69, 70]. 

3.2. Artificial Neural networks (ANNs) 
A very powerful method that has attracted the 
attention of the researchers over the past few 
decades is ANNs, which has been used for ore 
grade modeling [72]. ANNs has a non-linear 
mathematical structure that is able to perform any 
curve-fitting operation in a multi-dimensional 
space. Hence, it is able to represent an arbitrarily 
complex data generating a process that links the 
inputs and outputs of that process [73]. 
In ore grade modeling/estimation, it is supposed 
that the attributed grade value in an ore deposit 
varies from one location to another, and this will 
be reflected in a complex input and output spatial 
relationship between grade values and spatial 
coordinates in the area of interest. Therefore, the 
output grade is considered to be a function of 
spatial coordinates like X, Y, and Z [74, 75]. 
There are many ANNs types such as feed-forward 
neural network, Radial Basis Function (RBF) 
network, and Kohonen self-organizing network 
[76]. Three major components are particularly 
important in every ANNs system: (a) structure of 
the nodes, (b) topology of the network, and (c) 
learning algorithm used to find the weights of the 
ANNs. 
On the other hand, in an ANNs, each processing 
unit acts as an idealized neuron, receives input, 
computes activation, and transmits that activation 
to other processing units. A weight value, defined 
to represent the connection strength, is associated 
with each connection between these processing 
units. The connection weight of each processing 

unit is optimally determined through the 
presentation of known examples, and application 
of a learning rule. Once the connection weight is 
determined through NN learning, the  
inter-connection between input and output 
embedded in the data is captured [77]. 
An architecture of ANNs with a sigmoid 
activation function is presented in Figure 3. 
 

 
Figure 3. Architecture of ANNs with sigmoid 

activation function. 
 
It contains an input layer, a hidden layer, and one 
output layer, which are connected by modifiable 
weights and represented by links between the 
layers. Each input vector is presented as the input 
layer, and the output of each input unit equals the 
corresponding elements in the vector. Each hidden 
unit computes the weighted sum of its input to 
form its net activation [78]. The above-mentioned 
subjects can be expressed in mathematical terms 
by Eq. (8): 

d d

j i ij j0 i ij
i 1 i 0

net x w w x w
 

     (8) 

where the subscripts i and j are indexed units in 
the input and hidden layers, respectively, Wij 
denotes the input to the hidden layer weights at 
the hidden unit j, and net j is the activation for 
hidden j. Each hidden unit emits an output that is 
a non-linear function of its activation, f(net), in 
the form of Eq. (9): 

j jy f (net )  (9) 

   
Each output unit similarly computes its net 
activation based on the hidden unit signals as Eq. 
(10): 
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H Hn n

k j kj k0 j kj
j 1 j 0

net y w w y w
 

     (10) 

where the subscript k indexes the units in the 
output layer and nH denotes the number of hidden 
units. An output unit computes the non-linear 
function of its net, as Eq. (11): 

k kz f (net )  (11) 

where zk is the k output unit. Therefore, the total 
network output for a three-layer model can be 
calculated in the form of Eq. (12) [74]: 

Hn d

k kj ji i j0 k0
j 1 i 1

z f ( w f ( w x w ) w )
 

     (12) 

3.3. Concentration-volume (C-V) fractal model 
The C-V fractal modeling, which was first 
proposed by Afzal et al. (2011) for identification 
of different mineralization zones in porphyry Cu 
deposits, can be generally expressed as Eq. (13) 
[42, 79, 80]: 

1 2( ) ; ( )a aV r V r         (13) 

where V(ρ ≤ υ) and V(ρ ≥ υ) represent the 
volumes with concentration values (ρ) less than or 
equal to and greater than or equal to the contour 
values (υ); and a1 and a2 are the characteristic 
exponents. The contour value (υ) in this model 
explains the boundaries that separate various 
mineralized (alteration) zones and concentration 
populations. In this work, the OK and ANNs 
outputs (block model) were processed by the C-V 
fractal method, and V(ρ ≤ υ) and V(ρ ≥ υ) (the 
volumes enclosed by a concentration contour) 

were calculated in a 3D space [42]. 

4. Borehole dataset 
The borehole dataset plays an important role in 
geoscience investigations in both the mineral 
exploration and grade estimation. A total of 50 
boreholes were drilled in the studied area in 
which, 16 of them belonged to the pre-drilled 
boreholes (BH series) with a total length of 
1882.3 m and 34 boreholes were related to MAD 
series with a total length of 15015.95 m (Figure 
4). The dataset included the collars, lithology, 
down-hole survey, and assay. The other acquired 
data was zone, alteration, mineral, and recovery. 
The dataset for assay was analyzed by the  
ICP-MS method at the Zarazma laboratory, 
Tehran. Based on the mineralogical, geological, 
and geochemical results, it was found that the case 
study was favorable for the mineralization of Cu. 
The data was validated and subjected to statistical 
analysis. The histogram, Q-Q plot, and descriptive 
statistics of the copper grades from 8267 samples 
in the hypogene zone of the case study are shown 
in Figure 5 and Table 1. The statistical parameters 
of Cu grade based on the alteration in the 
hypogene zone of the case study are also shown in 
Table 2. Accordingly, two alteration zones 
composed of potassic and phyllic accounted for 
more than 90% of the data length. The Cu 
regionalized variable was modeled by a second-
order stationary random function. There was no 
trend of Cu concentration in any direction; this 
means that Cu concentration does not depend on 
the coordinates of the samples (Figure 6 (a-c)). 
Consequently, assumptions of the stationary are 
tenable. 

 

 
Figure 4. Borehole location map of the studied Cu porphyry deposit. 
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Figure 5. a) Histogram of the Cu raw data and b) Q-Q plot of the Cu data in the hypogene zone of Masjed-Daghi 

deposit. 
 

Table 1. Statistical parameters of the Cu element in the boreholes (raw data). 
Variable Length (m) Mean Minimum Maximum Std. Deviation Variance Skewness 
Cu (%) 15952 0.643 0.001 4.8 0.480 0.231 1.011 

 
Table 2. Statistical parameters of the Cu grade based on the alteration in the hypogene zone. 

Alteration type Length Length% Cu 
Min. Max. Mean 

ARG 84.3 0.49 0.072 0.784 0.325 
CHL 44 0.26 0.02 0.1 0.058 
NA 1151.45 6.81 0 1.22 0.15 

PHY 3705.9 21.93 0 1.04 0.158 
POT 9847.45 58.32 0 1.38 0.248 
PRP 16.1 0.09 0.009 0.023 0.0137 
SER 8.4 0.04 0.181 0.419 1.246 
SLC 158.35 0.93 0.007 0.93 0.134 

ARG = Argillic; CAL = Calcified; CHL = Chloritic; PHY = Phyllic; POT = Potassic; PRP = Propylitic; SLC = 
Silicified; and NA = Not Applicable. 

  

 
Figure 6. Variability of Cu concentration in a) east-west direction, b) north-south direction and c) depth within 

the hypogene zone of Masjed-Daghi deposit 
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5. Results and discussion 
5.1. OK results 
Here, the data in Section 3 is used to estimate the 
Cu grade. However, prior to the kriging 
calculations, it is necessary to carry out a series of 
data pre-processing. The first step is to determine 
and correct the outlier values. These values 
dramatically impact the statistical analysis and 
result interpretation. High-grade values as outliers 
are able to transform a mineral occurrence into an 
economic mineral deposit, and may be sufficient 
to justify the development of a mining project [81, 
82]. There are several ways to deal with the 
effects of the outlier values and control them. In 
this work, the box plot (Figure 7) is applied to 
remove the outlier values [83]. Another important 
issue in the pre-processing is the composite data. 
In other words, it is very important to work with 
equal volume samples [84]. In this work, the data 
for the analysis of Masjed-Daghi reservoir using 
the OK method is divided into 2 m composites. 
According to the composite length, the lowest loss 
length is obtained, while the Cu grade and 
variance of Cu are similar to the original data. 
Data variography for OK is the next step after 
data pre-processing. Given the spatial variability 
and randomness, the variogram function can 
reflect the structure of the spatial variability of the 
regional variable. The best way to describe the 
spatial dependencies in the process of stationary is 
covariance variogram. 

Since mineralization does not have the same 
behavior in each direction, it will be anisotropic. 
Consequently, in order to determine the spatial 
structure correctly, it is necessary to perform a 
single analysis in several directions. As the 
experimental variograms show different behaviors 
in different directions, the anisotropic variogram 
model should be fitted to them. In general, the 
variogram has orientational properties in a more 
than one direction. In this work, the variogram 
was performed using the high-power Datamine 
software. 
An omni-directional semi-variogram of raw data 
along azimuth of 00°, Plunge of 00°, spread of 
90°, and lag spacing of 40 m follows a spherical 
model with a nugget effect of 0.052 (%)2, which 
reaches a sill of 0.02 (%)2 at a range of 204 m 
(Figure 8-a). To investigate anisotropy, directional 
semi-variograms are thereafter calculated and 
modelled in different directions with 
30°horizontal angular increments, 15°horizontal 
angular tolerance, 30°vertical angular increments, 
and 15°vertical angular tolerance in the hypogene 
zone of the porphyry ore deposit. Because of the 
different ranges of variograms, the ore deposit has 
anisotropy. The main resulting directions from 
variography for the three principal directions of 
the search ellipsoid are presented in Figure  
8 (b)-(d). The directional semi-variogram model 
parameters are shown in Table 3. 

 

 
Figure 7. The box plot used to remove the outlier data. 
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Figure 8. Experimental semi-variogram and appropriate fitted model of the (a) omnidirectional semi-variograms 
and (b) directional semi-variograms with Azimuth = 60; Dip = 30 (c) directional semi-variograms with Azimuth 

= 150; Dip = 0 (d) directional semi-variograms with Azimuth = 240; Dip = 0 for the 3 main directions of the 
search ellipsoid in the hypogene zone of Masjed-Daghi porphyry ore deposit. 

 
Table 3. Directional Semi-variogram parameters for three principal directions of the search ellipsoid in the 

hypogene zone of the porphyry ore deposit. 
Variogram model Azimuth Dip nugget effect (%)2 Range (m) Threshold (%)2 

Spherical 60 30 0.004 147 0.03 
Spherical 150 00 0.004 238 0.03 
Spherical 240 60 0.004 223 0.03 

 
The cross-validation method is used to validate 
the fitted model to the variogram of the hypogene 
zone. The correlation coefficient of the estimated 
values and actual values was partially acceptable 
and about 80%. 
To confirm the practicality of OK in estimating 
the unsampled locations, this method was applied 
in the hypogene zone of the porphyry ore deposit. 
The estimation of Cu (%) is performed on a 10 × 
10 × 10 m grid. The estimation and 3D modeling 
process are commenced from the elevation of 0 to 

800 m above the sea level in the mine. It also 
began from 581113 to 582043 m in the east 
direction and from 4303279 to 4303279 m in the 
north direction. 3D modeling in the mineral 
deposit has many advantages. Therefore, if this 
process is carefully performed, evaluations and 
judgments on the different parts of the deposit 
will be more accurate. The 3D model of the Cu 
grade by OK in the Cu copper deposit is shown in 
Figure 9. 

  

 
Figure 9. 3D model of Cu concentration estimation by OK. 
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5.2. ANN results 
There are a lot of types of ANNs. The most 
popular and the best-known ANNs are feed 
forward neural network, Radial Basis Function 
(RBF) network, Kohonen self-organizing 
network, and modular neural networks. Generally, 
three elements are particularly important in every 
model of ANNs: the structure of the nodes, the 
topology of the network, and the learning 
algorithm used to find the weights of the network. 
The learning algorithm is an adaptive method by 
which a network of computing units organizes 
itself to implement the desired behavior. This is 
performed in some learning algorithms by 
presenting some examples of the desired  
input–output mapping of the network. In this 
work, instead of using complex ANNs like RBF 
and WNN, Multi-Layer Perceptron (MLP) with 
Levenberg–Marquardt (LM) and scaled gradient 
descent (SGD) algorithms are applied to estimate 
the Cu grade based on the borehole dataset. 

Although the network used in this work has a 
simple structure, the learning algorithm is 
powerful and sufficient for the purposes (a 
comparison between ANNs and OK for ore grade 
estimation) of this article. For modelling based on 
MLP, the following steps are followed. 

5.2.1. Sample data acquisition 
A sufficient amount of data is required for ore 
grade estimation in the train, validation, and test 
steps in ANNs. In this work, data on  
Masjed-Daghi porphyry copper deposit has been 
used. According to the available reports, the 
deposit is non-homogeneous. The applied values 
in the deposit are divided into blocks of 10 × 10 × 
10 m. The borehole coordinates and actual grade 
were used as the input and output data for 
training, respectively. Figure 10 shows an 
example of the arrangement of the points that are 
utilized to estimate the central point from the 
surrounding data. 

 

  
Figure 10. Input and output data arrangement. 

 
5.2.2. Data preparation 
Data pre-processing that is applied to train and 
validate the ANN topologies is discussed after 
selection of the source data deposits. At the first 
stage of the modeling, the data is normalized, 
which helps to scale the inputs and output, and 
consequently, leads to a better prediction [85, 86]. 
Different methods have been developed to 
improve the network training in data 
normalization. In this work, the input and output 
data is normalized by Eq. (14): 

min
norm

max min

x xX
x x





 (14) 

where x is the data that should be normalized, and 
xmax and xmin are the maximum and minimum of 
the original data, respectively. Moreover, Xnorm is 
the transformed normalized data. 
Divisionism as one of the most important issues 
would lead to inaccurate and illogical results if it 
has not been considered properly. The ANNs data 
is divided into three groups: 1) training data, 2) 
testing data, and 3) validation data [87, 88]. In this 
work, at first, 5402 Cu data with 2 m composites 
are used for training, testing, and validation of 
ANNs; all the datasets are divided into three 
distinct subsets consisting of the training data 
(70%), testing (15%), and validation (15%). After 
training the neural network, the coordinates of the 
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block centers (90352 sample) were given as a new 
input to the neural network, and the amount of 
copper was estimated as the output. 

5.2.3. Performance of ANNs 
There are various indicators to evaluate the 
accuracy of the models [89]. A complete 
description of these indicators can be found in 
[90]. In this work, the coefficient of determination 
(R2) and Root Mean Square Error (RMSE) are 
applied. The degree of correlation between the 
observed and predicted values as well as a model 
strength through developing a relationship 
between the input and output variables are 
measured by R2. The values of R2 range from 0 to 
1, in which 1 indicates a perfect fit between the 
data and the line drawn through it, and 0 
represents no statistical correlation between the 
data and the line. R2 is calculated by Eq. (15) [91]: 

N
2

k k
2 k 1

N
2

k k
k 1

(t y )
R 1

(t t )






 






 (15) 

where tk and yk are target and network outputs for 
the kth output, respectively; kt  is the average of 
the targets, and N is the total number of the 
considered events. 
RMSE indicates the difference between the 
observed and calculated values. The lower the 
RMSE, the more accurate is the prediction. RMSE 
is calculated by Eq. (16): 
  

N
2

i i
i 1

(y y )
RMSE

N






 
(16) 

where yi is the observed data, iy is the calculated 
data and N is the number of observations. 

5.2.4. Modeling of ANNs 
As stated earlier, there is no clear linear 
relationship between the coordinates of the points 
and corresponding grades but the relation between 
them is non-linear and complex. In this work, the 
2017 version of the MATLAB software was used 
for ANNs modeling. The ANNs model is based 
on a neural network of back-propagation with a 
hidden layer. The optimum number of the hidden 
layers was estimated to be 9 neurons by  
trial-and-error (Table 4). At the beginning, the 
back propagation method is implemented by the 
Levenberg–Marquardt (LM) and scaled gradient 
descent (SGD) algorithms. The sigmoid and linear 
functions are used for the hidden and output 
layers, respectively. The learning and momentum 
parameters that obtained the best results were 
estimated to be 0.05 and 0.7, respectively. An 
early stopping technique is applied to ensure that 
the network is not over-fitted. The 3D model of 
the Cu grade by the ANNs method for the 
Masjed-Daghi porphyry deposit is shown in 
Figure 11. 
A comparison between the two methods ANN and 
OK showed that both methods were able to 
estimate Cu grade very well. The advantage of the 
ANNs method is that it does not require any pre-
processing or need to carry out variogram 
operations. It also can be used for initial data 
without any special pre-processing. However, the 
OK algorithm smooths the data, and thus its 
application to pre-processing of data for fractal 
analysis is not suitable. In the next sub-section, 
the ANN results are used for the determination of 
alteration zones in the Masjed-Daghi porphyry 
copper-gold deposit. 

 
Table 4. Results of the observed and predicted data obtained from ANNs. The best network obtained is in bold. 

Validation  Test  Train  Training 
algorithm  

Number of 
neurons in hidden 

layer  
Number  RMSE  SSE  R2 RMSE  SSE  R2 RMSE  SSE  R2  

0.63  1.82  0.57  0.63  1.80  0.53  0.61  1.71  0.66  SCG 2  1  
0.6  1.72  0.58  0.61  1.74  0.59  0.55  1.68  0.68  SCG 3  2  
0.57  1.61  0.73  0.54  1.73  0.64  0.51  1.62  0.72  LM 4  3  
0.58  1.66  0.64  0.58  1.62  0.72  0.49  1.59  0.79  LM 5  4  
0.54  1.55 0.78  0.56  1.63 0.73  0.44  1.54  0.81  LM 6  5  
0.54  1.55  0.73  0.50  1.59  0.78  0.43  1.41  0.87  LM 7  6  
0.59  1.59  0.84  0.48  1.49  0.81  0.39  1.37  0.89 LM 8  7  
0.54  1.56  0.89  0.35  1.14  0.88  0.37  1.24  0.93  LM 9  8  
0.54  1.56  0.85  0.44  1.59  0.84  0.63  1.46  0.90  SCG 10  9  
0.68  1.76  0.79  0.54  1.62  0.81  0.72  1.51  0.87  SCG 11  10  
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Figure 11. 3D model of the Cu concentration estimation by ANNs in the Mashhad-Daghi porphyry deposit. 

 
5.3. Results of C-V fractal model 
After grade estimation, the volume of each block 
is calculated in order to be used in the C-V fractal 
modeling. The C-V log-log plots show a  
power-law relationship between the copper 

contents and the volumes corresponding to them. 
Threshold values of Cu are identified in the C-V 
plots (Figure 12). According to this plot, a 
threshold value of 0.28 (%) Cu and two 
communities are obtained. 

 

 
Figure 12. Log-Log plot of C-V fractal model based on the ANNs estimations. 

 
5.4. Comparison between fractal and spatial 
alteration models 
In order to validate the results obtained through 
the C-V fractal modeling, the models are 
compared with the 3D alteration zone models for 
the Masjed-Daghi porphyry copper deposit’ zone 
comprising the phyllic and potassic zones (Figure 
13). The models are generated by applying the 
Datamine studios software and the geological drill 
core data. 
To calculate the spatial correlations between the 
two binary models, especially the mathematical 
and geological ones, the logratio matrix [80] can 

be applied. A comparison between the C-V fractal 
model results and the geological model of the 
alteration zones is carried out to obtain the 
number of overlapped voxels (A, B, C, and D). 
Using the numbers obtained, Type I error (T1E), 
Type II error (T2E), and overall accuracy (OA) of 
different fractal populations are estimated for each 
one of the alteration zones [92]. 
According to the C-V fractal modelling result of 
ANNs, the phyllic alteration zone is correlated 
with Cu values less than 0.38% (Table 5). By 
comparing the C-V fractal model thresholds with 
the alteration zone generated by 3-D geological 
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modeling, it was found that the Cu values less 
than 0.38% had more overlapped voxels with OA 
equal to 0.72. 
Comparison between the potassic alteration zones 
resulting from 3D geological modeling, and the 
high concentration zones in C-V fractal model 
shows that Cu values greater than 0.38% with the 
highest OA (0.71) could recognize the potassic 
alteration better (Table 6). 
One of the most important goals in the 
exploratory work is the choice of the optimum 

drilling point to provide a low cost and risk of 
estimating the mineralization of the area. In 
Figure 14, a 2D model presenting exploration 
targets are shown, which could be used to define 
further drilling sites. For this aim, at first, using 
the geochemical data at deposit-scale and C-A 
fractal method, the anomaly's threshold (Cu 
threshold = 0.1998) was determined and then a 
prospectivity map (Cu > 0.01998) was drawn. 
According to the map, further drilling sites should 
be defined in NW corner of the map. 

 

 
Figure 13. Alteration zones in hypogene zone based on the geological model a) Potassic and b) phyllic alterations. 

 
Table 5. Matrix for calculating spatial correlation between alteration models resulting from C-V fractal 

modeling and geological model. A and D show the number of voxels that are estimated correctly, and B and C 
represent the number of voxels with different results in C-V fractal in comparison with the geological model. 
Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively) resulted from the comparison 

between the phyllic alteration zone in 3D geological model and the first Cu threshold values in the C–V fractal 
model obtained by ANNs in the hypogene zone. 

Geological model 
   Inside the zone  outside the zone 

Fractal model 
Inside the model  True positive (A)  False positive (B) 
Outside the model  False negative (C)  True negative (D) 

   Type I error   Type II error  
   C/(A +C)  B/(B + D) 
   Overall accuracy = (A + D)/(A + B + C + D) 
   Phyllic alteration of geological model 
   Inside the zone  Outside the zone 

Fractal model of areas with low mineralization 
Inside the model  A 7829  B 7294 
Outside the model  C 2158  D 17568 
  T1E 0.21  T2E 0.30 

   OA 0.72    
 

Table 6. OA, T1E, and T2E resulting from the comparison between the potassic alteration zone in 3D geological 
model and threshold values of Cu in the C–V fractal model obtained by ANNs in the hypogene zone. 

Geological model 

  Inside the zone  Outside the zone 

Fractal model Inside the model True positive (A)  False positive (B) 
Outside the model False negative (C)  True negative (D) 

  
Type I error  Type II error  
C/(A + C)  B/(B + D) 

Overall accuracy = (A + D)/(A + B + C + D) 
 
  

Potassic alteration of geological model 
Inside the zone  Outside the zone 

Fractal model of areas with high mineralization 

Inside the model A 7001  B 3025 
Outside the model C 1213  D 8143 

 
T1E 0.14  T2E 0.28 
OA 0.76    
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a) 

 
b) 

Figure 14. a) Log-Log plot of C-A fractal model, b) a 2D model presenting exploration targets. 
 
6. Conclusions 
One of the most important stages in mineral 
exploration projects is the alteration zone 
modelling. Alteration modeling is a complicated 
process, which should be consistent with the 
geological interpretation. Conventional modeling 

based on the drill core logging is often descriptive 
and consists of the uncertainties and lack of the 
proper recognition of the alteration zones. This 
type of modeling does not take into account the 
ore grade, whereas it is a significant variable with 
an obvious correlation between the alteration 
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patterns and their distribution. In this work, a 
combination of ANNs and C-V fractal model was 
applied to delineate the alteration zones in the 
hypogene zone of the porphyry copper-gold 
deposit, Masjed-Daghi, East Azerbaijan Province, 
Iran. Initially, the efficiency of ANNs was 
investigated for grade estimation, and the results 
obtained were compared with OK. The results 
showed that the kriging algorithm smoothed the 
data, and thus its application in pre-processing of 
data for fractal analysis was not conducive. 
ANNs, which does not require any  
pre-processing, is known as an alternative in 
handling such issues. It is not required to carry out 
variogram operations, and can be used for raw 
data without any special pre-processing. 
Secondly, the results obtained from the ANNs 
estimation along with the concentration-area 
fractal model were used to delineate the potassic 
and phyllic alteration areas in the hypogene zone 
of the Cu-Au porphyry deposit. By comparing the 
C-V fractal model thresholds with the alteration 
zone generated by 3-D geological modeling via 
logratio matrix, it was found that the Cu values 
less than 0.38% had more overlapped voxels with 
OA equal to 0.72. Moreover, comparison between 
the potassic alteration zone resulted from 3D 
geological modeling, and the high concentration 
zones in the C-V fractal model showed that Cu 
values greater than 0.38% with the highest OA 
(0.71) could recognize potassic alteration better. 
The overall results showed that the combination 
of neural network methods and the concentration-
area fractal model could be a functional tool for 
quantitative modeling of the alteration zones 
instead of the qualitative methods. 
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 :چکیده

 و آموزش هاياست. الگوریتم شده بررسی معدنی عیار تخمین براي مصنوعی عصبی شبکه تکنیک قابلیت است. نخست، شده دنبال خاص هدف دو پژوهش این در
 کاراییشد.  استفاده شرقی آذربایجان داغی مسجد طلا، -سم نهشته هیپوژن زون در ايگمانه هايداده با مس عیار تخمین براي مختلف مخفی هاينرون تعداد

 عصـبی  شـبکه  روش بـه  تخمـین  از حاصـل  نتـایج  دوم،. دش  مقایسه معمولی کریجینگ نتایج با عیار تخمین و تابع یادگیري در مصنوعی عصبی شبکه نوع این
د. ش ـ بـرده  بکـار  مطالعه مورد منطقه هیپوژن زون در پتاسیک و فیلیک دگرسانی هايزون سازيمشخص براي مساحت  -تغلظ فرکتال مدل همراه به مصنوعی

 ایـن  شکسـت  نقـاط  سـپس  و دش ـ تولید شعاعی پایه تابع عصبی شبکه از آمده دست به تخمین اساس بر لاگ -لاگ نمودار نخست مقصود، این به رسیدن براي
 روش از آمده دست به مدل همبستگی میزان و اعتبار بررسی منظور شد. به استفاده دگرسانی هايزون سازيمشخص منظور به آستانه مقادیر تعیین براي نمودار

 هـاي وکسـل  بیشـترین  داراي عیـار  درصد 38/0مقادیر کمتر از  که شد استفاده ايریشه لگاریتم ماتریس از منطقه شناسیزمین مدل و مساحت -ظتغل فرکتال
 و شناسـی بعدي زمـین سه سازيمدل از منتجه پتاسیک دگرسانی بین زون فضایی همبستگی اساس بودند. بر 72/0 صحت با فیلیک دگرسانی زون با همپوشان

. باشندمی زون این با مناسبی همپوشانی داراي 76/0با صحت کلی  38/0 از بالاتر مس مقادیر که شده داده نشان مساحت -ظتغل فرکتال مدل بالا غلظت مقادیر
 هـاي کمـی زون  سـازي مـدل  بـراي  مناسـب  ابزار یک تواندمی مساحت -ظتغل فرکتال مدل و عصبی شبکه هايروش ترکیب که داد نشان آمده دست به نتایج

 .باشد ها آن بعدي سه سازيمشخص نتیجه در و دگرسانی

 .معمولی داغی، کریجینگ مسجد طلا -مس ريپورفی نهشته مساحت، -تغلظ فرکتال مدل مصنوعی، عصبی شبکه دگرسانی، کلیدي: کلمات

 


