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Abstract 
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in 
order to control the adverse consequences of blasting such as fly rock, ground vibration, 
and air blast in open-pit mines. In this research work, BC is predicted through collecting 
146 blasting data from six limestone mines in Iran using the artificial neural networks 
(ANNs), gene expression programming (GEP), linear multivariate regression (LMR), and 
non-linear multivariate regression (NLMR) models. In all models, the ANFO value, 
number of detonators, Emolite value, hole number, hole length, hole diameter, burden, 
spacing, stemming, sub-drilling, specific gravity of rock, hardness, and uniaxial 
compressive strength are used as the input parameters. The ANN model results in the test 
stage indicating a higher correlation coefficient (0.954) and a lower root mean square error 
(973) compared to the other models. In addition, it has a better conformity with the real 
blasting costs in comparison with the other models. Although the ANNs method is 
regarded as one of the intelligent and powerful techniques in parameter prediction, its 
most important fault is its inability to provide mathematical equations for engineering 
operations. In contrast, the GEP model exhibits a reliable output by presenting a 
mathematical equation for BC prediction with a correlation coefficient of 0.933 and a root 
mean square error of 1088. Based on the sensitivity analysis, the spacing and ANFO 
values have the maximum and minimum effects on the BC function, respectively. The 
number of detonators, Emolite value, hole number, specific gravity, hardness, and rock 
uniaxial compressive strength have a positive correlation with BC, while the ANFO value, 
hole length, hole diameter, burden, spacing, stemming, and sub-drilling have a negative 
correlation with BC. 

1. Introduction  
The primary purpose of blasting is an optimal 
fragmentation and displacement of crushed rocks at 
the lowest cost. Some studies have indicated that 
only about 20-30% of all energies derived from 
explosives is spent on fragmentation and rock 
displacement, and the rest is wasted in the form of 
undesirable destructive phenomena such as ground 
vibration, air blast, fly rock, and back break [1]. 
These materials have caused many problems for 
the health of miners and locals, often resulting in 

litigation between the owner of the mine and local 
residents [2-4]. Evaluating the blasting cost (BC) 
without regarding the adverse consequences of 
blasting is meaningless. Given the remarkable 
importance and impact of blast on the cost of 
mineral extraction, it is necessary to provide a 
model to predict BC. Therefore, calculating the 
optimal BC to achieve an optimal fragmentation 
with respect to the blasting constraints is a major 
issue in the mining industry.  
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The most important studies on BC and the related 
issues are as what follows. Jimeno et al. [5] have 
presented the basic equation to calculate the cost of 
each drilling meter based on the direct and indirect 
costs. Direct costs include the personnel, 
maintenance, energy, grease, oil, rad, drill bit, etc., 
and indirect costs include insurance, tax, 
depreciation, and so on. Kanchibotla [6] has 
studied the maximum profitability, costs, and 
optimal blasting in an open-pit coal mine and a gold 
mine using the computer simulation models and 
field studies. Rajpot [7] has surveyed the impact of 
the fragmentation properties on BC and presented 
a model to evaluate the impact of hole diameter on 
the blasting requirements in order to achieve 
fragmentation d80 and calculate the blast design 
parameters for the particle size of 75-350 mm. 
Usman and Muhammad [8] have conducted a 
PCA-combined analysis on the parameters and data 
of 31 blasts in cement mines in the northern 
Pakistan; these parameters were utilized as a model 
for evaluating BC. In another study, Afum and 
Temeng [9] have surveyed the cost reduction of 
drilling and blasting in an open-pit gold mine in 
Ghana at three pits through blasting optimization 
and the use of the Kuz-Ram model. They could 
ultimately obtain an average of 25-56 cm 
fragmentation. Adebayo and Mutandwa [10] have 
studied the relationship between the blasting hole 
deviation, rock size, and fragmentation cost using 
ANFO, heavy ANFO, and emulsions in the holes 
with 191-311 mm diameter. The results obtained 
showed that the average rock size decreased by 
increasing the hole deviation, while the drilling and 
blasting costs increased. Ghanizadeh et al. [11] 
have presented BC per cubic meters as a linear 
model using the Comfar software as well as the 
statistical methods as a function of hole diameter, 
bench height, uniaxial compressive strength, and 
direction of joints. Miranda et al. [12] have used 
the numerical methods to find the minimum BC, 
compared to the traditional and experimental 
methods. This model is based on the development 
of blast patterns with the automatic adjustment of 
burden, spacing, stemming, sub-drilling, and 
number of holes in order to ensure the production 
demand in terms of the blast volume. Bakhshandeh 
et al. [13] have proposed a mathematical model for 
estimation of BC at the gypsum mine of Baghak. 
The input variables used were burden, spacing, 
hole diameter, stemming length, charge density, 
and charge weight. Finally, the non-linear model 
was optimized considering the constraints by the 
simulated annealing. 

During the recent decades, the intelligence 
techniques such as the artificial neural networks 
(ANNs), fuzzy inference system (FIS), neuro-
fuzzy inference system (ANFIS), and support 
vector machine (SVM) have been widely used in 
geosciences to predict the target parameters. 
Compared to the traditional methods, these 
techniques have significant features [14, 15]. 
Although they are regarded as powerful methods 
for parameter prediction, they do not provide the 
mathematical equation for engineering activities 
[16]. In a study using multivariate regression and 
ANNs, Alvarez et al. [17] have predicted the 
blasting-induced peak particle velocity and 
frequency of vibration in an open-pit mine. The R² 
values were obtained as 0.98 and 0.95 for the peak 
particle velocity and vibration frequency using the 
ANNs method, respectively, compared to 0.5 and 
0.15 by the linear multivariate regression (LMR), 
which indicated the superiority of the ANNs 
model. In a study using back-propagation neural 
network, Trivedi et al. [18] have predicted the rate 
of fly rock in Indian limestone mines using ANNs 
after propagation, and indicated that the amount of 
charge per hole, depth of holes, burden, spacing, 
stemming, hole diameter, powder factor, rock 
quality designation (RQD), and compressive 
strength were the most influential parameters in the 
fly rock distance. Nguyen et al. [19] have predicted 
the blasting-induced ground vibration using the 
ANNs model, experimental methods, and 68 
blasting data in an open-pit mine in Vietnam. In 
this study, five models with different numbers of 
neurons and different hidden layers were 
developed. Finally, the 1-5-8-10-2 ANNs model 
with three hidden layers (compared to the other 
four models) and experimental techniques with the 
0.964 and 0.738 values for R² and RMSE, 
respectively, was introduced as the best model. 
Gene expression programming (GEP) is able to 
solve non-linear engineering problems, and can 
propose a formula to predict a particular output 
using the inputs related to its model. Canakci et al. 
[20] have used the GEP model to predict rock 
compressive and tensile strength, and found that 
the results of the GEP model were in good 
consistency with the measured values. Ahangari et 
al. [21] have compared the performance of the 
ANFIS and GEP methods in predicting the effect 
of tunneling on people's residence based on the data 
collected from 53 tunnels. They concluded that 
GEP was a superior model than ANFIS. Monjezi et 
al. [22] have introduced a modified version of the 
USBM empirical equation using a new input called 
water factor (WF). They suggested that this 
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modified equation was more accurate than the 
other empirical equations. In addition, they used 
three predictive models, namely LMR, non-linear 
multivariate regressions (NLMR), and GEP. 
Finally, the GEP model with the 0.918 and 2.223 
values for R² and RMSE, respectively, was 
introduced as the best model. Dehgani [23] has 
used GEP to predict the variations in copper price. 
The results obtained were compared with those of 
the other classical methods. It was revealed that 
GEP was more accurate than the time series and 
multivariate regression methods. 
Most of the above studies have been conducted on 
determining the relationship between BC and 
minerals' transportation cost, reducing the drilling 
and blasting costs, investigating the impact of 
fragmentation properties on BC, and presenting a 
BC model in a particular mine and the adverse 
consequences of blasting. Given that blasting is the 
first step in the production process in open-pit 

mines and the cost of this step is 8-12% of the total 
mining costs [8], and lack of any study in the 
literature in predicting BC in most minerals 
including limestones, it is necessary to provide a 
model for this purpose. In the present work, the 
GEP, ANN, NLMR, and LMR models were used 
to predict BC in limestone mines, and the results 
obtained were compared with the real data 
collected from six limestone mines in Iran.  

2. Methodology 
The following measures were taken for BC 
prediction (Figure 1): 
- Data collection and determination of the input, 
output, and constraints parameters; 
- BC modeling using the GEP, ANN, NLMR, and 
LMR methods; 
- Comparing the performance of models with each 
other and selecting the best model as the research 
output. 

 
Figure 1. Steps of BC prediction. 

2.1. Gene expression programming (GEP) 
GEP has been extracted from Genetic Algorithm 
(GA) and Genetic Programming (GP), which was 
invented by Ferreira in 1999 [24]. In this method, 
the linear and simple chromosomes of constant 
length, similar to the GA and branch structures of 
different sizes and shapes, are combined with 

decomposing trees in GP, known as Expression 
Tree (ET) [25, 26].  
In GEP, different phenomena are modeled using a 
set of functions and terminals. The set of terminals 
consists of constant values and independent 
variables of the problem [24, 27-32]. Here, a 
chromosome includes a coded linear sequence of 
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fixed length, which can be a combination of one or 
more genes [33]. 
The genes consist of two parts: head and tail. The 
head section can include functions and terminals, 
while the tail can only contain terminals. The codes 
for each gene result in the formation of a sub-ET, 
and the sub-ETs interact to form a larger and more 
complex ET. In order to form this complex 

structure, the sub-ETs are linked together by a 
function called the linking function [24, 34]. In the 
GEP algorithm, the mutation, inversion, 
transposition, and insertion sequence elements, and 
recombination are applied to the chromosomes 
orderly [24-26, 34-37]. A flowchart of the GEP 
algorithm is schematically shown in Figure 2. 

 
Figure 2. Flowchart of the GEP algorithm [38]. 

2.2. Artificial neural networks (ANNs) 
The neural network (NN) is actually an imitation of 
the human brain [39]. Modeling with this network 
involves the structure design, and determining an 
appropriate train law and transfer function. In the 
present work, the network used was a multi-layer 
perceptron (MLP), each layer consisting of a 
matrix and bias vector and an output vector [40, 
41]. There are several techniques in the MLP 
training process; however, the feed-forward back-
propagation algorithm has more advantages over 
the other methods. Each input is weighted with an 
appropriate weighting factor (w). These weights 
are first assigned randomly. Then the network is 
modified during the learning process by reducing 
the error rate, and finally, its final values are 
determined [42-44]. 
There are basically three types of layers in NNs: an 
input layer, one or more middle layers, and an 
output layer. The number of neurons in the input 
and output layers is determined based on the 
number of input and output parameters and the 
number of middle layers along with the number of 
neurons in each layer with respect to the 

complexity of the problem by trial-and-error [45-
47]. 
Different transfer functions can be used to create 
the desired output. Hardlims, Purelin, Poslin, 
Tansig, and Logsig are among these functions. The 
model accuracy is determined by comparing the 
ANNs and actual outputs [48]. 

3. Database and statistical analysis 
In this research work, the data from six limestone 
mines in Iran was collected to predict and validate 
the GEP and ANN models. Table 1 shows the 
geographical coordinates and specifications of 
these mines.  
In order to obtain the real data, the BC data of six 
limestone mines from 2011 to November 2018 was 
collected. Then the data was updated according to 
the price of explosives and BCs of January 2019, 
and became the basis of the research work. Based 
on the data, Figure 3 illustrates the components of 
the average BC as percentage. Figure 4 shows the 
geographical location of limestone mines. Table 2 
displays the input, output, constraints, and 
statistical properties of these parameters.  



Bastami et al./ Journal of Mining & Environment, Vol. 11, No. 1, 2020 

285 

Table 1. Geographical coordinates and specifications of the studied mines (source: http://ime.org.ir). 
Geographical coordinates (WGS 84) Annual 

extraction 
capacity 

Proven reserve 
(ton) Name of mine Row Longitude Latitude Nearest city 

53° 21' 3" 36° 38' 5" Neka 4000000 89340000 Abelou 1 
48° 29' 44" 33° 30' 5" Khorramabad 150000 4300000 Tajareh 2 
48° 54' 22" 34° 39' 37" Hamedan 300000 7000000 Moslem Abad 3 
47° 46' 43" 33° 1' 24" Pol Dokhtar 100000 900000 Tang Fani 4 

51° 28' 4.63" 32° 26' 28.37" Esfahan 600000 13500000 Sepahan Mobarakeh 5 
48° 12' 53" 34° 3' 8" Nurabad 160000 1600000 Barkhordar1 6 

 
Figure 3. Components of BC. 

 
Figure 4. Geographical location of limestone mines. 

http://ime.org.ir).
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Table 2. Input and output variables and their constraints. 

Type Parameter Unit Symbol Max Min Mean Standard 
deviation 

Input ANFO 2598.488 8551.3 1020 12400 AN Kg 

 

Number of electric detonators 122.4 348 45 650 Det - 
Emolite 115.4 295.4 40 600 EM Kg 

Hole number 136.6 271.5 29 553 N - 
Hole length 3.2 9.5 4 20.5 H m 

Hole diameter 8.2 83 76 100 D mm 
Burden 0.53 2.36 1.7 3.5 B m 

 

Spacing 0.61 2.8 1.9 4 S m 
Stemming 0.53 1.83 0.85 3.6 T m 

Sub-drilling 0.42 0.82 0.2 1.5 J m 
Specific gravity 0.04 2.66 2.6 2.7 Υ푟 푡표푛

푚  
Rock hardness 0.16 3.27 3 3.5 HA Mhos 

Uniaxial compressive strength 49.9 600.6 530 671 ϭc 
퐾푔

푐푚² 
Constraints Fragmentation 7.94 36 20 47 Fr cm 

 Fly rock 19.2 97 60 140 Fl m 
Back break 1.4 3.4 1 6 BB m 

Output Blast cost 3995 13468 7157 23481 BC Rials/ton 

Using the box plot in the SPSS 24 software, the 
outlier data was identified and removed from the 
collected data, and then the number of data reached 
146 patterns. A laser-meter and a total station 
surveying camera were used to measure the back-
break and fly rock, respectively. The rock 
fragmentation resulting from each blasting pattern 
in the mine was measured using the Split Desktop 
V. 5 software. Imaging was randomly done with 
the help of a camera by considering the 
dimensional variability and using two scales at the 
top and bottom of the blasting coupe. The 
photographs were taken in large, medium, and 
small sizes. An average of 12-24 images was 
analyzed to eliminate the possible errors and 

increase the reliability of image analysis results in 
each blast of the studied mines. Then the images 
were analyzed using the Split Desktop 5 software 
to determine the real fragmentation (d80). Next, the 
dimensional distribution curve of each blasting was 
obtained separately. Finally, the results of the 
analysis of all images in the software were 
combined. Figure 5 illustrates the steps of image 
analysis using the Split Desktop software in one of 
the studied mines. 
The correlation between the input variables was 
obtained by the Pearson's correlation coefficient to 
predict BC based on the data collected from six 
limestone mines in the first stage (Table 3).  

 
Figure 5. Process of using the Split Desktop software. 
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Table 3.  Pearson's correlation coefficient matrix. 
ϭc HA 횼풓 J T S B D H N EM Det AN Variables 

0.194 0.376 0.424 -
0.031 

-
0.037 

-
0.254 

-
0.194 0.206 0.295 0.34 0.567 0.554 1 AN 

0.494 0.581 0.423 -0.35 -
0.559 

-
0.598 -0.59 -

0.473 
-

0.394 0.845 0.759 1 0.554 Det 

0.723 0.785 0.704 -
0.105 

-
0.431 

-
0.526 

-
0.518 - 0.34 -

0.241 0.699 1 0.759 0.567 EM 

0.51 0.579 0.294 -
0.542 

-
0.765 

-
0.711 

-
0.724 

-
0.681 0.703 1 0.699 0.845 0.34 N 

-0.27 -
0.254 0.061 0.579 0.757 0.535 0.569 0.675 1 0.703 -

0.241 
-

0.394 0.295 H 
-

0.319 
-

0.249 
-

0.014 0.47 0.647 0.514 0.631 1 0.675 -
0.681 - 0.34 -

0.473 0.206 D 
-

0.384 
-

0.544 
-

0.197 0.747 0.802 0.964 1 0.631 0.569 -
0.724 

-
0.518 - 0.59 -

0.194 B 
-

0.391 
-

0.574 
-

0.217 0.745 0.787 1 0.964 0.514 0.535 -
0.711 

-
0.526 

-
0.598 

-
0.254 S 

-
0.377 -0.47 -

0.074 0.769 1 0.787 0.802 0.647 0.757 -
0.765 

-
0.431 

-
0.559 

-
0.037 T 

0.114 0.07 0.398 1 0.769 0.745 0.747 0.47 0.579 -
0.542 

-
0.105 - 0.35 -

0.031 J 

0.848 0.842 1 0.398 -
0.074 

-
0.217 

-
0.197 

-
0.014 0.061 0.294 0.704 0.423 0.424 횼풓 

0.945 1 0.842 -0.07 -0.47 -
0.574 

-
0.544 

-
0.249 

-
0.254 0.579 0.785 0.581 0.376 HA 

1 0.945 0.848 0.114 -
0.377 

-
0.391 

-
0.384 

-
0.319 - 0.27 0.51 0.723 0.494 0.194 ϭc 

The rate of two-way linear relationship between the 
variables, known as the correlation matrix, is given 
in Table 3. In this matrix, the negative entries 
represent the inverse relation and the positive 
entries represent the direct relation between the 
variables. 

4. BC prediction 
4.1. Prediction with GEP model 
This section aims to find a function in the template 
of BC = f(AN, Det, EM, H, N, D, B, S, T, J, Ɣr, HA, 
σc) to predict BC, where AN, Det, EM, H, N, D, B, 
S, T, J, HA, Ɣr, and σc are the independent 
variables and BC is the dependent variable.  
Gene Xpro Tools is a powerful flexible modeling 
software developed by Ferreira et al. in 2000 and 
can be used for function finding, classification, 
time series prediction, and logic synthesis. In the 
present work, 80% of the data was used for 
modeling and 20% for random model testing out of 
the 146 blasts recorded in six limestone mines. 
Since the input and output parameters have 
different units and ranges of variation, the data 
must be normalized before any modeling in smart 
methods. Data normalization increases speed and 
decreases error in modeling and prevents over-
fitting. In the present work, the data was 
normalized using Equation 1 at intervals 0 and 1:  

min

max min

i
norm

X X
X

X X





  (1) 

where 푋  indicates the initial data, 푋  shows the 
minimum variable value, 푋  is the maximum 
variable value, and 푋  is considered as the 
normalized value.  
The modeling process can be described using the 
GEP algorithm in the following five steps [33, 49]: 
A) Step 1: the cost function is determined to 
evaluate the fitness of the produced chromosomes. 
For this purpose, the root mean square error 
(RMSE) equation is used:  

2

1

1 ( )
n

i i
i

RMSE O T
n 

   (2) 

where 푂  shows the ith real value, 푇  indicates the 
ith predicted value, and n is considered as the 
number of data series. 
B) Step 2: the terminals (problem inputs) and 
functions are defined to create the GEP 
chromosomes. In the present work, the terminals 
were 13 input parameters (Table 2), and the 
following important functions were selected by 
studying the structure of empirical relationships 
and examining the regression relationship between 
the inputs and outputs:  



Bastami et al./ Journal of Mining & Environment, Vol. 11, No. 1, 2020 

288 

퐹푢푛푐푡푖표푛푠 푆푒푡 = {+,−,× ,÷, 푠푞푟푡, 퐼푛푣, ^2, ^3, ^4,
3푅푡, 4푅푡, 푐표푠, 푡푔,푁표푡} (3) 

where 3Rt and 4Rt are the third and fourth roots of 
the variable, respectively. 
C) Step 3: the structure of the chromosomes must 
be determined. The structure of each chromosome 
depends on the number of genes and the size of 
their head. Increasing the number of genes and 
chromosomes can partly improve the performance 
of the GEP model. However, as the number of 
genes exceeds their optimal value, the complexity 
of the model increases, leading to a possible over-
fitting phenomenon [33].  

D) Step 4: genetic operators and their rates are 
determined. In the present work, all genetic 
operators were regarded as suggested by Ferreira 
and other researchers [22, 24, 36, 37and 50]. To 
determine the rate of operators, Ferreira proposes 
the values that are suitable for most of the 
engineering problems [24, 34]. Our investigations 
showed that the values proposed by Ferreira were 
appropriate for the present work.  
E) Step 5: a linking function is required to bind the 
genes. In the present work, the addition linking 
function was used for a better performance. Table 
4 displays the genetic operator rates and basic 
settings of the five models of the BC function. 

Table 4. Genetic operator rates and basic settings of five BC function models. 
 Value Parameter Type of 

setting 5 4 3 2 1 
RMSE RMSE RMSE RMSE RMSE Fitness function 

Basic settings 

35 28 30 32 30 Number of chromosomes 
9000 9000 9000 9000 9000 Number of generations 

8 10 10 12 9 Head size 
4 5 4 3 4 Number of genes 

Addition Addition Addition Addition Addition Linking function 
0.00138 0.00138 0.00138 0.00138 0.00138 Mutation rate 

Genetic 
operators 

0.00546 0.00546 0.00546 0.00546 0.00546 Inversion rate 
0.00546 0.00546 0.00546 0.00546 0.00546 IS transposition rate 
0.00546 0.00546 0.00546 0.00546 0.00546 RIS transposition rate 
0.00277 0.00277 0.00277 0.00277 0.00277 Gene transposition rate 
0.00277 0.00277 0.00277 0.00277 0.00277 One-point recombination rate 
0.00277 0.00277 0.00277 0.00277 0.00277 Two-point recombination rate 
0.00277 0.00277 0.00277 0.00277 0.00277 Gene recombination rate 

In the above steps, the adjusted GEP models were 
implemented and the values of the correlation 
coefficient (R2) and RMSE were calculated for 
each one of the models in the train and test phases 
based on Equations 2 and 4 [38]. The results 
obtained are displayed in Table. 5. 

2

2 1

2 2

1 1

( ) ( )
100

( ) ( )

n
i i i i

i
n n

i i i i
i i

T T O O
R

T T O O



 

 
   
   
      

 (4) 

where 푂  is the ith real value, 푇  is the ith predicted 
value, 푂  is the average real value, 푇  is the average 

predicted value, and n is the number of series. 
Based on this table, model 3 was selected as the 
best GEP model with a higher accuracy and a lower 
error compared to the other models. 
The superior chromosome has four genes in the BC 
function, each representing a sub-ET (Figure 6). A 
large tree is formed by joining these four sub-ETs 
by the addition function. Each one of the genes can 
be obtained from the corresponding mathematical 
equation (Equations. 5-8). Finally, the general 
relation of BC prediction using the GEP model is 
calculated by Equation 9.  

Table 5.  Evaluation criteria for five different GEP models. 
Testing stage Training stage Model No. RMSE R2 RMSE R2 

1356 0.910 1122 0.919 1 
1435 0.884 1238 0.904 2 
1088 0.933 961 0.943 3 
1540 0.864 1269 0.897 4 
1235 0.913 1172 0.912 5 



Bastami et al./ Journal of Mining & Environment, Vol. 11, No. 1, 2020 

289 

 
Figure 6. The tree structure of each gene in the GEP model for BC prediction. 
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1
3

2 : 0.154 1
0.154
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´ ´ ´ ´
´

 
(6) 

    
3

3
3 : cos cos cossub ET S D B B           

´ ´ ´ ´ ´  (7) 

0.5
4 :1sub ET S H  ´ ´  (8) 

 1 2 3 4 16324 7157BC Gene Gene Gene Gene       (9) 

The values of the decision variables 
 , , , , , , ,H D B S H A c  ´ ´ ´ ´ ´ ´ ´ ´ of normal numbers 
are between zero and one in the models presented 
for the BC function, and the output indicates a 
natural value by applying the input coefficients and 
integers. Equations 10-17 should be used instead of 
the decision variables 
 , , , , , , ,H D B S H A c  ´ ´ ´ ´ ´ ´ ´ ´  for the convenience 
of the user and for entering the natural numbers into 
the equations. Figure 7 indicates the relationship 

between the measured values of BC predicted with 
the help of the GEP model in the train phase:  

1020
11380

AN 
 ´  (10) 

29
524

N 
 ´  (11) 

3.99
16.38

HH 
´  (12) 

76
24

DD 
´  (13) 

1.9
2.1

SS 
´  (14) 

3
0.5

HAHA 
´  (15) 

1.7
1.8

BB 
´  (16) 

530
14

cc 



´  (17) 

 
Figure 7. Relationship between the predicted and measured values of BC and GEP model (in the train phase). 
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4.2. Prediction with ANNs model 
Selecting the number of datasets used to train 
network is very important. The lack or excess 
number of datasets used will decrease the 
performance of network. An optimal layout in each 
case is achieved by trial-and-error. In this research 
work, 146 data were randomly divided into the 
training (80%) and testing (20%) groups. The 
model was trained by the MLP method using the 
feed-forward back-propagation algorithm. The 
dataset was normalized to improve the efficiency 
of the train process with -1 to 1 values. Then 
different types of networks were tested with 
different layers and neurons as well as transferring 
functions in order to determine the optimal network 
structure with the least error [51]. R² and RMSE 
were determined for different network structures 
(Table 6). 
As shown in Table 6, the MLP network (with feed 
forward, along with 13 input neurons, 14 neurons 
in the first middle layer, 5 neurons in the second 

middle layer, one output neuron, and the Logsig, 
Tansig, and Purlin transfer functions) is able to 
predict BC most accurately. This network with the 
architecture of 13-14-5-1 has the minimum 
estimation error, which is regarded as the 
appropriate model. Figure 8 displays the optimal 
network structure, and Figure 9 illustrates the 
relationship between the measured values of BC 
predicted with the ANNs model during the train 
phase. The appropriate network structure was 
determined by a form of test and error process. To 
this end, similar articles were studied; first, 
networks with one or two hidden layers were 
evaluated, which are often more suitable for the 
engineering problems [13, 46, 48]. 
In the GEP and regression models, two datasets 
(train and test) are used. Here, in order to compare 
the outputs of the ANN model with the actual data 
and the above-mentioned models, the validation 
and train data are classified into one category and 
the test data in another. 

Table 6. R² and RMSE for some of the models. 
 All data Output activation Hidden activation Architecture No. RMSE R² 

853 0.954 Purelin Logsig 13-15-1 1 
775 0.963 Purelin Tansig 13-20-1 2 
4112 0.477 Poslin Logsig 13-12-1 3 
3994 0.541 Poslin Tansig 13-17-1 4 
866 0.955 Purelin Tansig-Tansig 13-17-5-1 5 
942 0.945 Purelin Logsig-Logsig 13-20-10-1 6 
791 0.962 Purelin Tansig-Tansig 13-6-18-1 7 
870 0.955 Purelin Logsig-Logsig 13-7-14-1 8 
3995 0.512 Poslin Logsig-Logsig 13-16-8-1 9 
4033 0.462 Poslin Tansig-Tansig 13-22-12-1 10 
677 0.971 Purelin Logsig-Tansig 13-14-5-1 11 
719 0.967 Purelin Tansig-Logsig 13-19-11-1 12 
2795 0.510 Purelin Hardlims-Hardlims 13-15-6-1 13 
1168 0.928 Purelin Satlins-Satlins 13-17-5-1 14 

 
Figure 8. The optimum structure of ANNs. 
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Figure 9.  Relationship between the predicted and measured values of BC with the ANN model (in the train 

phase). 

4.3. Prediction by multivariate regression 
Multivariate regression is a statistical method used 
to explore the relationship between the dependent 
and independent variables and data analysis in 
modeling. It is also used to predict the dependent 
variable from the independent variables and obtain 
the relationship between them [52, 53]. Descriptive 
statistics for data adjustment and inferential 
statistics (correlation coefficient and multivariate 
regression) were used to predict BC after collecting 
the raw data.  
In this method, 146 blasting records from six 
limestones of Iran were applied; 80% of the records 
were randomly used for modeling and 20% were 
used for the testing model. In the NLMR and LMR 
methods, the 13 parameters mentioned in Table 2 
were used as the model inputs. The LMR model 

was created using the SPSS 24 software and 
forward method in order to predict BC [23]: 
퐵퐶 = 22148.722 - 6624.528푆 - 0.597퐴푁 + 
217.96퐷 - 1711.786푇 (18) 

In addition to the linear model, the data was 
processed by the non-linear polynomial, power, 
exponential, and logarithmic models. With respect 
to the higher R2 value of the logarithmic model than 
the other non-linear models, it was used for BC 
prediction as follows: 

5.648

1.627 0.28 0.176
10BC

S N H


   
(19) 

Figure 10 displays the relationship between the 
measured and predicted values of the BC values 
with the NLMR model in the train phase. 

 

 
Figure 10. Relationship between the predicted and measured values of BC with the NMLR model (in train 

phase). 



Bastami et al./ Journal of Mining & Environment, Vol. 11, No. 1, 2020 

292 

5. Discussion 
We used 13 similar parameters as the inputs for 
modeling using the ANN, GEP, NLMR, and LMR 
methods in order to compare their results. The 
parameters were the ANFO value, number of 
detonators, Emolite value, hole number, hole 
length, hole diameter, burden, spacing, stemming, 
sub-drilling, specific gravity of rock, hardness, and 
uniaxial compressive strength. 

In the present work, the basis of the performance 
evaluation of models was to compare the results 
with each other and with the actual data. The 
statistical indices of RMSE and R2 were used for 
this purpose [38, 52, 53]. The performance 
evaluation indices were calculated for the proposed 
models according to the training and testing data 
(Table 7).  

Table 7. Performance indices for the four models. 
Testing stage Training stage Model RMSE R2 RMSE R2 

1161 0.855 1210 0.885 Linear multivariate regression 
1098 0.931 1089 0.913 Nonlinear multivariate regression 
1088 0.933 961 0.943 Gene expression programming 
973 0.954 581 0.978 Artificial neural network 

Theoretically, a prediction model is excellent when 
R² = 1 and RMSE = 0. The accuracy of the results 
of the GEP and ANN models compared to the 
actual values of BC in the testing phase is 
illustrated in Figures 11 and 12. Also the amount of 
consistency resulting from these models with the 
actual data is shown in Figures 13 and 14, 
respectively. As displayed in Table 7, the R2 values 
were 0.855, 0.931, 0.933, and 0.954 for the LMR, 
NLMR, GEP, and ANN models, respectively, 
while the RMSE values for these four models were 
calculated as 1161, 1098, 1088, and 973, 

respectively, suggesting the superiority of the ANN 
model. As observed, the consistency and accuracy 
of the ANN model (with real data) are significantly 
higher than those of the LMR, NLMR, and GEP 
models. Although ANN is regarded as one of the 
intelligent and powerful techniques in parameter 
prediction, its most important drawback is the 
inability to provide a mathematical equation for 
engineering operations. On the other hand, based 
on the results given in Table 7, the GEP model 
showed a more reliable output by providing a 
mathematical equation to predict BC.  

 
Figure 11. Relationship between the predicted and measured values of BC with the GEP model. 
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Figure 12. Relationship between the predicted and measured values of BC with the ANN model. 

 
Figure 13. Comparison of the predicted cost of the GEP model with the actual cost in the testing phase. 

 
Figure 14. Comparison of the predicted cost of the ANN model with the actual cost in the testing phase. 

6. Sensitivity analysis 
One of the basic measures after modeling is to 
determine the sensitivity of the output parameter to 
each input parameter. In other words, the relative 
impact of the input parameters on the BC function 

can be determined by implementing the real values 
and the developed ANN model using the sensitivity 
analysis (Equation 20). For this purpose, the 
Relevancy Factor (RF) method was used in the 
present work [54, 55]: 
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where 푃 ,  indicates the ith value of the kth input 
parameter, 푃  represents the average value related 
to the 푘th parameter, 휇  means the ith value for the 
output parameter, 휇̅ is considered as the average 

value for the output parameter, and 푛 shows the 
number of input variables. 
Figure 15 displays the results of the ANNs model 
sensitivity analysis using Equation 20. As shown, 
the spacing and ANFO values have the most and 
least effects on the BC function, respectively. 

 
Figure 15. Sensitivity analysis of BC based on the input variables. 

7. Conclusions 
In the present work, the LMR, NLMR, GEP, and 
ANN models were used for BC prediction after 
collecting 146 datasets from six limestone mines in 
Iran and determining the input parameters and 
blasting constraints. The model presented with the 
ANN model in the testing step had a lower RMSE 
(973) and a higher R2 (0.954) than the LMR, 
NLMR, and GEP models. Comparing the results of 
the ANN model with those of the LMR, NLMR, 
and GEP models based on the real data indicated 
that the ANN model was more consistent with the 
real BCs. The MLP network was used in two 
hidden layers with 14 and 5 neurons, and Logsig, 
Tansig, and purlin transfer functions, while the 
architecture 13-14-5-1 was used in the feed-
forward back-propagation algorithm as the best 
combination for predicting BC. The RF method 
was used in ANNs for sensitivity analysis of the 
target function to the input parameters, and the 
results obtained indicated that the spacing and 
ANFO values had the highest and least effects on 
the BC function, respectively. In addition, a 
positive correlation was observed between the 
number of detonators, the amount of Emolite, hole 
number, specific gravity, hardness, and uniaxial 
compressive strength of rock and BC function, 
while a negative correlation was reported between 
the ANFO value, hole length, hole diameter, 

burden, spacing, stemming, sub-drilling, and BC 
function. Although this model can estimate BCs 
with a high reliability, some factors may lead to 
uncertainty in the model. Therefore, it is suggested 
that the proposed models be optimized and 
modified considering the uncertainty parameters.  
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Appendix 1  

Table A-1. Datasets used for constructing models. 
Case 
No. 

Input parameters  Constraints Output 
 AN  

 
Det  EM 

 
N H 

 
D 
 

B 
 

S 
 

T 
 

J 
 

ɤr 
 

HA 
 

ϭc 

 
 Fr 

 
FL 

 
BB 

 
BC 

 
1 5,500 270 260 270 6.3 76 1.8 2.1 0.9 0.5 2.7 3.5 671  25 140 3 18,239 
2 9,300 490 500 436 6.8 76 1.8 2.2 0.9 0.5 2.7 3.5 671  27 140 3 15,486 
3 10,000 650 500 404 8 76 1.7 2 0.9 0.5 2.7 3.5 671  25 140 3.5 18,110 
4 4,300 230 280 215 6 76 1.7 2 1 0.5 2.7 3.5 671  25 120 4 23,481 
5 6,200 590 320 500 4 76 1.8 2 1.1 0.5 2.7 3.5 671  30 120 4 20,946 
6 10,000 500 600 350 9 76 1.7 2 1 0.5 2.7 3.5 671  25 120 4.3 19,753 
7 10,000 553 480 553 5.4 76 1.7 2 1 0.5 2.7 3.5 671  25 120 4 18,948 
8 5,300 350 280 348 4.7 76 2 2.5 1.2 0.6 2.7 3.5 671  40 100 5 15,959 
9 6,600 480 400 480 4.4 76 1.8 2.2 1.1 0.5 2.7 3.5 671  30 100 4 18,738 

10 6,500 350 380 350 6 76 1.8 2.1 1.1 0.5 2.7 3.5 671  30 120 4 17,684 
11 7,300 400 360 400 5.3 76 1.7 2.1 1 0.5 2.7 3.5 671  26 120 4 19,165 
12 6,500 500 360 500 4 76 1.7 2 1 0.5 2.7 3.5 671  25 110 4 21,949 
13 10,000 470 580 470 6.3 76 1.7 2 1 0.5 2.7 3.5 671  25 115 4.5 19,705 
14 10,000 440 520 399 7 76 1.7 2 1 0.5 2.7 3.5 671  25 110 4 21,449 
15 8,500 480 400 480 5 76 1.7 2 1 0.5 2.7 3.5 671  27 110 4 21,131 
16 10,000 440 440 387 7.2 76 1.7 2 1 0.5 2.7 3.5 671  25 112 4 21,345 
17 6,700 500 340 468 4 76 1.7 2 1 0.5 2.7 3.5 671  25 110 4 22,837 
18 8,200 500 440 498 4.8 76 1.9 2.3 1.1 0.6 2.7 3.5 671  35 100 5 16,918 
19 8,600 500 500 500 5.2 76 2 2.2 1.2 0.6 2.7 3.5 671  40 100 5 15,804 
20 9,500 500 460 500 5.4 76 1.9 2.2 1.1 0.6 2.7 3.5 671  35 105 5.5 17,182 
21 7,800 440 360 422 5 76 1.8 2.1 1.1 0.5 2.7 3.5 671  30 100 5 19,897 
22 10,000 500 500 500 6 76 1.8 2.3 1.1 0.5 2.7 3.5 671  30 100 5 15,009 
23 9,700 500 480 495 6.2 76 1.8 2.3 1.1 0.5 2.7 3.5 671  30 100 5 14,828 
24 9,200 400 400 394 6.9 76 1.8 2.3 1.1 0.5 2.7 3.5 671  30 100 5 16,592 
25 7,900 400 380 355 7.7 76 1.8 2.3 1.1 0.5 2.7 3.5 671  30 100 5 15,049 
26 10,000 460 460 445 7 76 2 2.5 1.2 0.6 2.7 3.5 671  40 100 5 13,315 
27 6,800 280 300 281 7.6 76 2 2.5 1.2 0.6 2.7 3.5 671  40 105 5 13,983 
28 8,800 430 380 430 6.5 76 2 2.5 1.2 0.6 2.7 3.5 671  40 100 5 13,504 
29 8,100 430 380 429 5.8 76 2 2.2 1.2 0.6 2.7 3.5 671  40 100 5 15,763 
30 8,400 370 320 362 7 76 1.9 2.2 1.1 0.6 2.7 3.5 671  35 110 4 16,514 
31 10,000 500 460 391 8.2 76 1.9 2.1 1.1 0.6 2.7 3.5 671  35 110 5 16,036 
32 8000 440 300 440 5.7 76 1.9 2.1 1.7 0.6 2.7 3.5 671  40 140 3 16,283 
33 3200 200 120 194 5.4 76 2.7 3.2 1.4 0.5 2.6 3 530  25 140 3 11,546 
34 3100 200 70 80 11 76 2.7 3.2 2.0 0.5 2.6 3 530  35 80 4 13,796 
35 7000 320 180 230 8.7 76 2.7 3.2 1.7 0.5 2.6 3 530  30 110 4 9,932 
36 6000 220 200 220 8 76 2.7 3.2 1.6 0.5 2.6 3 530  30 120 4 9,261 
37 7700 340 180 310 7.5 76 2.7 3.2 1.5 0.5 2.6 3 530  25 130 3 8,552 
38 9800 360 220 360 8 76 2.7 3.2 1.6 0.5 2.6 3 530  30 120 4 7,868 
39 11400 520 300 520 6.8 76 2.8 3.4 1.5 0.6 2.6 3 530  35 130 5 7,233 
40 9650 520 240 460 6.6 76 2.8 3.4 1.4 0.6 2.6 3 530  35 140 5 7,164 
41 7900 420 180 380 6.5 76 2.8 3.4 1.4 0.6 2.6 3 530  35 140 5 7,559 
42 9100 380 200 380 7.3 76 2.8 3.4 1.6 0.6 2.6 3 530  40 110 5 7,157 
43 9050 240 140 210 8.5 76 2.8 3.4 1.8 0.6 2.6 3 530  35 90 5 10,466 
44 9050 520 200 260 10 76 2.8 3.4 1.9 0.6 2.6 3 530  40 85 6 8,189 
45 10250 370 300 270 12 76 2 3 2 0.5 2.65 3.2 550  35 80 4.5 10,278 
46 9860 380 460 300 10.3 76 2 2.5 1.8 0.5 2.65 3.2 550  35 85 5 13,109 
47 9000 460 440 460 6.7 76 2 2.5 1.7 0.5 2.65 3.2 550  35 100 5 11,934 
48 10000 460 300 330 9.7 76 2 2.5 1.8 0.5 2.65 3.2 550  35 85 5 12,915 

49 8800 510 350 510 6.2 76 2 2.5 1.7 0.5 2.65 3.2 550  35 100 5 11,064 
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50 9860 460 300 230 13 76 2 2.5 2 0.5 2.65 3.2 550  35 80 5 13,783 
51 9800 310 285 310 10.2 76 1.8 2 2 0.5 2.65 3.2 550  25 80 4 16,555 
52 10500 300 210 157 13 96 2.4 3 2 0.6 2.65 3.2 550  45 110 6 13,356 
53 9200 347 320 347 8.6 76 1.8 1.9 1.7 0.5 2.65 3.2 550  25 120 3 18,862 
54 9350 400 270 396 7.4 76 1.8 1.9 1.3 0.5 2.65 3.2 550  25 140 3 17,612 
55 5900 250 180 128 9 96 2.3 2.4 1.6 0.6 2.65 3.2 550  40 120 4 21,060 
56 12400 320 250 190 12.4 96 2.3 2.6 1.8 0.6 2.65 3.2 550  40 120 5 15,250 
57 10660 280 230 170 12 96 2.3 2.6 1.8 0.6 2.65 3.2 550  40 120 5 16,187 
58 10700 290 230 200 10.5 96 2.3 2.6 1.8 0.6 2.65 3.2 550  40 120 5 15,549 
59 10800 330 220 190 11 96 2.3 2.6 1.8 0.6 2.65 3.2 550  40 120 5 15,913 
60 11100 270 240 210 10.3 96 2.3 2.6 1.7 0.6 2.65 3.2 550  40 120 5 15,049 
61 10800 270 240 210 10 96 2.3 2.6 1.7 0.6 2.65 3.2 550  40 120 5 15,408 
62 10500 290 220 160 12.3 96 2.3 2.6 1.6 0.6 2.65 3.2 550  40 130 4 16,919 
63 10700 300 276 240 8.8 96 2.3 2.6 1.6 0.6 2.65 3.2 550  40 130 4 15,506 
64 11350 300 230 200 11 96 2.3 2.6 1.7 0.6 2.65 3.2 550  43 110 4.5 15,248 
65 11000 300 220 160 13.2 96 2.3 2.6 2.0 0.6 2.65 3.2 550  45 90 5 15,939 
66 10250 310 250 180 11.2 96 2.3 2.6 1.9 0.6 2.65 3.2 550  45 100 5.5 16,380 
67 11100 410 260 190 11.4 96 2.3 2.6 1.9 0.6 2.65 3.2 550  45 100 6 17,463 
68 10700 300 250 160 13 96 2.3 2.6 2 0.6 2.65 3.2 550  47 90 6 16,590 
69 11300 340 250 162 13.6 96 2.3 2.6 2.2 0.6 2.65 3.2 550  47 90 6 15,916 
70 10260 310 230 170 11.8 96 2.3 2.6 2 0.6 2.65 3.2 550  47 90 6 17,030 
71 11240 320 250 161 13.5 96 2.3 2.6 2.1 0.6 2.65 3.2 550  47 90 6 16,235 
72 11300 270 260 162 13.5 96 2.3 2.6 2.1 0.6 2.65 3.2 550  47 90 6 15,527 
73 11500 260 210 150 14.7 96 2.3 2.6 2.2 0.6 2.65 3.2 550  47 90 6 14,952 
74 10000 390 268 390 8.5 76 1.7 2 1.5 0.2 2.63 3.3 600  30 80 1.5 16,292 
75 9700 340 270 333 9 76 1.7 2 1.6 0.3 2.63 3.3 600  35 60 1.5 17,306 
76 9800 490 320 490 6.4 76 1.7 2 1.0 0.2 2.63 3.3 600  20 100 2 16,557 
77 10000 330 290 324 10 76 1.7 2 1.6 0.3 2.63 3.3 600  30 80 1.5 16,244 
78 9800 320 270 320 9.5 76 1.7 2 1.5 0.3 2.63 3.3 600  30 80 1.5 17,081 
79 9900 400 350 242 10.5 90 2.6 3 2.6 0.5 2.63 3.3 600  38 80 1 9,764 
80 9700 520 380 520 6.2 76 1.7 2 1.4 0.2 2.63 3.3 600  20 100 2 18,616 
81 9800 440 380 398 8.2 76 1.7 2 1.5 0.3 2.63 3.3 600  35 70 2 17,799 
82 9900 450 180 447 7.2 76 1.7 2 1.5 0.3 2.63 3.3 600  25 90 2 15,987 
83 9700 320 340 240 10 90 2.6 3 2.6 0.4 2.63 3.3 600  38 80 1 9,924 
84 10000 520 340 480 7 76 1.8 2.1 1.1 0.2 2.63 3.3 600  25 90 2 15,164 
85 9800 360 300 350 9 76 1.8 2.1 1.5 0.2 2.63 3.3 600  40 60 1.5 14,421 
86 8700 530 400 300 10 76 2 2.5 2 1 2.7 3.3 620  30 90 1.8 13,591 
87 8400 400 380 320 8.8 76 2 2.5 2 1 2.7 3.3 620  30 90 1.8 13,232 
88 9500 380 360 380 8.2 76 2 2.5 2 1 2.7 3.3 620  30 90 1.8 13,030 
89 8300 500 320 290 9.8 76 2 2.5 2 1 2.7 3.3 620  30 90 1.8 13,141 
90 8700 400 380 310 9.7 76 2 2.5 2 1 2.7 3.3 620  30 90 1.8 12,393 
91 9800 420 420 360 9 76 2 2.5 2 1 2.7 3.3 620  30 90 1.8 13,079 
92 8500 400 360 320 9.8 76 2 2.5 2 1 2.7 3.3 620  30 90 1.8 11,370 
93 9700 390 320 385 8.3 76 2 2.5 2 1 2.7 3.3 620  30 90 1.8 11,316 
94 6900 220 200 155 10 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,795 
95 10000 260 240 195 9.2 100 3.5 4 2.1 1.5 2.7 3.3 620  45 80 3 8,271 
96 7800 200 160 170 10 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,118 
97 10000 260 230 130 17 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,282 
98 10000 260 270 133 15.8 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,912 
99 10000 270 320 135 16 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,058 

100 10000 280 380 134 16.7 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,618 
101 10000 280 300 129 17 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,664 

102 10000 290 270 136 16.1 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,021 
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103 8500 250 260 125 16 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,512 
104 10000 270 330 132 16.3 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,174 
105 9800 280 280 130 16.5 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,696 
106 10000 300 300 127 17.7 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,461 
107 10000 400 300 200 11 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,532 
108 10000 330 290 162 13.6 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,887 
109 10000 400 270 200 11 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,223 
110 10000 380 280 190 11.3 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,903 
111 9000 300 340 199 10.8 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,883 
112 9500 100 430 190 11.6 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 7,971 
113 10000 400 320 210 10.7 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,792 
114 10000 430 350 215 10.6 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,046 
115 9800 400 310 200 11.0 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,261 
116 8200 310 320 310 7.6 76 2 2.5 1.7 1 2.7 3.3 620  25 100 1.5 13,882 
117 8900 350 400 315 8.3 76 2 2.5 1.7 1 2.7 3.3 620  25 100 1.5 14,127 
118 9200 510 440 320 8.6 76 2 2.5 1.7 1 2.7 3.3 620  25 100 1.5 14,425 
119 9200 570 460 325 8.3 76 2 2.5 1.6 1 2.7 3.3 620  25 100 1.5 14,877 
120 9400 450 380 330 8.5 76 2 2.5 1.7 1 2.7 3.3 620  25 100 1.5 13,365 
121 9500 400 440 316 7.2 90 3 3.5 2 1.5 2.7 3.3 620  38 80 2 9,072 
122 8600 346 360 346 7.2 76 2 2.5 2 1 2.7 3.3 620  30 90 1.8 14,495 
123 9900 270 300 162 14 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,442 
124 10000 280 360 170 12.6 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,721 
125 9800 330 230 165 13.2 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,887 
126 10000 260 360 175 12.6 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,829 
127 10000 330 270 108 20.4 90 3 3.5 3.6 1.5 2.7 3.3 620  45 75 3 8,708 
128 9400 330 240 165 12.6 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 9,466 
129 9800 290 320 243 9 90 3 3.5 2.5 1.5 2.7 3.3 620  45 75 3 8,876 
130 9800 420 370 420 7.4 76 2 2.5 2 1 2.7 3.3 620  30 90 1.7 12,660 
131 9800 320 290 201 10.8 90 3 3.5 2.5 1.5 2.7 3.3 620  45 80 3 8,936 
132 10000 340 350 168 13 90 3 3.5 2.5 1.5 2.7 3.3 620  45 80 3 9,038 
133 1470 112 40 56 9 76 2.4 3 2.2 1 2.6 3 540  30 100 1.3 14,435 
134 3700 172 150 86 10.4 90 3.5 4 2.5 1 2.6 3 540  45 90 2 7,911 
135 2600 120 120 60 10 90 3.3 3.8 2.3 1 2.6 3 540  40 90 2 10,337 
136 2070 157 80 87 8.4 76 2.4 3 2 0.8 2.6 3 540  30 110 1.1 12,195 
137 2800 90 100 80 8 90 3.5 4 2.2 1.1 2.6 3 540  45 90 2 8,396 
138 1650 78 60 38 10.4 90 3.5 4 2.5 1.1 2.6 3 540  45 90 2 10,024 
139 1380 108 40 54 9 76 2.4 3.8 2.2 0.9 2.6 3 540  30 100 1.2 11,669 
140 1620 78 60 38 10.4 90 3 3 2.5 1.1 2.6 3 540  40 90 1.5 15,448 
141 1500 70 60 35 10.4 76 2.4 3.8 2 1 2.6 3 540  30 110 1.1 15,503 
142 3670 180 140 90 10 90 3.2 3.8 2.5 1.1 2.6 3 540  45 85 2 9,181 
143 2340 112 80 56 10.4 90 3 3.5 2.5 1.2 2.6 3 540  40 85 1.8 11,818 
144 1020 73 40 73 5.5 76 2.4 3 1.5 0.5 2.6 3 540  20 110 1 12,930 
145 2320 122 90 61 9 90 3 3.5 2.5 1 2.6 3 540  40 90 1.8 12,181 
146 1020 45 40 29 8.5 90 3 3.5 2.5 1 2.6 3 540  40 90 1.8 15,182 

In this Table, rows 1 to 32 belong to Tajareh Mine of Khorramabad, rows 33 to 44 belong to Tang Fani Mine 
of Pol Dokhtar, rows 45 to 73 belong to Barkhordar1 Mine of Nurabad, rows 74 to 85 belong to Moslem Abad 
Mine of Hamedan, rows 86 to 132 belong to Sepahan Mobarakeh Mine of Esfahan, and rows 133 to 146 belong 
to Abelou mine of Neka. 
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   hhamidian@Qaemiau.ac.ir* نویسنده مسئول مکاتبات: 

  

  چکیده:

س يبرا انفجار نهیهز ینبیشیپ شتن نظر در با مطلوب شیخردا به دنیر ش نامطلوب يامدهایپ کنترل دا  هوا، نفجارا ن،یزم لرزش سنگ، پرتاب انفجارمانند از ینا
 یعصــب شــبکه هايمدل از اســتفاده با رانیا در آهک ســنگ معدن 6 از انفجار  داده146 آوريجمع با پژوهش نیا در. اســت توجه قابل و يضــرور يامر درمعادن

 یدرتمام. شد پرداخته انفجار نهیهز ینبیشیپ به )NLMR(یرخطیغ و )LMR(یخط رهیمتغ چند ونیرگرس ،)GEP( ژن انیب يزیربرنامه ،)ANN( یمصنوع
 یسخت سنگ، مخصوص وزن ،يحفاراضافه ،يگذارگل ،يدارفاصله سنگ، بار چال، قطر چال، طول چال، تعداد ت،یامولا مقدار ،یتعدادچاشن مقدارآنفو، از ها مدل

) 954/0( شتریب یهمبستگ بیضر هارمدلیسا با سهیمقا در تست مرحله در ANN مدل. شد استفاده يورود يپارامترها عنوان به يمحور تک يفشار مقاومت و
سط جذر و شان خود از) 973( يکمتر خطا مربعات متو شت انفجار یواقع هاينهیهز با يبهتر تطابق گرید مدل سه با سهیمقا در مدل نیا. داد ن  روش اگرچه. دا

 یاضیر معادله ارائه امکان عدم آن رادیا نیتر مهم اما رودیم شمار به پارامترها ینیبشیدرپ وقدرتمند هوشمند يهاکیتکن از یکی عنوان به یمصنوع یعصب شبکه
 خطا مربعات متوسـط جذر و 933/0 یهمبسـتگ بیضـر با انفجار، نهیهز ینبیشیپ یاضـیر معادله کی ارائه با GEP مدل درمقابل. اسـت یمهندسـ اتیعمل يبرا

 را ریتأث نیرکمت و نیشتریب بترتیبه آنفو مقدار و هاچال نیب يدارفاصله گرفته انجام تیحساس زیآنال براساس. گذاشت شینما به را ياعتماد قابل یخروج 1088
شتند انفجار نهیهز تابع يرو بر شن. دا صوص، وزن تعدادچال، ت،یمقدارامولا ،یتعدادچا شار ومقاومت یسخت مخ ستند ییپارامترها سنگ يمحور تک يف  اب که ه

ــتگ انفجار نهیهز تابع ــنگ، چال، قطر چال، طول آنفو، زانیم و مثبت یهمبس ــله بارس ــافه ،يگذار،گل يدارفاص ــتگ انفجار نهیهز تابع با يحفار اض  یمنف یهمبس
  . داشتند
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