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Abstract 
The traditional approaches of modeling and estimation of highly skewed deposits have 
led to incorrect evaluations, creating challenges and risks in resource management. The 
low concentration of the rare earth element (REE) deposits, on one hand, and their 
strategic importance, on the other, enhances the necessity of multivariate modeling of 
these deposits. The wide variations of the grades and their relation with different rock 
units increase the complexities of the modeling of REEs. In this work, the Gazestan 
Magnetite-Apatite deposit was investigated and modeled using the statistical and 
geostatistical methods. Light and heavy REEs in apatite minerals are concentrated in the 
form of fine monazite inclusions. Using 908 assayed samples, 64 elements including 
light and heavy REEs from drill cores were analyzed. By performing the necessary pre-
processing and stepwise factor analysis, and taking into account the threshold of 0.6 in 
six stages, a mineralization factor including phosphorus with the highest correlation was 
obtained. Then using a concentration-number fractal analysis on the mineralization 
factor, REEs were investigated in various rock units such as magnetite-apatite units. 
Next, using the sequential Gaussian simulation, the distribution of light, heavy, and total 
REEs and the mineralization factor in various realizations were obtained. Finally, based 
on the realizations, the analysis of uncertainty in the deposit was performed. All 
multivariate studies confirm the spatial structure analysis, simulation and analysis of 
rock units, and relationship of phosphorus with mineralization. 

1. Introduction 
The strategic importance of rare earth elements 
(REEs) in the future of mineral economics on one 
hand, and the relatively low concentrations of this 
type of deposit, on the other, make it necessary to 
explore, model, and estimate the concentration of 
these deposits precisely. The traditional 
approaches of exploration and modeling along 
with the inaccurate estimation of the elemental 
contents create high risks for the future of mining 
of these deposits. The novel modeling based on 
the modern methods of using multivariate data 
and also geostatistical simulations are considered 
as useful tools in the investigation of spatial 
structure and uncertainty in terms of 

concentration. Application of these methods can 
lead to the management of REEs toward 
identification of uncertainty factors and, therefore, 
reduce the modeling risks, and it can provide 
solutions to the uncertainty management. 
The term ‘rare earth elements (REEs) is used to 
describe 17 elements including the lanthanide 
series, yttrium, and also scandium. In the strategic 
industries such as defence, renewable energy, 
communications, healthcare, advance optic, and 
many high tech sectors, the physical and chemical 
properties of REEs are very critical in the 21st 
century. China has been introduced as the main 
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producer and also consumer of REE elements and 
products in the last decade [1]. 
The increasing demand, and consequently, the 
increasing price of REEs at the global scale has 
encouraged investment in the exploration of 
relevant deposits in advanced industrial countries 
[2]. REEs have diverse applications in modern 
technology, and provide many materials necessary 
for the industry [3]. 
According to their chemical characteristics, REEs 
have been classified into light REEs (LREEs) 
including Ce, Eu, La, Nd, Pr, Sm, and Pm, and 
heavy REEs (HREEs) including Tm, Dy, Er, Gd, 
Ho, Lu, Tb, Yb, Sc, and Y [4-6]. LREEs are not 
only more common in nature but also less 
valuable than HREEs. Strong correlations have 
been reported between REEs of similar atomic 
sizes [4]. Although REEs are chemically similar, 
their end uses in technology and industry are very 
diverse and specific. 
The general methods regarding modelling REE 
deposits utilize estimation as a moving average to 
get a smoothed REE grades, by which the 
resolution of estimated blocks where higher 
grades of REEs are located will be destroyed and 
so the uncertainty corresponding to the real REE 
spatial variability, and therefore, the related 
volumes of the grades will be misrepresented. As 
mentioned earlier, the failure in modeling 
geological uncertainties may cause the feasibility 
study results to deviate from mining business 
expectations [4, 5-7]. 
Conventional estimates can capture the global 
trends but will be locally different from the reality 
and so will cause an overly-smoothed picture 
from the geological zones and the related volumes 
[8]. 
Goodfellow et al. (2012) [9] have shown the  
side-effects of the conventional estimation 
methods such as ordinary kriging (OK) on the 
grades, corresponding volumes, and metal content 
when modelling a mineral deposit. The stochastic 
simulation based on geostatistics is capable of 
avoiding the conventional estimations’ limitations 
and capture the grade variability and quantify 
uncertainties for all attributes of the mineral 
deposit [4, 10-12]. 
The recent studies on REEs show a move towards 
mathematical and statistical modeling. Sadeghi et 
al. (2013) [13] have conducted multivariate and 
geostatistical studies, aiming at investigating the 
distribution of REEs and associated 
mineralization and the distinction between HREEs 
and LREEs in Sweden. Studies of Petrosino et al. 
(2013) [14] have been performed on REEs of 

stream sediment samples in various geological 
environments in Sweden and Italy, and the pattern 
recognition has been performed by the principal 
component analysis methodology. Using indicator 
kriging (IK) and OK, Hellman and Dunkam 
(2014) [15], have modeled the host rock of REEs, 
estimating the REE content based on the cut-off 
grades. In a carbonatite deposit containing REEs, 
Mikhailov et al. (2016) [16], have modeled the 
rock units associated with mineralization, 
investigating the relationship between increasing 
the concentration of different elements in rock 
unit controlers. Using the clustering and Bayesian 
methods, Zaremotlagh and Hezarkhani (2016) 
[17] have modeled the various concentrations of 
REEs and the geochemical patterns of 
concentrations in some parts of the Choghart iron 
ore. Quigley et al. (2017) [4] have applied a 
geostatistical simulation on the total REE to 
generate the deposits’ spatial variability and then 
have coupled the results with stochastic mine 
planning to offer an optimum mine design. 
The present work provides a combination of 
multivariate statistical methods and simulation, 
aiming at modeling the light and heavy REEs in 
the iron-apatite metasomatism of Gazestan. 
Therefore, a brief literature review is presented in 
the following. As a multivariate analysis method, 
the factor analysis was widely used to interpret 
exploratory data [18]. Yousefi et al. (2014) [19] 
have used staged factor analysis to eliminate the 
effects of noise elements in the covariance matrix 
and increase the effects of indicator and trace 
elements. 
The fractal modeling methods are used for 
exploratory studies, and specifically, for 
distinction between the various geochemical 
anomalies and rock units [20-23]. Using a 
combination of geostatistical simulation and 
fractal modeling, Soltani et al. (2014) [24] have 
established a relationship between alterations of a 
porphyry copper system with high grade 
variations. Asghari et al. (2009) [25] have 
conducted a research work on the comparison 
between sequential Gaussian simulation 
geostatistical estimation in the Choghart iron 
deposit. Using a combination of simulation and 
estimation, Talebi et al. (2015) [26] have 
modified the estimated results of the Sungun 
porphyry copper deposit. Hajsadeghi et al. (2016) 
[27] have used the indicator simulation and 
multivariate statistics to model a massive-sulfide 
system. 
Metasomatic iron ores can be one of the main 
economic producers of REEs; thus exploration 
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and modeling of these deposits have been among 
the exploration priorities in the recent years. 
Gazsestan, the case study of this research work, is 
one of the apt and somehow known areas of Iran 
in terms of REEs, which is located in the central 
Iran zone, Bafgh, Posht-e-Badam sub-zone, and 
on the Esfordi 1:100,000 sheet. The region is 
characterized by magmatic and metasomatic belts, 
resulting in iron ores, manganese, apatite, 
magnetite-apatite, REEs, uranium, and thorium in 
central Iran [28]. Thus the zone is important in 
terms of economic geology of REEs in Iran. 
A two-step geostatistical simulation approach is 
used to model both the grade uncertainty and 
volumetric. Based on 64 elemental analyses, 
firstly, the elements related to the mineralization 
of REEs were identified and simulated in deposits 
during several screening stages using the 
multivariate statistical method of staged factor 
analysis. On the derived factor, a  
concentration-number multi-fractal modeling was 
then applied, and based on the confusion matrix, 
the correlation of concentration zones was 
investigated in mineralization controlling rock 
units. Then the total contents of REEs, light and 
heavy, were simulated by sequential Gaussian 
simulation. Finally, according to the simulation 
results, the probability of exceeding the variables 
from the threshold resulting from the fractal 
modeling was investigated. The main benefit of 
applying the procedure is to complete reproducing 
REE distribution statistically and geostatistically 
in the deposit. 

2. Methodology 
In this work, different statistical and mathematical 
methods are used, and these methods are 
introduced theoretically in the following: 

2.1. Staged factor analysis 
A significant part of variability is described by a 
limited number of new variables. The new 
variables, which are the linear combination of 
correlated variables, do not show any correlation 
between them [29]. Generally, there are two steps 
to this method: first, elimination of the elements 
that are not included in any of the factors (factor 
loads are less than the threshold), and repeating 
until all irrelevant elements are eliminated and all 
factors are free from the noise elements, and then 
finding the factors associated with the target such 
as the type or types of target mineralization [19, 
30]. 
In multivariate statistical methods, the 
relationships between multiple variables are 

examined simultaneously. Multivariate methods 
are often used to reduce the dimensionality so that 
the process and variability of the dataset can be 
better interpreted using the reduced data. Principal 
component analysis is an orthogonal linear 
transformation that transmits the data to the new 
coordinate system. The number of calculated 
principal components depends on the number of 
initial correlated variables. Staged factor analysis 
is an improved version of the factor analysis [31]. 
The first component among the principal 
components, which is shown by y1, is written as a 
linear combination of the initial variables 1x  to Px : 

1 11 1 12 2 13 3 1...     P Py a x a x a x a x  
The above equation can be represented as follows 
in the form of a matrix: 

   1 1 TY a X  
and the most variance and variability along this 
axis. Since the special values are the same as the 
diffraction of the principal components, for 
calculation of the first variable, the first 
component or the y1 variable is calculated as 
follows: 

    
1

2
1 1 T

yS a S a  

where  S is the covariance matrix is the principal 
variables. 
First, a general factor analysis is performed on the 
primary data, and taking into account the 
threshold, if there is an element that does not 
participate in any of the factors, i.e. an element 
that is below the desired threshold, that element is 
deleted and the factor analysis continues with the 
dataset of the remaining elements until all noise 
elements are eliminated. The resulting factors are 
called clean factors. Then the factors that involve 
the desired mineralization elements are identified 
and selected, and the operations of the first phase 
are implemented on the elements of those factors, 
and the scores of the factor obtained in the last 
phase are used in the exploratory operations [31, 
32]. 

2.2. Concentration-number (C-N) fractal model 
This branch of geometry is able to investigate the 
variability of complex variables. The power 
distribution of the fractal model represents the 
dimensionality, which can be a decimal number, 
and shows the complexity and variability of the 
variable. The fractal analyses are tools for the 
distinction between various communities. The 
logarithmic graphs in the fractal modeling are 
tools for distinction among the geological and 
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mineralization communities in geochemical 
information. In drawing the concentration-number
( )C N logarithmic plots, with a sudden break in 
the gradient of the graph, the geological and 
mineralization community undergoes 
transformation. This method is basically 
dependent on the reverse relationship between the 
concentration and the cumulative frequency of 
each concentration and the higher concentrations. 
This method is based on the following equation: 
 ( )  N C   

where ( )N C  is the number of samples with the 
concentration equal to or above ,C  is the 
concentration, and β is the fractal dimension [18]. 

2.3. Geostatistical simulation 
Geostatistical simulation is a technique for 
producing the data compatible with a regional 
variable. The main characteristic of the data 
obtained from simulation is that it can regenerate 
the statistics (histogram) and spatial variability 
(variogram) of the conditioning data [33]. The 
most important characteristic of the geostatistical 
simulation is that instead of the best estimate, it 
can produce a set of models (images) that include 
a range of possible realizations [34]. In contrast 
with kriging, which is a smoothed map of the 
regional variable and in which the variance of the 
estimated values is reduced, the simulation tries to 
reproduce the variability of the regional variable 
in all scales. Estimation on sampling locations 
gives proper results, and the smoothing effect can 
be higher as the distance with the sampling 
location increases; however, the distribution is 
reproduced in the simulation [35]. 
The method that is mostly adopted today for 
modeling applications is called sequential 
Gaussian simulation. What is known as the 
primary principal in all Gaussian methods is the 
normalized primary data, i.e. all data should be 
transformed into the standard Gaussian 
distribution (0,1)N  [36]. Sequential Gaussian 
simulation is a direct simulation method that is 
used for continuous variables such as 
concentration of minerals. Using the same 
neighborhood, this approach could be a precise 
simulation method; however, since it is not 
possible in practice (it is impossible to form and 
solve a matrix with a large number of points), this 
method is considered to be among the 

approximate classification algorithms. Sequential 
Gaussian simulation is used to construct models 
that reproduce the histogram and also spatial 
continuity based on simple kriging (SK). SK is the 
only estimation method that yields exactly the 
estimated variance and mean [36]. 

1 2( , ,... )NLetZ Z Z Z  be a random variable and 

1 2( , ,... )MZ Z Z Z   a known vector with the 

1 2( , ,... )Mz z z   values, where 0 M N  .The 
distribution of the vector Z under the condition of 

: 1,2,...,i iZ z i M  can be re-written as:   

11 1 1

1

,...,
Pr

,...,
      

      

M

N

M M M z

N N N z M

z Z z d

z Z z d z z
 

 11 1 1Pr ,...,
     

MM M M Z Mz Z z d z z  

 2 22 2 1 1Pr ,..., , ...
       

M MM M Z M Mz Z z d z z z
 

 1 1 1Pr ,..., , ,...,     
NN N N Z M M Nz Z z d z z z z

 
Therefore, the components of Z୧ could be 
simulated in a sequence and with a random 
selection of the conditional distribution of 

 1 1Pr ,..., : 1,..., .i i iZ z z z i M N     The 
value of Z୧ obtained at every stage will be the next 
point of a conditional data. 
What is obtained from a simulation is a realization 
among an infinite number of possible simulations 
in the environment. If the random field (RF) of 
simulation is small  1000n  , then the above 
equation will be completely solvable up to the last 
point, and the method will be accurate (the 
reproduction of the parameters of the model will 
be performed completely). If the field is big, this 
distinction is not made completely in the above 
equation and is performed with a limited number 
of previously simulated data. Using a limited 
number of data for simulation is known as local 
neighborhood screen [37]. 
Following, a flowchart describes the procedure of 
this research work step by step. As shown in 
Figure 1, at first, a multivariate data reduction 
based on staged factor analysis is performed, and 
then a multi-fractal approach is utilized, and 
finally, a conditional simulation is applied on the 
REE data. 
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Figure 1. Flowchart of the procedure from data pre-processing to simulation post-processing. 

 
3. Geological settings of Gazestan Deposit 
The Gazestan deposit is located in the Yazd 
Province 78 km from Bafgh and 10 km from the 
east of the Gazestan village. It is located between 
the longitudes of 55 55 20   and 55 59 00   and 
latitudes of 31 39 00   and 31 40 25   . In terms 
of geological classifications, the Gazestan 
exploratory area is placed in the zone of central 
Iran, sub-zone of Bafgh, Posht-e-Badam, and on 
the Esfordi 1:100, 000 sheet [38]. 
So far, several prospecting and exploratory studies 
have been conducted in central Iran with the aim 
of identifying REEs, the most important among 
which are the study in the Bafgh, Posht-e-Badam 
area, and the study on the prospecting project for 
metal trace elements by Geological Survey of Iran 
(GSI) (2001), which lead to the introduction of 
iron, iron-apatite, and phosphate deposits in the 
central Iran as the best and most important regions 
for REE mineralization. The Gazestan low grade 
iron and apatite deposit is one of the best known 
deposits in terms of REEs. Geological studies on 
this deposit included a general exploration in the 
surface and deep drilling operations with 19 
boreholes, from which 427 samples were taken by 

GSI in 2005, drilling of 15 new exploratory 
boreholes from which 540 samples were taken by 
the Madankav Co. in 2015, and modeling the 
deposits and estimation of the reserves in a 
separate manner for the iron mineralization, 
phosphate, and REEs by the Kusha Madan 
Consulting Engineers Co. in 2015. 
The rock units of Gazestan belong to the Rizu 
series, which contain carbonate rocks, shale, tuff, 
sandstone, and volcanic rocks. In addition to the 
sedimentary and volcanic rocks, the plutonic 
intrusions in the form of stocks and dikes have 
outcropped in the area with an intermediate to 
basic rocks. The composition of dikes usually 
consists of diorite-gabbro and diabase. Green or 
metasomatic rocks, with intermediate acidic 
compositions, which are green due to the 
alteration, are hosted by the iron and phosphate 
mineralization. The metasomatic processes occur 
simultaneously or a bit after the mineralization. 
The intensity of the processes increases when we 
get closer to the mineralization zone (Figure 2). 
The rock units of Gazestan are usually composed 
of acidic and micro-granular volcanic rocks. Thus 
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the origin of the formation of the acidic rocks of 
the area is the granitic magma [38]. 
The Gezestan deposit is in the form of small 
veins, veinlets, and lenses of apatite or fills the 
interface between the magnetite grains in a green 
chlorite-epidote rock unit. The iron ore is initially 
in the form of magnetite but it turns into hematite 
due to the martitization. The green altered unit 
including intrusive volcanics, andesite, 
microdiorite, tuff, and mafic-ultramafic rocks, and 
it seems that the vein and lenses of magnetite and 
apatite have been concentrated in it as immiscible 
phases. The apatite ore is in the form of fluorine 
apatite, and REEs in the apatite are in the form of 
fine inclusions of monazite, xenotime, and 
allanite, in which a high ratio of LREE/HREE has 

been reported with LREE enrichment and Eu 
depletion. The mineralization area in Gazestan is 
2.2 km in length and > 0.7 km in width [38]. 
According to the studies by GSI, the dip of the 
mineralization controller rock units is around 50° 
toward North. 
Faulting and tectonic displacement in the area are 
relatively high and play an important role in the 
depositing processes. The dominant process of 
faulting structures occurs along the Northwest-
Southeast strike. Investigation of joints shows that 
the stress in the main direction (East-West) causes 
metasomatism and alteration of the magnetite 
mass, and displaces the magnetite mass along the 
second stress axis (Northeast-Southwest) [28]. 

 

 
Figure 2. 1:1000 scale geology map of the Gezestan deposit [38]. 

 
4. Dataset 
In this work, 908 core samples were obtained 
from 15 exploratory boreholes of 4218 m lengths. 
The locations of boreholes and samples are shown 
in Figure 3 in a 3D space. 64 elements, especially 
the light and heavy REEs and the total REEs were 
analyzed by the ICP method. The analyzed 
LREEs included Ce, Eu, La, Nd, Pr, and Sm, and 
analyzed HREEs included Tm, Dy, Er, Gd, Ho, 

Sc, Yb, Tb, and Lu. In order to identify the 
distribution of REEs, the statistics were separately 
calculated for each rock unit (Table 1) so that the 
target rock units could be specified for further 
modeling. 
Table 1 shows the statistical parameters of the 2 m 
composited data. As it could be seen, the 
magnetite units not only had a higher average 
concentration compared to the other units but also 
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had a high LREE/HREE ratio. The ratio of the 
light to heavy REEs in magnetite units was 3.8, 
and in diorite units with very small number of 
samples  7n  it was 3.9. The proportion of the 
heavy elements was sensibly higher in dacite 
compared to the light elements. The ratio of the 

light to heavy elements was 3.1 in dacite, 3 in 
andesite, 3.2 in tuff, 2.1 in dacite, and 1.2 in 
gangue. In other words, this ratio significantly 
increased in each rock unit with increase in the 
total average concentration. 

 

 
Figure 3. Western drilled boreholes of the Gazestan deposit utilized for further simulation. View to the North. 

 
Table 1. Statistical parameters of light, heavy, and total REEs in each rock unit along with the ratio of light to 

heavy elements. 

Rock type Total 
count 

Mean of total REE 
(ppm) 

Mean of HREE 
(ppm) 

Mean of LREE 
(ppm) 

LREE/HREE 
ratio 

Andesite 218 827 208 619 3.0 
Dacite 64 342 109 233 2.1 
Diorite 7 1373 280 1093 3.9 

Magnetite 244 1363 283 1080 3.8 
Rhyodacite 17 569 135 434 3.2 

Tuff 346 941 222 720 3.2 
Waste 12 482  215 267 1.2 

 
5. Results 
5.1. Staged factor analysis 
Using the staged factor analysis, the main 
components related to REE mineralization were 
determined and extracted. First, all data was 
transformed to Guassian distribution N(0,1). In 
the first stage of the factor analysis, 13 factors 
were obtained, which explained 81.1% of the total 
variance of the data. The first factor accounted for 
34.24% of the total variability with an eigenvalue 
value of 19.17. At this stage, taking into account 
the threshold of 0.6 for the correlation values with 
13 factors, the noise elements of As, Ba, Bi, Co, 
Ga, Ni, Sr, W, and Zn were eliminated at this 
stage as noise or uncorrelated elements. This 

process was continued until the 5th stage to obtain 
the noise-free (clean) factors. Then the factors that 
contained trace elements and the intended 
mineralization were selected. Considering the 
geological and mineralogical conditions, factors 1, 
2, and 3 were taken as the objectives because they 
contained trace elements that included phosphorus 
and REEs. Thereafter, Ag, Ca, Cd, Cs, Li, Mg, 
Mn, Nb, and Ti with a correlation below the 
threshold were eliminated from the factors, and 
finally, three factors were obtained in the 6th stage. 
All elements had a correlation coefficient higher 
than the threshold. The elements are presented in 
Table 2. 

 
 
 



Soltani et al./ Journal of Mining & Environment, Vol. 10, No. 4, 2019 

936 
 

Table 2. Results of factor analysis of the 6th or final stage. As observed, all elements remaining in the three 
factors have a correlation more than 0.6 with the corresponding factor. 

 
 
5.2. Modeling of ( )C N fractal analysis 
Among the factors obtained from the staged factor 
analysis, the first factor that was directly related to 
mineralization was selected for fractal modeling 
and relation with rock units. On the first factor, 
the ( )C N fractal diagram was plotted by taking 
the logarithm of the values and taking into 
account the cumulative order of the factor (Figure 
4). The fractal diagram shown in Figure 4 reveals 
the breaking point between the fitted lines in the 
diagram, and accordingly, the threshold values for 
the separation of the rock units. These breaking 
points correspond to the values of 
2.77,1.42,0.60 , and 0.163 of the factor’s 
normal distribution, respectively. Considering that 
at the two final breaking points a multi-fractal 

behavior is observed, it demonstrates a highly 
concentrated rock unit. As in the Gazestan 
deposit, the mineralization is a mixture of 
magnetite-apatite; thus the highly concentrated 
part could be compatible with the  
magnetite-apatite rock units.  
Then using the confusion matrix, the correlation 
of the zone obtained from the number-N fractal 
method and the geological units was investigated. 
Based on the thresholds obtained from the fractal 
modeling and the correlation of the concentration 
intervals with the various rock units, the highest 
overall accuracy was obtained for the high-grade 
magnetite-apatite rock units. The results obtained 
are presented in Table 3. 

 

 
Figure 4. C-N logarithmic diagram of scores of the first factor from the 6th stage of the staged factor analysis and 

the corresponding break points. 
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Table 3. Overall accuracy, and errors type 1 and type 2 calculated for correlation of the concentration model of 
the factor with the geological model. 

Geological model  
Outside the zone  

(magnetite-apatite) 
Within the zone  

(magnetite-apatite) 
 

False positive (B) = 51 True positive (A) = 26 Within the zone 1.42037-3.47384 Fractal model True negative (D) = 612  False negative (C) = 218 Outside the zone 1.42037-3.47384 
Error type 2 = 0.07 Error type 1 = 0.893  

Overall accuracy = 70% 
 
5.3. Simulation of mineralization factor and 
REEs  
Since the sequential Gaussian simulation was used 
for simulation, the data was transformed to 
Gaussian distribution N(0,1). Figures 5a to 5f 
show the data for REEs before and after 

normalization. The score values (Figure 5h) are 
factors with Gaussian distribution because they 
are the product of the rotation of the normalized 
data vectors. Figure 5g shows the linear 
correlation between the total REE and the 
mineralization factor, both in a normal space. 

 

 
Figure 5. Histograms of a. HREE, c. LREE, and e. total REE on the left and the corresponding normalized 

values on the right. Scatter plot between the total normalized concentration values and the mineralization factor 
(g), histogram of the mineralization factor (h). 
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As it can be seen, there is a high linear correlation 
between the variables that show a correlation 
between the mineralizing elements, specifically 
phosphorus, and REEs. 
In order to investigate the spatial variability and 
probable anisotropy of the deposit, the 
experimental variogram and fitted model were 
plotted and investigated. Considering the 
insufficient number of boreholes that were drilled, 
specifically perpendicular to the continuity of the 
deposit (i.e. in the north-south strike), 
identification of the varigram ranges were 
uncertain. 
However, according to the geological continuity 
along the controller rock units (a dip of 50° 
toward north), modeling was performed for the 
second axis of anisotropy. The directional and 
non-directional variograms of the total REE are 
provided in Figure 6. Other variables have 
approximately the same spatial structures. 

From the vertical variogram, the nugget effect 
value was taken to be 0.3 out of 1 for the 
variables, which was due to the relatively high 
variations of variables in very small scale 
structures. Using the Gaussian data for REEs and 
the factor scores and parameters obtained from the 
variography, the concentration simulation was 
performed 10 times in the SGEMS software 
(version 2.5b) in the defined block model. The 
block model is based on the borehole data and 
geological map, and is defined according to the 
continuity of the deposit with the dimensions of 
20 20 10   m and with 31421 parent blocks. For 
each variable, conditional simulation was 
performed 10 times based on SK. The parameters 
used in the simulation are given in Table 4. The 
number of conditioning data plays an important 
role in the accuracy of the model, and after 
iterations, 100 conditioning data was used for the 
final model. 

 

 
Figure 6. Directional variograms along the major axis (azimuth 90) and vertical veriogram, and omni-directional 

variogram of total REEs. 
Table 4. Parameters used to simulate normal variables. 

Nb of conditioning 
data Rake Dip Azimuth Seed Nb Kriging 

type 
Nb of 

realizations (%) Variables 

100 -40 10 90 14071789 SK 10 Total REE 
LREE-HREE-Fac 
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By investigation of the 10 realizations and 
considering that each realization is simulated from 
different simulation random paths, different 
previously simulated nodes, and drawing random 
values from different estimation variance CDF’s, 
it can be understood that the realizations are 
completely different from each other but each can 
reproduce the statistical and geostatistical 
parameters of the primary data. Considering the 
data histogram as the reference distribution, each 
realization was then back-transformed from 
Gaussian to data distribution. Factor values were 
simulated with similar simulation parameters such 
as number of conditioning data, variogram model, 
and search ellipse. Since factor values are in the 
Gaussian space (i.e. all vectors are calculated in a 
normal space through staged factor analysis), no 
back-transformation was performed. 

6. Discussion 
6.1. Analysis of realizations 
Comparison of the realization statistics with the 
data indicates the proper reproduction of the 
minimum, maximum, mean, variance, and also the 
range of classical statistics for each one of the 
variables. Figure 7 shows the histograms of one of 
the realizations for each variable (HREE, LREE, 
total REE) along with the statistical parameters. 
One of the investigation methods for the 
reproduction of data by the simulation results is to 
study the QQ plots. According to the QQ-plot 
diagrams, the quantiles of the two distributions are 
compared and plotted versus each other. The fact 
that the values are located on the y x line shows 
that the quantiles of the two distributions of the 
data and the values obtained from the simulation 

are exactly the same and the simulation not only 
reproduces the mean and variance of the data but 
also reproduces the distribution itself. In Figure 7, 
for each histogram, the corresponding QQ-plots 
are provided on the right. 
One of the results of simulation is the E-Type 
map. This map results from (arithmetical) 
averaging of all realizations for each block. Due 
to the averaging, the E-type map provides a 
smoothed map of changes and cannot represent 
the changes in the upper and lower tails of the 
distribution, and therefore, displays a very low 
variance in comparison with each one of the 
realizations. In Table 5, the statistical 
characteristics of each realization in the normal 
space are compared with the E-type map. The 
sharp decrease of the variances of realizations 
from 1 to 0.1 in the E-Type values indicates the 
effects of averaging (the same as the smoothing 
effect caused by kriging). 
In Figure 8, the E-type values of factor scores, 
total, light, and heavy REEs are given. The trend 
of changes of factor scores and REEs indicate a 
high correlation between the mineralization factor 
and REEs. Since the factor scores are in the 
Gaussian space, all other variables are compared 
with factor scores in the normal mode. 
Figure 9 shows the back-transformed simulations 
into original distribution for the three variables 
HREE, LREE, and total REE. It should be noted 
that the mineralization factor (FAC) is meaningful 
in Gaussian space and so it does not require to 
back-transform into the original distribution. The 
range of each variable has been shown in the 
corresponding legend in the right column of the 
figure. 

 
Table 5. Basic statistics of total REE realizations and E-type in the Gaussian space. 

Var. (%)2 Mean (%) Max. (%) Min. (%) Range (%)  1.00497 -0.04137 4.15519 -4.65115 8.8063 Sim 1 
0.94383 0.034255 4.13638 -4.0281 8.16448 Sim 2 
0.94965 0.007614 4.08048 -4.33506 8.41554 Sim 3 
0.9617 0.037463 3.8931 -3.69934 7.59244 Sim 4 
0.9853 -0.088198 3.78593 -4.04621 7.83214 Sim 5 
1.022 -0.093815 4.48677 -3.85944 8.34621 Sim 6 
0.9758 0.096358 4.72114 -3.7846 8.50574 Sim 7 
1.0175 0.021579 4.03691 -3.74586 7.78277 Sim 8 
0.9962 -0.03183 3.83609 -4.066 7.90209 Sim 9 
0.95185 -0.02246 4.46972 -4.06154 8.53126 Sim 10 
0.099 -0.00804 1.22359 -1.26239 2.4859 E-type 
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Figure 7. Histogram of the total, heavy, and light REEs of one realization along with the corresponding QQ 

diagram to be compared with the data distribution used in the simulation. 
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Figure 8. E-type map of factor values, heavy, light, and total REEs in Gaussian space. 

 

 
Figure 9. Plans of back-transformed variables into original distribution. Two random realizations (#3 and #9) 

have been shown for back-transformed HREE, LREE, and total REE. 
 
6.2. Uncertainty analysis 
The uncertainty analysis was performed based on 
two criteria, the “conditional variance” and the 
“interquartile range”. Both CV and IQR are the 
criteria to quantify analysis based on the statistical 

methods. CV is calculated the same as the 
variance, and IQR is Q3 (third quartile)-Q1 (first 
quartile) of the corresponding distribution. In 
order to compare the results, all variables were 
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analyzed in normal distribution (before  
back-transformation). 
As it could be seen in Figure 10, the grade 
uncertainty does not depend on the closeness to 
the boreholes as it is in the conventional 
estimation methods such as kriging. In the high 
grade zone, according to heteroscedasticity of 

data, and therefore, the proportional effect, the 
uncertainty will raise in high grade zones. Thus 
quantification of grade uncertainty, especially in 
high-grade blocks, could be a helpful tool for 
incorporating the uncertainty into the stochastic 
mine design and short-term/long-term mine 
planning. 

 

 
Figure 10. Quantification of uncertainty based on realizations of simulation for four variables including FAC, 
HREE, LREE and total REE. The right column is based on interquartile range (IQR) and the left one is based 

on conditional variance (CV). 
 

6.3. Probability of exceeding the thresholds 
As stated in the introduction, due to the low-grade 
REEs in the deposit and high positive skewness of 
the data, it is necessary to use the geostatistical 
simulation tools to keep the initial distribution in 
the simulation results and prevent the smoothing 
the high grades so that the proportion of the high-
concentration parts is prevented. Then in order to 
analyze the probability that block concentrations 
exceed the thresholds, the probability maps can be 
used. These maps determine the probability that 
block concentration exceeds a threshold and 
calculate the corresponding probability for each 

variable based on the count of times the simulated 
concentration exceeds the threshold. The 
probability that various REEs exceed different 
thresholds of 1000 ppm  0.1 , 2000 ppm 

 0.2 , and 3000 ppm  0.3  is shown in 
Figure 11 (left). From the mine design and 
planning viewpoint, the corresponding grades play 
an important role that can affect the evaluation of 
the deposit and totally change the feasibility study 
of the project. Thus the probability of exceeding 
different thresholds of factor scores are also 
shown in Figure 11 (right column). 
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Figure 11. Maps of probability that the total REEs exceed 1000, 2000, and 3000 ppm, and that the corresponding 

factor scores exceed 0.5, 1, and 1.5. 
 

As it could be seen, with increase in the 
thresholds, the probability of exceedance 
decreases. It is worth noting that the difference in 
the probability of exceedances is based on 
simulation and estimation. Due to the smoothing 
effect of the kriging estimation, the exceedance 
probability will be significantly reduced, and 
therefore, the economic higher-grade cut-offs are 
significantly ignored. 

7. Conclusions 
Exploratory studies carried out on the Gazestan 
deposit indicate the presence of rare earth 
elements (REEs) in apatite and monazite minerals 
but the main issue is evaluating the grade in the 
whole deposit without any smoothing effect in 
grade distribution. According to the fractal studies 
on the variability of the total REEs and its 
correspondence with different rock units in this 
deposit, it was determined that the mineralization 
mainly occurred in areas having magnetite-apatite. 
On the other hand, based on the staged factor 
analyses, by elimination of the non-dependent 
elements during six stages, from among 63 
analyzed elements, 18 elements including HREE, 
LREE, total REE, and also phosphorus remained 
in the mineralization factor, which again, 
confirmed the multivariate relationship between 
REE mineralization and existence of phosphorus 

minerals. The high correlation between the 
mineralization factor and phosphorous proves the 
existence of REEs with magnetite-apatite units. 
Due to the importance of reproducing the 
distribution and tail of high-concentrations of the 
deposits, conditional simulation was used. 
Investigating the spatial structure of anisotropy 
shows the high similarity of the anisotropy 
structure of light and heavy REEs with the 
mineralization factor, which, in turn, indicates that 
there is a high spatial relationship between REEs 
and the mineralization factor, and also the 
phosphorus element. 
Using the sequential Gaussian simulation, the 
values of light, heavy, and total REEs were 
modeled in the 3D space of the ore deposit. The 
results also show a high correlation between the 
contents of REEs with the simulated values of the 
mineralization factor. On the other hand, the 
probability was investigated, showing that REEs 
and the mineralization factor exceed various 
economic thresholds, and due to the reproduction 
of concentration distribution after simulation, no 
smoothing or removal of high concentration were 
observed in the results. 
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 چکیده:

. عیـار  کنـد  میبه برآورد نادرست منجر شده و مدیریت منبع را با چالش و ریسک مواجه  خاکیو تخمین در کانسارهاي عناصر نادر  سازي مدلرویکردهاي سنتی 
. کنـد  مـی چندمتغیره عیـار در ایـن کانسـارها را دوچنـدان      سازي مدلضرورت  ها آنو اهمیت استراتژیک  سو یکاز  کشور خاکیپایین در کانسارهاي عناصر نادر 

 آپاتیـت  -کانسـار مگنتیـت   پـژوهش، در این  .افزاید میعناصر نادر خاکی  سازي مدلاي مختلف سنگی نیز به پیچیدگی تغییرات زیاد عیار و ارتباط عیار با واحده
 در کانی آپاتیت خاکی سبک و سنگین نادر قرار گرفته است. در این کانسار عناصر سازي مدلمورد بررسی و  آماري زمینآماري و  هاي روشزستان با استفاده از گ

حاصـل از   عنصره شامل عناصر نادر خاکی سبک و سـنگین  64نمونه عیارسنجی شده  908با استفاده از  متمرکز شده است. مونازیت ریز هايوزیونانکل صورت به
تلاش شده اسـت تـا عیـار     آماري زمین سازي شبیهتعداد و نیز انجام  -فرکتالی عیار سازي مدل، اي مرحلهتحلیل فاکتوري  هاي روشحفاري و استفاده از  هاي مغزه

به آنالیز عدم قطعیت عیاري در کانسار پرداخته شـد. کلیـه    ها تحققبر اساس نتایج حاصل از  درنهایتعناصر نادر خاکی در واحدهاي سنگی مختلف بررسی شود. 
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