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Abstract 
Estimating the costs of blasting operations is an important parameter in open-pit mining. 
Blasting and rock fragmentation depend on two groups of variables. The first group 
consists of mass properties, which are uncontrollable, and the second one is the drill-
and-blast design parameters, which can be controlled and optimized. The design 
parameters include burden, spacing, hole length, hole diameter, sub-drilling, charge 
weight, charge length, stemming length, and charge density. Blasting costs vary 
depending on the size of these parameters. Moreover, blasting brings about some 
undesirable results such as air overpressure, fly rock, back-break, and ground vibration. 
This paper proposes a mathematical model for estimating the costs of blasting 
operations in the Baghak gypsum mine. The cost of blasting operations in the objective 
function is divided into three parts: drilling costs, costs of blasting system, and costs of 
blasting labours. The decision variables used to minimize the costs include burden, 
spacing, hole diameter, stemming length, charge density, and charge weight. Constraints 
of the model include the boundary and operational limitations. Air overpressure in the 
mine is also anticipated as one of the model constraints. The non-linear model obtained 
with consideration of constraints is optimized by simulated annealing (SA). After 
optimizing the model by SA, the best values for the decision variables are determined. 
The value obtained for the cost was obtained to be equal to 2259 $ per 7700 tons for the 
desired block, which is less than the blasting costs in the Baghak gypsum mine. 

1. Introduction 
Drilling and blasting are the major unit operations 
in open-pit mining. In spite of all the efforts made 
to introduce mechanization in open-pit mines, 
blasting continues to dominate the production 
procedure in those mines. Currently, explosives 
make about 5% of the direct cost of production, 
and if the aggregate cost of drilling and blasting is 
taken together, this may go as high as 30% of the 
direct cost of production. 
Drilling and blasting are the most fundamental 
and sensitive parameters affecting the economy 
and life of the mine. Drilling and blasting costs in 
any project can be as high as 25% of the total 
production cost. Proper adoption of drilling and 

blasting methods can significantly contribute to 
profitability, and thus optimization of these 
parameters is essential. Performing an optimal 
blast entails reducing the total cost of rock 
fragmentation, improving the efficiency of drilling 
operations, loading, haulage, and processing 
operations. Blasting and rock fragmentation 
depend on two groups of variables. One group has 
mass properties that are uncontrollable, and the 
other includes blasting design parameters that can 
be controlled and optimized. All the relevant 
parameters should be considered when designing 
a blast. The controllable parameters that should be 
considered are hole diameter, burden, spacing, 
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stemming, sub-drilling, hole length, charge length, 
charge weight, and delay time. 
In blasting, whenever an explosive is detonated, 
transient airblast pressure waves are generated, 
and these transitory phenomena last for a few 
seconds [1]. Only a fraction of explosive energy 
(20–30%) is used in the actual breakage and 
displacement of the rock mass. The rest of the 
energy is wasted, causing undesirable effects like 
ground vibrations, AOp, flyrocks, noises,  
back-breaks, and over-breaks [2]. AOp is an 
undesirable by-product of blasting that is directly 
related to some parameters such as blast design, 
weather, and terrain conditions. AOp is produced 
by a large shock wave from the explosion point 
into the free surface. Consequently, AOp is a 
shock wave, which is refracted horizontally by 
density variations in the atmosphere. An audible 
high frequency sound and a sub-audible  
low-frequency sound are two atmospheric 
pressure waves of AOp [3]. The minimum sound 
frequency that is detectable by human ear is 20 
Hz, and sound frequencies lower than that are 
unhearable. However, there is a possibility to get a 
concussion with sound waves above 20 Hz. 
According to Kuzu et al. [4], AOp is known in 
terms of sound, which is measured in Pascals (Pa) 
and Decibels (dB). When AOp wave energy 
exceeds the atmospheric pressure (194.1 dB), the 
surrounding structures may be affected with some 
damage [5]. The average level and higher spectral 
frequencies in AOp tend to be higher due to 
explosions, whilst the amplitude of AOp 
decreases by 6 dB for every doubling of the 
distance between the blast and the recipient [6]. 
Based on the differences between the source 
spectra and the propagation conditions, the range 
of attenuation becomes smaller, i.e. -3.1 to -10 
dB. An AOp level of the structural damage 
possibility is 180 dB, glass break is 130–150 dB, 
and window vibration is 110–130 dB. Therefore, 
many attempts have been made to keep AOp 
below 110 dB in critical areas where the public is 
concerned [4, 7, 8]. In general, AOp waves are 
produced from four main sources in blasting 
operations [9-11]: 

1- Air pressure pulse (APP): displacement of 
the rock at bench face as the blast progresses. 

2- Rock pressure pulse (RPP): induced by 
ground vibration. 

3- Gas release pulse (GRP): escape of gases 
through rock fractures. 

4- Stemming release pulse (SRP): escape of 
gases from the blast-hole when the stemming is 
ejected. 

It is a well-established fact that different 
parameters can cause AOp. These parameters are 
categorized into two main groups: blast design 
parameters and rock mass properties [12-14]. 
Blast design or controllable parameters such as 
specific charge, charge weight per delay, burden, 
spacing, time delay interval, sub-drilling, stiffness 
ratio, and type of explosive material can be 
changed by engineers, whereas rock mass 
properties cannot be changed by them. 
Very few research works have been conducted on 
the optimization of blasting and the related costs. 
All investigations in the area of prediction and 
optimization of blasting and its parameters include 
burden, spacing, hole diameter, hole length, 
stemming length, sub-drilling, powder factor, 
explosive type, charge length, and charge weight, 
and the blasting results include fragmentation, fill 
factor, back-break, flyrock, ground vibration, air 
over-pressure, and various mining issues such as 
the production rate, cut-off grade, equipment, and 
production planning. Regression analysis, 
empirical models, and artificial intelligence 
methods have been applied in previous studies. 
Jimeno et al. provided the basic equation for 
calculating the cost of each drilling meter based 
on the direct and indirect costs. Direct costs 
include maintenance, personnel, energy, grease, 
oil, bit, etc., and indirect costs include 
depreciation, insurance, taxes, etc. [15]. Eloranta 
obtained a connection between the cost of mineral 
haulage and the costs of drilling and blasting 
process on the basis of spesific charge and 
fragmentation [16]. In an article entitled 
"Optimum Blasting: Is it minimum cost per 
broken rock or maximum value per broken rock?", 
Kanchibotla studied the maximum profitability, 
costs, and optimum blasting in a gold mine and an 
open-pit coal mine based on computer simulations 
and field studies [17]. Awuah-Offei et al. 
forecasted the truck and shovel requirements 
using the SIMAN simulation [18]. Tangchawal 
used the threshold limit of damage and the 
probability method for vibration prediction and 
optimization [19]. Singh et al. made an attempt to 
predict ground vibration using an Artificial Neural 
Network(ANN) and multivariate analysis 
incorporating a large number of parameters that 
affect ground vibration [20]. Tawadrous used an 
ANN on blast design [21]. Bascetin and Nieto 
described the determination of a cut-off grade 
strategy based on Lane algorithm, adding an 
optimization factor based on the generalized 
reduced gradient (GRG) algorithm to maximize 
the project NPV [22]. Monjezi and Dehghan used 



Bakhshandeh Amnieh et al./ Journal of Mining & Environment, Vol. 10, No. 4, 2019 

905 
 

the ANN technique to determine the  
near-optimum blasting pattern so that back-break 
is reduced [23]. Rajpot explored the effect of 
fragmentation specifications on blasting costs, and 
presented a model for investigating the impact of 
the hole diameter on the blasting requirements to 
achieve the fragmentation of d80 and calculating 
the blasting design parameters for dimensions of 
75-350 millimeters [24]. Kuzu et al. used the 
operational and geological parameters in assessing 
blast induced airblast-overpressure in quarries 
[25]. Bakhshandeh Amnieh et al. investigated the 
potentials of ANN in the prediction of ground 
vibrations due to blasting in open-pit mines [26]. 
Khandelwal and Kankar made an attempt to 
predict the blast-induced air-overpressure (AOp) 
by support vector machine (SVM) using 
maximum charge per delay and distance from 
blast-face to monitor AOp station [27]. Usman 
and Muhammed analyzed the application of the 
PCA hybrid analysis based on the information and 
31 blasting parameters obtained from a cement 
mine in northern Pakistan, and these parameters 
were used as a model for predicting the blasting 
costs [28]. Kulatilake et al. used the neural 
network model and multivariate regression 
analysis for the prediction of mean particle size in 
rock blast fragmentation [29]. Khandelwal 
and Monjezi tried to predict back-break in 
blasting operations of Soungun iron mine, Iran, 
incorporating rock properties and blast design 
parameters using the support vector machine 
(SVM) [30]. In an article, Anon obtained the cost 
of drilling and blasting in the North Park copper 
and gold mines in Australia through optimization 
of the blasting design and use of the Uni TronicTM 
electrical blasting system, and succeeded in 
providing a better fragmentation with a lower 
specific charge [31]. Trivedi et al. predicted the 
distance covered by the flyrock induced by 
blasting using ANN and multi-variate regression 
analysis (MVRA) for a better assessment [32]. 
Afum and Temeng, in a paper, reduced the cost of 
drilling and blasting operations in an open-pit 
gold mine in Ghana in three pits through blasting 
optimization and the use of the Kuz-Ram model, 
and ultimately obtained the average fragmentation 
of 25 up to 56 cm [33]. Adebayo and Mutandwa 
studied the correlation among blast-hole 
deviation, size of rock fragments, and cost of 
fragmentation, and in their work, they used 
ANFO, heavy ANFO, and emulsion in hole with a 
diameter of 191 to 311 mm, and the results 
obtained showed that an increase in hole deviation 
led to an increase in the average size of the rock 

fragments, and the cost of drilling and blasting 
increased as well [34]. Jahed et al. presented the 
neuro-fuzzy inference system (ANFIS) and ANN 
models for the prediction of blast-induced air-
overpressure (AOp) in quarry blasting sites [35]. 
Ghasemi et al. used the regression tree (RT) 
analysis and adaptive neuro-fuzzy inference 
system (ANFIS) for the assessment of back-break 
in open-pit mines [36]. Yari et al. developed an 
evaluation system for selection of the most 
suitable pattern among the previously performed 
patterns to provide an efficient production [37]. In 
a study, Ghanizadeh et al. collected the data from 
three copper mines in Iran to obtain a function of 
the hole diameter, bench height, uniaxial 
compressive strength, and joint set orientation, 
calculating the blasting cost per cubic meter as a 
linear model using the kamfar software and 
statistical methods [38]. Miranda et al. wrote an 
article on the numerical methods to find the 
minimum blasting cost compared to the traditional 
and experimental methods. Their model was 
based on the development of the blasting pattern 
with the automatic adjustment of the burden, 
spacing, stemming, sub-drilling, and number of 
holes in order to guarantee the production demand 
in terms of the blasting volume [39]. As it can be 
seen, few studies have looked at the blasting costs 
in mines. In addition, in articles written in the 
field of blasting cost study, the number of blasting 
design parameters used is very limited. In this 
research work, a mathematical model for 
estimating the blasting cost is not provided, and 
relationships are presented through regression and 
prediction by different methods. 
Meta-heuristic methods are another set of methods 
used in optimization problems. Hajihassani et al. 
presented a new approach based on the hybrid 
ANN and particle swarm optimization (PSO) 
algorithm to predict AOp in quarry blasting [40]. 
Khan and Niemann-Delius provided production 
plans of open-pit mines using the PSO algorithm 
[41, 42]. Setin and Dowd Stenin focused on the 
optimization of multiple cut-off grades by genetic 
algorithm (GA) and compared the results obtained 
with those of the dynamic search and network 
searching methods. By maximizing the net 
peresent value, they set a cut-off grade for a block 
of three minerals [43]. Using GA, Ruiseco et al. 
investigated optimization of the waste-ore range 
as part of the mining operations [44]. Hasanipanah 
et al. used PSO to predict ground vibration caused 
by blasting [45]. Soleymani and Sattarvand 
focused on optimizing long-term production plans 
in open-pit mines [46]. Bahrami et al. designed 
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hybrid models to predict groundwater inflow to an 
advancing open-pit mine and the hydraulic head 
(HH) in observation wells at different distances 
from the center of the pit during its advance. 
Hybrid methods coupling ANN with GA methods 
(ANN–GA) and simulated annealing (SA) 
methods (ANN–SA) were utilized [47]. 
Saghatforoush et al. used an ANN and the ant 
colony optimization (ACO) to solve the problem 
of flyrock and back-break in the Delkan iron mine 
[48]. Taheri et al. proposed a hybrid model for 
predicting blast-produced ground vibration in 
Miduk copper mine, Iran, using a combination of 
the ANN and the artificial bee colony (ABC) 
(codename, ABC-ANN) [49]. Ghasemi presented 
the application of PSO technique to estimate the 
back-break induced by bench blasting based on 
the major controllable blasting parameters [50]. 
One of the most important issues in mining 
operations is paying attention to the operation 
costs, which include drilling, blasting, loading, 
haulage, crushing, and processing. The cost of 
blasting operations can be reduced by optimizing 
the design parameters of blasting. Although 
optimization and cost reduction are the primary 
purposes of mining operations, few mines have 
actually achieved this end. There are two types of 
costs. One is the cost of the blasting operations 
including the cost of explosives, drilling, etc., and 
the other is the cost of the post-blasting operations 
including the cost of loading, haulage, crushing, 
milling, etc. It is also necessary to pay attention to 
the unwanted results of the blasting such as the air 
blast. This paper defines a relationship between 
the design parameters of blasting and the air blast 
by regression, and examines the blasting costs 
including the cost of drill-hole, cost of the blasting 
system, and mining labors' costs. A relationship 
between the design parameters of blasting and 
blasting costs due to air blast constraint is also 
determined in order to minimize the costs. 

2. Mathematical modeling of costs 
2.1. Objective function definition 
Blasting operations in mines have different kinds 
of costs that can be taken into consideration in 
economic debates and thus increase profits to 
mines. Blasting operations can be divided into 
several sections, each with its own costs. One 
section involves the drilling of blast holes, which 
requires equipment for drilling with the 
corresponding costs. The next section is the cost 
of the blasting system. Depending on the type of 
blasting system used and its use for blasting the 
target block, the cost of blasting will vary. The 

third part of the costs of the blasting operations is 
the blasting labor costs. Depending on the number 
of labor used to blast, the cost will vary. The 
decision variables in the objective function are to 
minimize costs such as burden, spacing, hole 
diameter, stemming length, charge density, and 
charge weight. 
The cost of hole drilling is determined by Eq. 1. 

1 1F n H C     (1) 

where F1 is the cost of drill-hole ($), n is the total 
number of holes, H is the depth of hole (m), and 
C1 is the cost of a drilling meter in inch ($) [51]. 
The following relations are also used: 

 (2) 1 2n n n   

(3) 1
L Dn 1
D S


 


 

(4) 2 1W Dn
D B


 


 

(5) 1H L T   

(6) 1 2

4

mL
D




 

where n1 is the number of holes in the row, n2 is 
the number of holes in the vertical row, L is the 
length of the block (m), D is the diameter of the 
hole (m), S is the spacing (m), W is the width of 
the block (m), B is the burden (m), L1 is the length 
of charge (m), T is the length of stemming (m), m 
is charge weight (kg), and   is the charge density 
(kg/m3). Equations 2 to 6 are expansions of the 
relations in Lopez's book [51]. By putting Eqs. 3 
and 4 in Eq. 2, and Eq. 6 in Eq. 5, and Eqs. 2 and 
5 in Eq. 1, Eq. 7 is obtained: 

(7) 1 12
4

1 1
0.0254

 
     

   

   
       

L D W D m D
F T C

D S D B D 
  

A value of 0.0254 is used to convert inches to 
meters. Because of the more advantages and fewer 
disadvantages of the NONEL system compared to 
the other systems, as well as the use of this system 
in most mines, the NONEL system is considered 
as a system used in block blasting. Thus the cost 
of the blasting system includes two parts: the 
NONEL system and the hole charge costs, which 
are determined by Eq. 8: 

       

 

2 1 2 2 2

2

3

1 1 1 1

4

            

     

F H S n H n n B C

D H T n C


 (8) 

where F2 is the cost of the blasting system ($), C2 
is the cost of the NONEL per meter ($), and C3 is 
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the cost of the charge per kilogram ($). By putting 
Eqs. 2, 3, and 4 in Eq. 8, Eq. 9 is obtained. 
The costs of the blasting labors are comprised of 
three parts: labors required for blast hole charging, 

labors required for stemming, and labors required 
for the NONEL system costs, and are determined 
by Eqs. 10, 11, and 12, respectively: 

(9)  
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2

2 2 3

1 2 1 1  
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4
2
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where K1 is the cost of the labor required for blast 
hole charging ($), K2 is the cost of the labor 
required for stemming ($), K3 is the cost of the 
labor required for the NONEL system ($), C4 is 
the cost of the labor per hour ($), A1 is the volume 
of the charge that a labor puts in the blast hole 
(m3) in an hour, A2 is the volume of the stemming 
that a labor puts in the blast hole (m3) in an hour, 
and A3 is the length of the NONEL system that a 
labor could charge in the blast hole (m) in an 
hour. Therefore, the blasting costs can be obtained 
from the combination of Eqs. 10, 11, and 12, 
which yields Eq. 13, where F3 is the cost of the 
labors required for blasting ($). The objective 
function that, according to the parameters of 
blasting design, i.e. the decision variables, 
minimizes the costs of blasting operations, is 
determined by combining Eqs. 7, 9, 13, and 14. 

3. Optimization methods for non-linear 
problems 
Optimization methods for multivariate, non-linear 
programming problems fall naturally into three 
classes, which are: direct search methods, gradient 
methods, and intelligent optimization methods. 
Direct search methods require only the evaluation 
of the objective function. The use of partial 
derivatives of the objective function is not 
required. These methods are iterative: start with 
an initial guess of the solution and then proceed 
by generating a sequence of new estimates, each 
of which represents an improvement over the 
previous ones. 

These optimization methods attempt to reduce the 
uncertainty space of the solution to the objective 
function by examining points near the estimated 
solution. The test points determine the direction of 
search in which the maximum is expected to lie. 
Random search method, Grid search method,  
uni-variate search technique, simplex search 
technique, pattern search method (Powell’s 
method or Hooke and Jeeve's method), 
Rosenbrock’s method of rotating coordinates, and 
alternating variable method are some of these 
methods [52, 53]. In gradient methods, the 
evaluation of the first and possible higher order 
derivatives of the objective function is required in 
addition to the objective function. These methods 
are useful in finding the optimum solution of 
continuous and differentiable functions. Steepest 
descent method, conjugate gradient method 
(Fletcher-Reeves), Newton’s method, and variable 
metric method (Davidon-Fletcher-Powell) are 
examples of these methods [52, 53]. 
In the recent years, several researchers have taken 
an interest in the use of intelligent optimization 
methods to solve non-linear programming 
problems. These techniques have the ability to 
solve difficult problems and have become popular 
in many scientific domains. Genetic algorithm, 
Tabu search, and simulated annealing are some 
instances of such methods. Intelligent 
optimization methods can explore the search 
space better than the direct search methods for a 
given number of function evaluations, and are 
more likely to find the true global optimum. 
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3.1. Simulated annealing 
The simulated annealing (SA) algorithm is a 
simple, effective, and meta-heuristic optimization 
algorithm for the solution of NP optimization 
problems. Similar to most meta-heuristic 
algorithms, it has been established by modeling 
and simulating one of the nature’s laws or 
phenomena. It has been presented based on 
substituting physical elements in the process of 
physical annealing (system state, state variation 
energy, temperature, and freezing state) with the 
elements of the optimization problem (possible 
solution, cost, neighborhood solution, controlling 
parameter, and heuristic solution) [54]. This 
algorithm consists of two basic mechanisms: 1) 
producing the substitute, and 2) an acceptance rule 
[55]. SA is a generic probabilistic approach for 
finding an approximation to the global optimum 
of a given objective function Φ [56-57]. From a 
previous solution Si, another solution Si+1 is 
achieved through a random perturbation of one of 

the variables in Si. The acceptance of Si+1 as a 
feasible solution is determined by the Metropolis 
criterion: 

(15)  
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where T denotes a positive control parameter (also 
referred to as the annealing temperature). If Si+1 is 
accepted, a new solution Si+2 is derived from Si+1, 
and the probability Pc (Si+1 → Si+2) is calculated 
with a similar criterion. Many iterations are run at 
every temperature, and then the temperature, is 
gradually reduced. In the preliminary steps, very 
high temperatures are adjusted so that worse 
solutions can be more probable to accept. With 
the gradual decrease in temperature, there is a less 
probability for the worse solution to be accepted 
in the final steps; therefore, the algorithm 
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converges on a near-optimal solution. The  
flow-chart algorithm is given in Figure 1. To run 
the simulated annealing algorithm, it is necessary 
that, first, such annealing parameters as the 
annealing function, the temperature updating 
function, and the initial temperature be specified. 
The annealing function is either “Boltzmann” or 
“fast”, and the temperature updating function is 
selected from among exponential, logarithmic, 
and linear functions. The initial temperature can 
be defined both as a number or a function. 
Simulated annealing is one of the meta-heuristic 
methods that has been used to find the optimal 
solution of such different mining problems as 
optimally locating the additional drillholes [58], 
and controlling and guiding exploration and 
extraction operations [59]. Xia et al. also used 
simulated annealing and genetic algorithm for the 
optimal control of cobalt crust seabed mining 
parameters [60]. Luo et al. used a hybrid genetic 
and simulated annealing algorithm for the 
optimization of the seismic processing phase-shift 
plus finite-difference migration operator [61]. Tan 
et al. used the two algorithms of simulated 
annealing and Monte Carlo to search for the 
critical failure surfaces of the slope [62].  
Soltani-mohammadi and Bakhshandeh Amnieh 
used simulated annealing to investigate ground 
vibration and calculate the permissible charge 
weight for blasting operations [63].  

Soltani-mohammadi and Hezarkhani proposed a 
mathematical model to find the optimal location 
of additional drillholes where the information 
gathered from drillholes has the highest possible 
value. Due to the combinatorial nature of this 
model, a simulated annealing-based algorithm was 
used for its solution [64]. Soltani-mohammadi et 
al. tried to define the objective function with the 
aim of considering local variability in boundary 
uncertainty assessment by the application of 
combined variance. Thus in order to verify the 
applicability of the proposed objective function, it 
was used to locate the additional boreholes in the 
Esfordi phosphate mine through the 
implementation of metaheuristic optimization 
methods such as simulated annealing and particle 
swarm optimization [65]. Kurma optimized ore-
waste discrimination and block sequencing 
through simulated annealing [66]. Safa et al. 
tested the applicability and efficiency of 
minimizing combined variance as the objective 
function of the additional sampling, adopted it in a 
salt marsh (east of Iran) on the basis of a 
simulated annealing-based algorithm [67], and 
proved this function to be efficient and applicable. 
Research on the application of simulated 
annealing algorithms shows that this algorithm 
has been used in various mining issues but there 
are no specific studies that discuss blasting costs 
as their main concern. 
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Figure 1. Simulated annealing algorithm. 
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4. Case study 
Baghak gypsum mine is located 130 km northeast 
of Isfahan on the 30th km of the old  
Kashan-Natanz road. Geographically, the mine is 
located at a latitude of 33˚50ʹ13ʺN and a longitude 
of 51˚37ʹ36ʺE in the south of Kashan. The 
location of the Baghak gypsum mine is shown in 
Figure 2. The production capacity of this mine is 
150000 tons per year. Blasting is carried out 9 to 
10 times per month, depending on the weather 
conditions. In this case study, ammonium nitrate 
and fuel oil (ANFO) and the non-electric 
(NONEL) were used as the main explosive and 
initiation materials, respectively. The blast-holes 
were stemmed using fine gravels. During data 
collection, 70 blasting operations were 
investigated and the parameters of hole depth, 
charge weight, burden, spacing, stemming length, 
charge density, and distance from the blast-face 
were measured. The variations in the blasting 
design parameters are shown in Table 1. 
Different patterns are used for blasting in mines. 
However, little attention is paid to the costs in 
choosing these patterns. In the Baghak gypsum 
mine, the decision variables, taken into account to 
minimize the cost of blasting operations, include 
burden, spacing, hole diameter, charge weight, 
charge density, and stemming length. Since the 
blasting operations in the Baghak gypsum mine 
are conducted close to the residential areas, AOp 
is an important blasting environmental impact in 

this mine. The nearest building to the mentioned 
quarry site is about 320 m far. By conducting the 
blasting operations in the Baghak gypsum mine, 
AOp sometimes causes damage to the surrounding 
residential areas, especially the buildings' 
windows. Therefore, AOp is a significant problem 
in this mine. In each blast, AOp was recorded 
using a VibraZEB seismograph. The AOp values 
were monitored using linear L type microphones 
connected to the AOp channels. A range of AOp 
values from 93 dB to 129 dB can be recorded by 
VibraZEB. The microphones have an operating 
frequency response from 2 to 250 Hz, which is 
adequate for measuring AOp accurately in the 
frequency range critical for structures and human 
hearing. All AOp values were recorded in front of 
the bench. Considering the location of the nearest 
building, the distance between the monitoring 
point and the blast-face was set in the range of 
160–690 m. 
The values for the parameters in the objective 
function for the Baghak gypsum mine are given in 
Table 2. Using ANFO for hole charge and 
NONEL system for blasting, costs of C1, C2, C3, 
and C4 were taken from the Baghak gypsum mine, 
and values of A1, A2, and A3 were measured in the 
same mine. The length and width of the desired 
block, hole length, and rock density were 35, 10, 
and 11 m (considering 1 m of sub-drilling), and 
2200 kg/m3, respectively. 

 
Table 1. Variations in the decision variables. 

Decision variables Symbol Min Max Average Standard deviation 
Hole diameter [mm] D 76 152 114 10 

Spacing [m] S 2.5 4.1 3.3 0.5 
Burden [m] B 1.4 3.2 2.3 0.5 

Charge weight [kg per hole] m 37 106 71.5 10 
Charge density [kg/m3]   730 900 815 10 
Stemming length [m] T 1.3 3 2.15 0.5 
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Figure 2. Location of Baghak gypsum mine. 



Bakhshandeh Amnieh et al./ Journal of Mining & Environment, Vol. 10, No. 4, 2019 

911 
 

Table 2. Values of the parameters in the subject function. 
Parameters C1 C2 C3 C4 A1 A2 A3 

Value 0.54 [$/in.m] 0.135 [$] 0.6 [$] 3.2 [$] 14.2 [m3/h] 0.106[m3/h] 1980 [m/h] 
 
4.1. Constraint of AOp 
After collecting data and measuring the amount of 
air overpressure in the Baghak gypsum mine, a 
mathematical relation for air blast was determined 
according to Eq. 16. In this regard, by regression, 
the air overpressure is expressed in terms of hole 
length, stemming length, burden, spacing, charge 
weight, charge density, distance from the blast-
face and hole diameter. 

1.811 4.991

5.267 3.919 1.085

0.67 0.793 1.041

0.002 0.003

0.004 0.003 0.052

0.012 0.252 0.119 119.111

   

  

  

Aop H T

B S m

D d

 (16) 

where AOp is the air overpressure (dB), H is the 
hole length (m), T is the stemming length (m), B 
is the burden (m), S is the spacing (m), m is the 
charge weight (kg), ߩ is the charge density 
(kg/m3), D is the distance from the blast-face (m), 
and d is the hole diameter (mm). As already 
mentioned, the air overpressure near the building 
should be less than 110 dB. Therefore, Eq. 16 is 
smaller than /equal to this number and is 
expressed as the most important constraint in 
modeling, which is presented in Eq. 17. 

(17) 
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4.2. Constraints 
 The constraints for the intended objective 
function are as follow: 

(18) 24 24 126 126 0D S DS D B BD       
(19) 2 4 0D T m       
(20) 28 4 0D m      
(21) 24 14 0m D      

(22) 1 24 0T m D H

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Eq. 18 shows that the number of holes in the 
vertical row is smaller than/equal to the number of 
holes in the row. Eq. 19 shows that the stemming 
length is smaller than the charge length. Eqs. 20 
and 21 represent the interval of variations of 
charge length in the hole. Eq. 22 shows that the 
sum of the stemming length and the charge length 
must be equal to the hole length. Eq. 23 indicates 
that the burden is smaller than/equal to the 
spacing, and Eqs. 24 and 25 show that the hole 
diameter is smaller than the burden and spacing 
[51]. Boundary constraints are explained in Eqs. 
26 to 32. Eq. 33 is a constraint of AOp in the 
mine. The distance from the nearest building to 
the mine and the hole length are 320 and 10 m, 
respectively. By placing these numbers in Eq. 17, 
this constraint is expressed as Eq. 33. 

4.3. Application of simulated annealing for 
optimization 
The concept of simulated annealing is based on a 
strong analogy between the physical annealing 
process of solids and the problem of solving large 
combinatorial optimization problems [52]. In a 
physical multiparticle system, 'annealing' is a 
thermal process for obtaining the lowest energy 
state of a solid in a heat bath. The process mainly 
comprises the following two steps [52]: step 1) 
increasing the heat bath temperature to a 
maximum value at which the solid melts, step 2) 
carefully reducing the temperature of the heat bath 
until the particles arrange themselves in the 
ground state of the solid. 
In the simulated annealing method, the following 
two equivalences between a physical system and 
an optimization problem are assumed [52, 53] (i) 
states (arrangements of particles) of a physical 
system are equivalent to solutions of an 
optimization problem; (ii) the energy of a physical 
system is equivalent to a cost function of an 
optimization problem. 
Using this optimization method, the purpose is to 
find the optimized values for the decision 
variables D, S, B, m,  , and T due to the 
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important constraint of air blast and then the 
optimized formula as the mine cost. In order to 
apply the SA optimization method, the MATLAB 
program was used in this work.the SA parameters 
were determined by performing a simulated 
annealing of 20 times compared with the lowest 
cost. For example, one of the most important 
cases in the simulated annealing algorithm is the 
initial temperature value. This parameter is taken 
into consideration for determining the local 
optimal solution. Numbers 20, 50, 70, 100, 120, 
150, 200, 250, 300, 400, and 500 are considered 
for solving the model. An algorithm was run 20 
times for each number, and the results obtained 
were presented in Figure 3. The objective 
function's minimum was set to 150 at the initial 
temperature. After optimization with SA, the 
optimized average values obtained for the 
decision variables after 10 times of running the 
program are as follow: D = 119 mm, S = 3 m, B = 
2.5 m, m = 63.8 kg,   = 730 kg/m3, T = 2.2 m, 
and the min cost was equal to 2259 $ per 7700 

tons. The values for the decision variables and the 
objective function as well as the standard 
deviation of the measured values are shown in 
Table 3. There were certain bits for hole drilling 
in the mine. Therefore, the nearest diameter of the 
hole drilling was 115 mm. The independent 
variables of number of holes in a row (n1), number 
of holes in the vertical row (n2), and the charge 
length (L1) were equal to 10.25, 2.89, and 7.8 m, 
respectively. n1 and n2 cannot be decimal 
numbers. thus the resulting numbers were rounded 
up. The values of n1 and n2 were equal to 11 and 
3, respectively.the fitness value chart is presented 
in Figure 4. This chart is one of the runs taken by 
the MATLAB software that stops at iteration 
8647. Since the solutions obtained from the meta-
heuristic methods are local optimal, the modeling 
was performed by the GAMS 3.0 software. The 
result is 2210 $ for the cost. This value differs 
from the simulated annealing algorithm with less 
than 2.2% and is very close to the optimal value. 

  

  
Figure 3. Objective function changes with respect to the initial temperature variations in the simulated annealing 

algorithm. 
 

Table 3. Determined value of decision variables by simulated annealing algorithm. 
Cost ($) )m(X6  )kg/m3(X5  )kg(X4  )m(X3  )m(X2  )m(X1  Decision variables  

2259 2.2  730  63.8 2.5 3 119 Average data  
34.8  0.122  6.87  3.122 0  0.0067  0.0015  Standard deviation  

  

  
Figure 4. Best fitnes of values. 
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5. Results and conclusions 
Blasting operations play a significant role in 
mining costs. Blasting operations are made up of a 
number of different sections, namely drill-hole, 
blasting system, and blasting labors, each with its 
own costs. Blasting operations depend on blasting 
design parameters including burden, spacing, hole 
diameter, hole length, stemming length, charge 
length, charge weight, sub-drilling, and delay 
time. By changing these parameters, the cost of 
blasting will also change. In addition, with the 
changes in these parameters, the results of blasting 
operations such as air blast, fly rock, ground 
vibration, and back break change and, if not 
addressed, may damage the mine and its 
surrounding buildings. Establishing a relationship 
between the blasting parameters and the costs of 
the three sections of drill-hole, the blasting system 
and the blasting labors can be an important step in 
controlling the cost of blasting. In this paper, the 
general aim was to propose the minimum cost of 
blasting operations for the Baghak gypsum mine 
due to the air overpressure phenomenon. A 
mathematical model was presented, taking into 
account the blasting design parameters and the 
cost of blasting operations. Decision variables for 
optimization of blasting cost are burden, spacing, 
hole diameter, stemming length, charge density, 
and charge weight. Also a mathematical relation 
for air overpressure and blasting design 
parameters was determined by regression. After 
measuring the required data and parameters, using 
the simulated annealing (SA) optimization 
method, the mathematical model was optimized 
due to its constraints and decision variables and 
the minimum cost was obtained. The most 
important constraint in this model was the air 
overpressure phenomenon. SA parameters were 
determined by performing a simulated annealing 
of 20 times compared with the lowest cost. After 
optimizing with the SA, the optimized average 
values obtained for decision variables after 10 
times of running the program are as follow: D = 
119 mm, S = 3 m, B = 2.5 m, m = 63.8 kg,   = 
730 kg/m3, T = 2.2 m, and the minimum cost was 
equal to 2259 $ per 7700 tons, which is less than 
the costs of blasting patterns in the mine. The 
standard deviations of the decision variables 
indicate that the values obtained are close to each 
other at each running of the algorithm. By running 
the model through the GAMS 3.0 software, the 
cost value of 2210 $ was determind. Therefore, 
the result obtained by the SA algorithm is less 
than 2.2% different from the result of the GAMS 
3.0 software. In other words, the optimal local 

value is very close to the optimal value. The 
blasting block parameters in the mine included: D 
= 0.076 m, S = 2.5 m, B = 1.5 m, m = 50 kg,   = 
800 kg/m3, T = 1.5 m, and the cost was equal to 
2974 $ per 7700 tons. The results obtained show 
that by applying the model in the mine, the cost of 
blasting operations can be improved by about 
24%. Considering the phenomenon of air 
overpressure, the damage to the nearest building 
to the mine can be prevented. The major 
shortcoming was optimizing the pattern without 
considering the desired fragmentation and 
attention to the blasting consequences such as 
flyrock and vibration was not an applicable 
approach. Then independent variables of the 
number of holes in the row, the number of holes 
in the vertical row, and the charge length were 
determined. 
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  چکیده:

گروه اول خواص  .وابسته است سنگ به دو گروه از متغیرها. انفجار و خردشدگی رامترهاي مهم عملیات معدنکاري استتخمین هزینه عملیات انفجار یکی از پا
مترهاي طراحی شامل باشند. پاراسازي میکه قابل کنترل و بهینه باشند و گروه دوم پارامترهاي طراحی انفجار بودهکنترل می  سنگ بوده که غیر قابلتوده 

ه اندازه این باشند. هزینه انفجار با توجه بخرج می گذاري و چگالیل خرج، طول گلحفاري، وزن خرج، طوداري، طول چال، قطر چال، اضافهبارسنگ، فاصله
یک مدل  پژوهش،. در این زدگی و لرزش زمین استانند انفجار هوا، پرتاب سنگ، عقبهاي ناخواسته معلاوه بر این انفجار شامل پدیده. پارامترها متغیر است

ر و شود. هزینه عملیات انفجار در تابع هدف به سه بخش هزینه حفاري، هزینه سیستم انفجار معدن گچ باغک ارائه میدریاضی براي تخمین هزینه عملیات انفجار 
گذاري، وزن خرج و ، طول گلداري، قطر چالکردن هزینه شامل بارسنگ، فاصله ي تصمیم مورد استفاده براي کمینهشود. متغیرهاهزینه پرسنل انفجار تقسیم می

 بینی شدههاي مدل پیشودیت. انفجار هوا در معدن به عنوان یکی از محدهاي مرزي و عملیاتی استهاي مدل شامل محدودیتاست. محدودیتخرج  چگالی
سازي مدل توسط الگوریتم، شود. بعد از بهینهده بهینه میسازي شاي مدل توسط الگوریتم تبرید شبیههآمده با توجه به محدودیتمدل غیرخطی به دست . است

از تن بلوك مورد نظر بوده که این مقدار  7700دلار به ازاي  2259شوند. مقدار تعیین شده براي هزینه انفجار برابر تعیین میمقادیر بهینه متغیرهاي تصمیم 
  .در معدن کمتر است آمدههزینه به دست 
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