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Abstract 
The CERCHAR abrasivity test is very popular for determination of rock abrasivity. An 
accurate estimation of the CERCHAR abrasivity index (CAI) is useful for excavation 
operation costs. This paper presents a model to calculate CAI based on the gene 
expression programming (GEP) approach. This model is trained and tested based on a 
database collected from the experimental results available in the literature. The proposed 
GEP model predicts CAI based on two basic geomechanical properties of rocks, i.e. 
rock abrasivity index (RAI) and Brazilian tensile strength (BTS). Root mean square 
error (RMSE), mean absolute error (MAE), Nash-Sutcliffe efficiency (NSE), and 
coefficient of determination (R2) are used to measure the model performance. 
Furthermore, the developed GEP model is compared with linear and non-linear multiple 
regression and other existing models in the literature. The results obtained show that 
GEP is a strong technique for the prediction of CAI. 

1. Introduction 
In the mining and civil projects, the abrasiveness 
of rocks plays a crucial role in the wear of cutting 
tools in any rock excavation operation including 
drilling-blasting and mechanical excavation. This 
feature can lead to an increase in costs, a decrease 
in efficiency, and an increase in the life of 
projects. 
In order to estimate the rock abrasiveness, several 
tools and techniques have been developed by 
various researchers as well as international 
standards. Among them, the CERCHAR 
Abrasivity Index (CAI) test is the most commonly 
used method for the laboratory assessment of rock 
abrasivity due to its simple fast test procedure and 
economic merits [1]. This test has been introduced 
in the 1970s by the Centre d’Etudes et Recherches 
des Charbonages (CERCHAR) de France and 
standardized by French standard AFNOR 
(NF904-430-1), ASTM (D7625-10), and ISRM 
[2]. In the laboratory, CAI is determined while a 
rock sample is fixed on the sliding platform, over 
which a scratching pin of Rockwall Hardness  

54-56 is fixed with a loading arrangement [3]. A 
static load of 70 N is applied on the fresh surface 
of the sample, and the sample is displaced at a rate 
of 1 mm/s over a length of 10 mm. The wear of 
the pin is determined through a high precision 
microscope. CAI is calculated by multiplying the 
value of the wear flat stated in units of 0.01 mm 
by 10. In order to eliminate the error, the test is 
repeated for five times and the arithmetic mean is 
reported in the result. 
Rostami et al. [4] have reported that the 
CERCHAR testing is influenced by many 
parameters including the pin hardness, surface 
condition of specimens, petrographical and 
geomechanical properties, test speed, applied 
load, and method of measuring wear surface. 
During the last few decades, many researchers 
have studied the effects of these parameters on 
CAI. For example, Suana and Peters [5], West [6], 
and Yarali et al. [7] have mentioned that the 
quartz content of the rock is a main influencing 
parameter on CAI. Plinninger et al. [8] have 
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shown that a combination of the Young’s modulus 
and the equivalent quartz content (EQC) has a fair 
correlation with CAI. Lassnig et al. [9] have 
studied the impact of grain size on CAI.  
Al-Ameen and Waller [10], Alber [11], kahraman 
et al. [12], Dipova [13], and Deliormanli [14] 
investigated the relationship between the rock 
strength and CAI. Plinninger [15] developed an 
empirical correlation between CAI and the rock 
abrasivity index (RAI) based on 60 types of 
igneous, metamorphic, and sedimentary rocks. 
Altindag et al. [16] illustrated that the CAI value 
was related to the uniaxial compressive strength 
and brittleness of rocks. Khandelwal and Ranjith 
[17] proposed an empirical correlation between 
CAI and P wave velocity. The influence of the 
CERCHAR testing parameters such as pin 
hardness, surface condition of specimens, test 
speed, applied load, scratching distance, and 
method of measuring wear flat or CAI was 
examined by various researchers such as Rostami 
et al. [4], Plinninger et al. [8], Gharahbagh et al. 
[18], Lee et al. [19], Jacobs and Hagan [20], 
Stanford and Hagan [21], Michalakopoulos et al. 
[22], Käsling and Thuro [23], Yarali and Duru 
[24], Hamzaban et al. [25, 26], Aydin [27], and 
Tripathy et al. [3] investigated the correlation of 
CAI values of different rock types with uniaxial 
compressive strength (UCS), point load index, P 
wave velocity, and Young’s modulus using 
multivariate regression analysis and artificial 
neural networking. Majeed and Abu Bakar [28] 
evaluated the CAI measurement methods and their 
dependence on the petrographic and mechanical 
properties of 64 rock units in Pakistan. Er and 
Tugrul [29, 30] developed empirical relationships 
between the geological and physico-mechanical 
properties and CAI of 12 different granitic rock 
samples using the simple regression analysis. He 
et al. [31] studied the correlations between CAI 
and mechanical properties together with the 
microstructure characteristic for 12 different 
rocks. Moradizadeh et al. [32] investigated the 
correlations between CAI and EQC, point load 
index, slake durability index, and percentage of 
water absorption of 36 samples of igneous, 
metamorphic, and sedimentary rocks using simple 
and multivariate regression. Undul and Er [33] 
examined the effects of the micro-textural and 
geomechanical properties on the CAI volcanic 
rocks. Abu Bakar et al. [2] investigated the 
influence of water saturation on CAI values based 
on laboratory testing of 33 sedimentary rock units. 
Ko et al. [1] evaluated the correlation between 
CAI and the geomechanical properties of rocks 

(including QC, UCS, BTS, and brittleness index) 
using a statistical analysis. Kahraman et al. [34] 
investigated the usability of CAI for the 
evaluation of triaxial strength of Misis Fault 
Breccia using the regression analysis. Capik and 
Yilmaz [35] developed new prediction models for 
CAI based on some rock properties using simple 
and multiple regression analysis. Moreover, they 
modeled the drill bit lifetime based on CAI. 
Balani et al. [36] investigated the effects of rock 
parameters on the CERCHAR abrasivity index 
using PFC3D modeling. Torrijo et al. [37] studied 
the relation between CAI and chemical 
compounds and petrographical properties of 
andesitic rocks from the central area of Ecuador. 
Ozdogan et al. [38] analyzed the relation between 
CAI and three geomechanical properties of 
building stones (including Shore hardness, 
porosity, and UCS) using simple and multiple 
regression analysis. 
In this work, the correlation between CAI and the 
geomechanical properties of rocks including rock 
abrasivity index (RAI) and Brazilian tensile 
strength (BTS) was investigated using the Gene 
Expression Programming (GEP) technique. GEP 
is a new soft computing technique, first invented 
by Ferreira [39]. The main advantage of the GEP 
approach is the capability to generate prediction 
equations that can be easily manipulated in 
practical circumstances. An increase in the 
application of the GEP technique for solving 
many mining and rock mechanics problems has 
been observed in the recent years. For example, 
GEP has been successfully applied for prediction 
of tunneling-induced settlement [40], TBM and 
roadheader performance [41, 42], rock properties 
such as uniaxial compressive strength, tensile 
strength, modulus of elasticity [43-46],  
side-effects of blasting operation such as ground 
vibration and flyrock [47-50], and rockburst 
hazard [51]. All researchers have pointed out that 
GEP has the ability to solve complex problems. 
The literature surveys show that there is no study 
about the application of GEP in the field of rock 
abrasiveness prediction. Hence, an effort was 
made, in this work, to make use of GEP for 
developing a prediction equation to estimate CAI 
based on the geomechanical properties of rocks 
(RAI and BTS). 

2. Data collection 
In this work, in order to develop and assess the 
performance of the GEP model, a database 
including 106 rock units was employed. This 
database was compiled from the published 
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literature in this field [2, 4, 11, 28, 35, 36]. The 
examined rock types were from sedimentary, 
metamorphic, and igneous origins. The database 
contains two input parameters (RAI and BTS) and 
one output parameter (CAI). RAI can be 
calculated using an equation proposed by 
Plinninger et al. [52], as follows: 

100



EQC UCSRAI  (1) 

where EQC = equivalent quartz content (%) and 
UCS = uniaxial compressive strength (MPa). 

A summary of the statistical features for the input 
and output parameters is presented in Table 1. 
RAI ranged between 0.07 and 190.38; BTS 
ranged between 0.48 and 22.67 MPa, and CAI 
varied between 0.19 and 4.88. 
It should be mentioned that among 106 data, 90 
sets (85% of data) were randomly chosen as the 
training sets for the GEP modeling and 16 sets 
(15% of data) were used as testing the 
generalization capacity of the proposed model. 
The testing sets were not utilized in the training of 
the corresponding model. 

 
Table 1. Statistical features of the input and output parameters used in this work. 

Parameters Symbol Unit Min. Max. Mean Std. Dev. 
Rock abrasivity index RAI - 0.07 190.38 30.803 32.738 

Brazilian tensile strength BTS MPa 0.48 22.67 6.719 4.74 
CERCHAR abrasivity index CAI 0.1 mm 0.19 4.88 2.024 1.114 

 
3. Gene expression programming (GEP) 
GEP is a new evolutionary algorithm, first 
invented by Ferreira [26] based on the genetic 
algorithm (GA) and genetic programming (GP). 
GEP incorporates both the idea of a simple linear 
chromosome of a fixed length used in GAs and 
the tree structure of different sizes and shapes 
used in GP. According to Ferreira [39 53], the 
primary difference between GEP and its 
predecessors, GAs and GP, stems from the nature 
of the individuals: in GAs, the individuals are 
linear strings of fixed length (chromosomes). In 
GP, the individuals are non-linear entities of 
different sizes and shapes (parse trees). In GEP, 
the individuals are encoded as linear strings of 
fixed length (chromosomes) that are expressed as 
non-linear entities of different sizes and shapes. 
The basic GEP algorithm is depicted in Figure 1. 
In order to develop a GEP model, the five 
components function set, terminal set, fitness 
function, control parameters, and stop condition 
are required. After the problem has been encoded 
for the candidate solution and the fitness function 
has been specified, the algorithm randomly 
creates an initial population of viable individuals 
(chromosomes) and then converts each 
chromosome into an expression tree 
corresponding to a mathematical expression. 
Afterwards the predicted target is compared with 
the actual one, and the fitness score for each 
chromosome is determined. 
If it is sufficiently good, the algorithm stops; 
otherwise, some of the chromosomes are selected 
using roulette wheel sampling and then mutated to 
obtain the new generations. This closed loop is 
continued until the desired fitness score is 

achieved and then the chromosomes are decoded 
for the best solution of the problem. The readers 
can refer to Ferreira [55] for more details about 
GEP. 

4. GEP model development 
The fundamental aim of developing the GEP 
model is to generate a mathematical function for 
prediction of CAI. In developing the phase of the 
GEP model, RAI and BTS are entered as the input 
variables, while the CAI value is used as the 
output variable. Thus a mathematical function is 
generated in the form of ݕ = ,ܫܣܴ)݂  for (ܵܶܤ
CAI based on the training datasets. 
In this work, the GeneXpro Tools 5.0 program 
[56] was employed to develop the model based on 
GEP. The following steps were followed to 
estimate CAI using GEP [41, 42]. The first step is 
to select the fitness function, which is based on 
several functions. In this research work, the 
fitness function of root mean square error (RMSE) 
was used. The second step in GEP modeling 
involves determining the mathematical functions 
that chromosomes are allowed to use in their 
programs and in the final equation. There is no 
definitive rule in choosing a mathematical 
function combination. In this work, the function 
set is comprised of four basic arithmetic operators 
(×, −, /, +) as well as other more complex 
mathematical functions, e.g. Power (Pow), square 
root (Sqrt), exponential (Exp), natural logarithm 
(Ln), logarithm of base 10 (log), cubic root (3Rt), 
Sine (sin), Cosine (cos), Tangent (tan), Secant 
(sec), and Cosecant (csc). The third step 
determines the chromosomal architecture, which 
involves determining the head length and gene 
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numbers. In the present work, the trial-and-error 
method was used to establish these two 
parameters. GEP was run for various head length 
and gene number combinations. The results 
obtained show that the GEP model with 3 genes 
and head length of 9 produces the most accurate 
results in modeling CAI. In addition, since an 
initial population in the 30–100 interval leads to 
acceptable results, an initial population of 65 was 
considered in the current work. In the fourth step, 
the genetic operators including mutation, 
inversion, transposition, and recombination are 
selected. The parameters employed in developing 
the different GEP models are presented in Table 

In fact, the mentioned parameters are borderlines 
of GEP, which can affect the performance of 
GEP. It must be said that all the mentioned 
parameters are selected by the user using the trial-
and-error procedure to obtain the optimum 
structure of GEP. Finally, in the last step of the 
GEP modeling procedure, a proper linking 
function should be chosen to connect the 
expression trees. The functions +, −, ×, and / are 
the most common functions that are used for this 
aim. Each one of these four functions were 
examined, and multiplication (×) was selected as 
the best linking function. 
 

 

 
Figure 1. Flowchart of GEP [54]. 

 
Table 2. Parameters used in GEP model. 

Parameter Value 
Mutation rate 0.044 
Inversion rate 0.1 

Gene recombination rate 0.2 
One-point recombination rate 0.3 
Two-point recombination rate 0.2 

Gene transposition rate 0.1 
Insertion sequence (IS) transposition rate 0.1 

Root insertion sequence (RIS) transposition rate 0.1 
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After the performing steps 1–5, the adjusted GEP 
model was executed for 3000 iterations 
(generations) to predict CAI. ET of each gene 
(sub-ET) has been represented in Figure 2. The 
mathematical equations related to each gene can 
be extracted as Eqs. 2–4. These equations were 
then linked together via the chosen linking 
function (multiplication, in this work), and the 
final predictive model for CAI prediction was 
formulated as Eq. 5. 

    
1

3

1
1

cosh cos cos 0.23 sin cos
 

   
  
  

Sub ET
RAI BTS

 
(2) 

1
1 3
30.632 cosh

2.39

 
           
 

Sub ET RAI
BTS

 (3) 

 
1
3

13 cos
tan 4.84

9.26

 
 
 
  
 

       

Sub ET
BTS

BTS
BTS

 
(4) 

1 2 3     CAI Sub ET Sub ET Sub ET  (5) 

A comparison between the actual and predicted 
values for CAI (based on Eq. 5) for training 
datasets is shown in Figure 3. As it can be seen, 
the GEP model represents the acceptable 
prediction for CAI with the R2 value of 0.875. 

 

 
Figure 2. Expression tree for the CAI formulation. 
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Figure 3. Relationship between the actual and predicted CAI for training datasets. 

 
5. Results and discussion 
5.1. GEP model assessment 
As mentioned earlier, 16 sets out of 106 datasets 
were randomly selected for testing the GEP 
model. The testing data was unfamiliar to the 
model and thus was not included in its 

development. In this section, the GEP model 
performance is validated using the testing 
datasets. A comparison between the predicted and 
real values of CAI for the testing datasets has 
been given in Table 3. 

  
Table 3. Comparison between the predicted and real values of CAI for the testing datasets. 

No. RAI BTS (MPa) Actual CAI (0.1 mm) Predicted CAI (0.1 mm) 
GEP LMR NLMR 

1 33.72 2.8 2.28 2.88 2.03 2.26 
2 190.38 18.65 3.59 3.74 6.80 4.96 
3 21.02 9 1.87 2.27 1.90 2.20 
4 25.52 1.4 1.22 1.57 1.77 1.90 
5 39.59 1.6 1.81 1.83 2.15 2.24 
6 1.3 0.8 0.19 0.76 1.09 0.66 
7 80.19 6.76 3.19 2.78 3.42 3.32 
8 26.5 13.7 1.99 1.95 2.21 2.49 
9 38.65 4.2 2.91 2.82 2.22 2.47 

10 3.71 6.5 1.61 1.52 1.35 1.19 
11 21.01 9.02 1.98 2.28 1.98 2.19 
12 7.32 12.53 2.11 1.83 1.61 1.60 
13 0.6 7.8 0.25 0.70 1.31 0.66 
14 6.05 9.45 1.00 1.23 1.49 1.45 
15 2.49 4.6 0.94 0.96 1.25 1.00 
16 13.76 13.5 1.15 1.81 1.86 1.99 

 
Four standard statistical performance evaluation 
indices including the Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE),  
Nash-Sutcliffe Efficiency (NSE), and coefficient 
of determination (R2) were used to assess the 
model performance. The definitions of these 
evaluation indices are as follow [57]: 

2

1
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i
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 (9) 

where iP  is the ith estimated CAI using GEP, iA  

is the ith actual CAI, P is the average of iP , A

is the average of iA , and N is the number of 
testing datasets. 
The lowest values for RMSE and MAE indicate 
the high performance of the model. An R2 value 
equal to 1 indicates that the regression line 
perfectly fits the data. An NSE of 1 corresponds 

to a perfect match of estimated values to the 
observed data; to the contrary, an NSE of 0 
indicates that the model predictions are as 
accurate as the mean of the observed data. The 
statistical indices for the developed GEP model 
are summarized in Table 4. The high values for R2 
(0.895) and NSE (0.806) and the low values for 
RMSE (0.357) and MAE (0.293) show that the 
GEP model is suitable and can predict CAI with 
an acceptable error. The CAI values predicted 
from the GEP model were graphically compared 
with their actual values in Figure 4. As it can be 
seen, there is a close match between the actual 
and predicted values. 

 
Table 4. Statistical performance indices for the developed GEP model. 

Model RMSE MAE NSE R2 

GEP 0.357 0.293 0.806 0.895 
LMR 0.865 0.584 0.130 0.567 

NLMR 0.494 0.428 0.647 0.785 
 

 
Figure 4. Relationship between the actual and predicted CAI for testing datasets. 

 
5.2. Comparison of GEP model with multiple 
regression models 
In this section, in order to verify the accuracy of 
the GEP model, it is compared with the multiple 
regression models. The multiple regression 
analysis is one of the popular statistical techniques 
used for developing the prediction equations. In 
the following, based on the training datasets, two 
multiple regression models are developed, and 
then, based on the testing datasets, their 
accuracies are determined and compared with the 
GEP model. To develop the models, both the 
linear and non-linear models were considered. In 

these models, CAI was taken as the dependent or 
response variable, whereas BTS and RAI were 
taken as the independent or explanatory variables. 
The linear (LMR) and non-linear (NLMR) 
equations can be expressed as Eqs. 10 and 11, 
respectively: 

1 2    CAI A C RAI C BTS  (10) 

1 2  C CCAI A RAI BTS  (11) 

where A, C1, and C2 are the regression 
coefficients. These coefficients are determined 
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using the regression analysis on the training 
datasets in the SPSS 16 software [58]. The final 
form of the LMR and NLMR equations is shown 
below: 

1.030 0.027 0.034  CAI RAI BTS  (12) 

0.333 0.1120.623CAI RAI BTS  (13) 

The predicted values for CAI based on Eqs. 12 
and 13 for testing the datasets are presented in 
Table 3. Figure 5 shows a comparison between 
the predicted CAI values using the GEP, LMR, 
and NLMR models, and the actual CAI values. As 
it can be seen in Figure 5, the predicted CAI by 

the GEP model is closer to the actual CAI in 
comparison to the LMR and NLMR models. This 
indicates that the prediction of CAI using the GEP 
model is more accurate than that of the LMR and 
NLMR models. Furthermore, the statistical 
performance indices (RMSE, MAE, NSE, and R2) 
for the developed multiple regression models in 
the testing phase are given in Table 4. A 
comparison of the LMR and NLMR models 
indicates that the NLMR model gives more 
reliable predictions that the LMR model. 
Furthermore, the LMR and NLMR models show a 
low prediction capacity, whereas the GEP model 
can predict CAI with an acceptable accuracy. 

  

 
Figure 5. Comparison of the predicted CAI values using the GEP, LMR, and NLMR models and the actual CAI 

values. 
 
5.3. Comparison of GEP model with other 
models 
As mentioned in Section 1, many researchers have 
studied the relationship between the rock 
properties and CAI, and developed different 
models for the prediction of CAI using various 
techniques such as the regression analysis and the 
artificial neural network (ANN). In this section, in 
order to verify the accuracy of the GEP model, it 
was compared with other existing models in the 
literature (see Table 5). As it can be seen in Table 
5, the GEP model has a higher accuracy in 
comparison with the classic statistical models, 
which indicates the superiority of the GEP 
technique over the simple and multiple regression 
analysis. Although the accuracy of the GEP model 

is less than that for the ANN model, the main 
advantage of GEP in comparison with ANN is 
that it suggests a practical and explicit equation 
between the inputs and output parameters. 

5.4. Effect of input parameters on CAI 
Determining the importance of the input 
parameters (variables) for the output parameter is 
one of the main features of the GeneXpro Tools 
5.0 program. Generally, variable importance is 
computed based on the reduction of the model 
accuracy when the variable is removed. The 
importance of each variable ranges from 0 to 1; 
the higher this number, the more important is the 
variable. Based upon the developed GEP model, 
the importance of the input parameters for CAI 
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has been shown in Figure 6. As it can be seen, the 
importance values for RAI and BTS are 0.627 and 
0.373, respectively. This result shows that RAI is 
the most effective parameter to predict the CAI 
value and then BTS. 
Furthermore, the influence of RAI and BTS on 
CAI was investigated by the sensitivity analysis 
based on the developed GEP model. This was 
performed by variation in one input parameter 

across from a minimum to maximum range, while 
the other input parameter was kept constant on its 
mean value. The results of the sensitivity analysis 
for RAI and BTS have been indicated in Figure 7. 
As it can be seen, there are direct relationships 
between the input parameters and the CAI value. 
In other words, for a specific rock type, the CAI 
value increases with increase in RAI and BTS. 

    
Table 5. Comparison of the proposed GEP model with some other models reported in the literature. 

Accuracy (R2) Input parameters Techniques Reference 
63 UCS, VP, E RA Tripathy et al.[3] 
97 UCS, VP, E, PLI ANN Tripathy et al.[3] 

76.46 VP RA Khandelwal and Ranjith [17] 
57.98 Q RA Yarali et al. [7] 
57.85 Qeq RA Yarali et al. [7] 
79.32 UCS, EQC RA Rostami et al. [4] 

66.8-88.3 Chemical compounds RA Torrijo et al. [37] 
77 EQC RA Moradizadeh et al. [32] 

83.1 UCS, SH RA Ozdogan et al. [38] 
82.2 SH, PR RA Ozdogan et al. [38] 
84.3 SH RA Ozdogan et al. [38] 
89.5 RAI, BTS GEP This study 

VP = P-wave velocity, E = Young’s modulus, PLI = Point load index, Q = quartz content, Qeq = equivalent quartz 
percentage, EQC = equivalent quartz content, SH = Shore hardness, PR = porosity, RA = regression analysis, and ANN 
= artificial neural networks. 
 

 
Figure 6. Importance of RAI and BTS for CAI. 

 

 
Figure 7. Effect of RAI and BTS on CAI. 
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6. Conclusions 
This work has explored the potential of GEP in 
the prediction of CAI value that has a great role in 
the wear of cutting tools in any rock excavation 
operation including drilling-blasting and 
mechanical excavation. This work has presented 
the first application of GEP for CAI prediction of 
rocks. A database including 106 rock units was 
employed to develop and assess the performance 
of the GEP model. This database was compiled 
from the experimental results available in the 
literature. The GEP model was trained on 85% of 
the available data and tested using the remaining 
15%. Two basic geomechanical properties of 
rocks, i.e. rock abrasivity index (RAI) and 
Brazilian tensile strength (BTS), were entered into 
the GEP model as the input parameters. The 
performance of the model was evaluated using 
four statistical performance evaluation indices 
(RMSE, MAE, NSE, and R2). In the testing phase 
of the GEP model, the values for RMSE, MAE, 
NSE, and R2 were obtained to be 0.357, 0.293, 
0.806, and 0.895, respectively. A comparison of 
the developed GEP model with the multiple 
regression models and other existing models in 
the literature indicated that the prediction 
accuracy of the proposed model was as good as 
the others. These findings revealed that GEP was 
an efficient and useful technique for CAI 
prediction. Thus the developed model could be 
employed for the preliminary estimation of rock 
abrasivity in mining and civil projects with an 
acceptable accuracy. 
The results of the sensitivity analysis illustrated 
that there was a direct relationship between the 
input parameters and the CAI value. It means that 
an increase in RAI and BTS of rocks results in a 
CAI increase. Also among the input parameters, 
RAI is the most effective parameter for predicting 
the CAI value. 
Finally, it should be noted that the ignorance of 
other influencing parameters on CAI such as 
chemical compounds and petrographical 
properties of rocks is a clear limitation of the 
present work. A further limitation is that the 
compiled database is still relatively small. 
Accumulation of more data can lead to the 
development of more general models. 
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  چکیده:

هاي عملیاتی ) در هزینهCAIها به منظور تعیین سایندگی سنگ است. تخمین دقیق شاخص سایش سرشار (ترین آزمایشآزمایش سایش سرشار یکی از متداول
) ارائه کرده است. این مدل بر اساس یک پایگـاه  GEPژنی ( -نویسی بیانبر اساس رویکرد برنامه CAIحفاري بسیار مفید است. این پژوهش مدلی براي محاسبه 

اساس دو ویژگی اساسی ژئومکانیکی  را بر GEP ،CAIداده گردآوري شده از نتایج آزمایشگاهی موجود در مقالات، آموزش و آزمایش شده است. مدل پیشنهادي 
کند. به منظور ارزیابی عملکرد مدل، خطاي جذر میـانگین مربعـات   بینی می) پیشBTS) و مقاومت کشش برزیلی (RAIها، یعنی شاخص سایش سنگ ( سنگ

)RMSE) خطاي میانگین مطلق ،(MAEساتکلیف ( -)، کارایی نشNSE) و ضریب تعیین (R2وه بر این، مدل ) استفاده شده است. علاGEP   توسعه یافته بـا
یک روش قوي  GEPدهد که آمده نشان می به دستهاي موجود در مقالات مقایسه شده است. نتایج ی چندگانه و سایر مدلرخطیغهاي رگرسیون خطی و مدل

 است. CAIبینی براي پیش

  ژنی.-بیان نویسیبرنامهشاخص سایش سرشار، شاخص سایش سنگ، مقاومت کشش برزیلی،  کلمات کلیدي:

 

 

 

 


