Document Type: Original Research Paper

Authors

Faculty of Natural and Technical Sciences, Mining Engineering, Goce Delchev University, 2000 Shtip, Macedonia

Abstract

Auxiliary ventilation of the blind development heading in underground mines is one of the most challenging work activities amongst mining underground operations. The auxiliary forcing ventilation system provides positive pressure, cooling, controlling gas layering, and removing diesel fumes and dust levels from development headings, stopes, and services facilities. The effectiveness of the auxiliary forcing ventilation system depends upon many system variables. Currently, no scientific models and calculations are available that can be used to estimate the optimal distance from the outlet of the auxiliary forcing ventilation system to the development heading in underground mines that can provide the most efficient ventilation close to the face of the heading. In this work, scenarios are developed and simulated with a validated CFD model inside the ANSYS Fluent software. In each scenario, the system parameters such as dead zone, mean age of air, and face velocity are calculated, which are later used in the optimization process. By examining these parameters at the development heading zone, we can quantify the effectiveness of the ventilation system and confirm that the system design meets the government regulations. This work is carried out using the k-epsilon realizable turbulent model inside the ANSYS Fluent software.

Keywords

Main Subjects