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Abstract

The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in
order to control the adverse consequences of blasting such as fly rock, ground vibration,
and air blast in open-pit mines. In this research work, BC is predicted through collecting
146 blasting data from six limestone mines in Iran using the artificial neural networks
(ANNS), gene expression programming (GEP), linear multivariate regression (LMR), and
non-linear multivariate regression (NLMR) models. In all models, the ANFO value,
number of detonators, Emolite value, hole number, hole length, hole diameter, burden,
spacing, stemming, sub-drilling, specific gravity of rock, hardness, and uniaxial
compressive strength are used as the input parameters. The ANN model results in the test
stage indicating a higher correlation coefficient (0.954) and a lower root mean square error
(973) compared to the other models. In addition, it has a better conformity with the real
blasting costs in comparison with the other models. Although the ANNs method is
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networks regarded as one of the intelligent and powerful techniques in parameter prediction, its
most important fault is its inability to provide mathematical equations for engineering
Modeling operations. In contrast, the GEP model exhibits a reliable output by presenting a

mathematical equation for BC prediction with a correlation coefficient of 0.933 and a root
mean square error of 1088. Based on the sensitivity analysis, the spacing and ANFO
values have the maximum and minimum effects on the BC function, respectively. The
number of detonators, Emolite value, hole number, specific gravity, hardness, and rock
uniaxial compressive strength have a positive correlation with BC, while the ANFO value,
hole length, hole diameter, burden, spacing, stemming, and sub-drilling have a negative
correlation with BC.

1. Introduction

The primary purpose of blasting is an optimal
fragmentation and displacement of crushed rocks at
the lowest cost. Some studies have indicated that
only about 20-30% of all energies derived from
explosives is spent on fragmentation and rock
displacement, and the rest is wasted in the form of
undesirable destructive phenomena such as ground
vibration, air blast, fly rock, and back break [1].
These materials have caused many problems for
the health of miners and locals, often resulting in

litigation between the owner of the mine and local
residents [2-4]. Evaluating the blasting cost (BC)
without regarding the adverse consequences of
blasting is meaningless. Given the remarkable
importance and impact of blast on the cost of
mineral extraction, it is necessary to provide a
model to predict BC. Therefore, calculating the
optimal BC to achieve an optimal fragmentation
with respect to the blasting constraints is a major
issue in the mining industry.
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The most important studies on BC and the related
issues are as what follows. Jimeno et al. [5] have
presented the basic equation to calculate the cost of
each drilling meter based on the direct and indirect
costs. Direct costs include the personnel,
maintenance, energy, grease, oil, rad, drill bit, etc.,
and indirect costs include insurance, tax,
depreciation, and so on. Kanchibotla [6] has
studied the maximum profitability, costs, and
optimal blasting in an open-pit coal mine and a gold
mine using the computer simulation models and
field studies. Rajpot [7] has surveyed the impact of
the fragmentation properties on BC and presented
a model to evaluate the impact of hole diameter on
the blasting requirements in order to achieve
fragmentation dgo and calculate the blast design
parameters for the particle size of 75-350 mm.
Usman and Muhammad [8] have conducted a
PCA-combined analysis on the parameters and data
of 31 blasts in cement mines in the northern
Pakistan; these parameters were utilized as a model
for evaluating BC. In another study, Afum and
Temeng [9] have surveyed the cost reduction of
drilling and blasting in an open-pit gold mine in
Ghana at three pits through blasting optimization
and the use of the Kuz-Ram model. They could
ultimately obtain an average of 25-56 cm
fragmentation. Adebayo and Mutandwa [10] have
studied the relationship between the blasting hole
deviation, rock size, and fragmentation cost using
ANFO, heavy ANFO, and emulsions in the holes
with 191-311 mm diameter. The results obtained
showed that the average rock size decreased by
increasing the hole deviation, while the drilling and
blasting costs increased. Ghanizadeh et al. [11]
have presented BC per cubic meters as a linear
model using the Comfar software as well as the
statistical methods as a function of hole diameter,
bench height, uniaxial compressive strength, and
direction of joints. Miranda et al. [12] have used
the numerical methods to find the minimum BC,
compared to the traditional and experimental
methods. This model is based on the development
of blast patterns with the automatic adjustment of
burden, spacing, stemming, sub-drilling, and
number of holes in order to ensure the production
demand in terms of the blast volume. Bakhshandeh
et al. [13] have proposed a mathematical model for
estimation of BC at the gypsum mine of Baghak.
The input variables used were burden, spacing,
hole diameter, stemming length, charge density,
and charge weight. Finally, the non-linear model
was optimized considering the constraints by the
simulated annealing.
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During the recent decades, the intelligence
techniques such as the artificial neural networks
(ANNSs), fuzzy inference system (FIS), neuro-
fuzzy inference system (ANFIS), and support
vector machine (SVM) have been widely used in
geosciences to predict the target parameters.
Compared to the traditional methods, these
techniques have significant features [14, 15].
Although they are regarded as powerful methods
for parameter prediction, they do not provide the
mathematical equation for engineering activities
[16]. In a study using multivariate regression and
ANNs, Alvarez et al. [17] have predicted the
blasting-induced peak particle velocity and
frequency of vibration in an open-pit mine. The R2
values were obtained as 0.98 and 0.95 for the peak
particle velocity and vibration frequency using the
ANNs method, respectively, compared to 0.5 and
0.15 by the linear multivariate regression (LMR),
which indicated the superiority of the ANNSs
model. In a study using back-propagation neural
network, Trivedi et al. [18] have predicted the rate
of fly rock in Indian limestone mines using ANNSs
after propagation, and indicated that the amount of
charge per hole, depth of holes, burden, spacing,
stemming, hole diameter, powder factor, rock
quality designation (RQD), and compressive
strength were the most influential parameters in the
fly rock distance. Nguyen et al. [19] have predicted
the blasting-induced ground vibration using the
ANNs model, experimental methods, and 68
blasting data in an open-pit mine in Vietnam. In
this study, five models with different numbers of
neurons and different hidden layers were
developed. Finally, the 1-5-8-10-2 ANNs model
with three hidden layers (compared to the other
four models) and experimental techniques with the
0.964 and 0.738 values for R2 and RMSE,
respectively, was introduced as the best model.
Gene expression programming (GEP) is able to
solve non-linear engineering problems, and can
propose a formula to predict a particular output
using the inputs related to its model. Canakci et al.
[20] have used the GEP model to predict rock
compressive and tensile strength, and found that
the results of the GEP model were in good
consistency with the measured values. Ahangari et
al. [21] have compared the performance of the
ANFIS and GEP methods in predicting the effect
of tunneling on people's residence based on the data
collected from 53 tunnels. They concluded that
GEP was a superior model than ANFIS. Monjezi et
al. [22] have introduced a modified version of the
USBM empirical equation using a new input called
water factor (WF). They suggested that this
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modified equation was more accurate than the
other empirical equations. In addition, they used
three predictive models, namely LMR, non-linear
multivariate regressions (NLMR), and GEP.
Finally, the GEP model with the 0.918 and 2.223
values for Rz and RMSE, respectively, was
introduced as the best model. Dehgani [23] has
used GEP to predict the variations in copper price.
The results obtained were compared with those of
the other classical methods. It was revealed that
GEP was more accurate than the time series and
multivariate regression methods.

Most of the above studies have been conducted on
determining the relationship between BC and
minerals' transportation cost, reducing the drilling
and blasting costs, investigating the impact of
fragmentation properties on BC, and presenting a
BC model in a particular mine and the adverse
consequences of blasting. Given that blasting is the
first step in the production process in open-pit

mines and the cost of this step is 8-12% of the total
mining costs [8], and lack of any study in the
literature in predicting BC in most minerals
including limestones, it is necessary to provide a
model for this purpose. In the present work, the
GEP, ANN, NLMR, and LMR models were used
to predict BC in limestone mines, and the results
obtained were compared with the real data
collected from six limestone mines in Iran.

2. Methodology

The following measures were taken for BC
prediction (Figure 1):

- Data collection and determination of the input,
output, and constraints parameters;

- BC modeling using the GEP, ANN, NLMR, and
LMR methods;

- Comparing the performance of models with each
other and selecting the best model as the research
output.

Data collection

l

. R
Determination of input and output
parameters and blasting constraints

\. J

¥

e N

Modeling through LMR. NLMR. ANN.,
and GEP methods

\ J

+
( . _
Evaluating the results of models with
cach other
-

Choosing the best

model

Figure 1. Steps of BC prediction.

2.1. Gene expression programming (GEP)

GEP has been extracted from Genetic Algorithm
(GA) and Genetic Programming (GP), which was
invented by Ferreira in 1999 [24]. In this method,
the linear and simple chromosomes of constant
length, similar to the GA and branch structures of
different sizes and shapes, are combined with
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decomposing trees in GP, known as Expression
Tree (ET) [25, 26].

In GEP, different phenomena are modeled using a
set of functions and terminals. The set of terminals
consists of constant values and independent
variables of the problem [24, 27-32]. Here, a
chromosome includes a coded linear sequence of
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fixed length, which can be a combination of one or
more genes [33].

The genes consist of two parts: head and tail. The
head section can include functions and terminals,
while the tail can only contain terminals. The codes
for each gene result in the formation of a sub-ET,
and the sub-ETs interact to form a larger and more
complex ET. In order to form this complex

structure, the sub-ETs are linked together by a
function called the linking function [24, 34]. In the
GEP algorithm, the mutation, inversion,
transposition, and insertion sequence elements, and
recombination are applied to the chromosomes
orderly [24-26, 34-37]. A flowchart of the GEP
algorithm is schematically shown in Figure 2.

Initialize population

. 1

Express chromosomes

Create next gencration

Recombination

. T

Execute each program

Transposition

. T

Inversion

Evaluate fitness

Yes

&
-

Termination

T

Mutation

No 1

Selection

Figure 2. Flowchart of the GEP algorithm [38].

2.2. Artificial neural networks (ANNSs)

The neural network (NN) is actually an imitation of
the human brain [39]. Modeling with this network
involves the structure design, and determining an
appropriate train law and transfer function. In the
present work, the network used was a multi-layer
perceptron (MLP), each layer consisting of a
matrix and bias vector and an output vector [40,
41]. There are several techniques in the MLP
training process; however, the feed-forward back-
propagation algorithm has more advantages over
the other methods. Each input is weighted with an
appropriate weighting factor (w). These weights
are first assigned randomly. Then the network is
modified during the learning process by reducing
the error rate, and finally, its final values are
determined [42-44].

There are basically three types of layers in NNs: an
input layer, one or more middle layers, and an
output layer. The number of neurons in the input
and output layers is determined based on the
number of input and output parameters and the
number of middle layers along with the number of
neurons in each layer with respect to the
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complexity of the problem by trial-and-error [45-
47].

Different transfer functions can be used to create
the desired output. Hardlims, Purelin, Poslin,
Tansig, and Logsig are among these functions. The
model accuracy is determined by comparing the
ANNs and actual outputs [48].

3. Database and statistical analysis

In this research work, the data from six limestone
mines in Iran was collected to predict and validate
the GEP and ANN models. Table 1 shows the
geographical coordinates and specifications of
these mines.

In order to obtain the real data, the BC data of six
limestone mines from 2011 to November 2018 was
collected. Then the data was updated according to
the price of explosives and BCs of January 2019,
and became the basis of the research work. Based
on the data, Figure 3 illustrates the components of
the average BC as percentage. Figure 4 shows the
geographical location of limestone mines. Table 2
displays the input, output, constraints, and
statistical properties of these parameters.
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Table 1. Geographical coordinates and specifications of the studied mines (source: http://ime.org.ir).

_ Proven reserve Annual Geographical coordinates (WGS 84)
Row Name of mine (ton) extraction Nearest city Latitude Longitude
capacity

1 Abelou 89340000 4000000 Neka 36° 38'5" 53°21'3"
2 Tajareh 4300000 150000 Khorramabad 33°30'5" 48° 29' 44"
3 Moslem Abad 7000000 300000 Hamedan 34° 39' 37" 48° 54' 22"
4 Tang Fani 900000 100000 Pol Dokhtar 33°1'24" 47° 46' 43"
5 Sepahan Mobarakeh 13500000 600000 Esfahan 32°26'28.37" 51° 28'4.63"
6 Barkhordarl 1600000 160000 Nurabad 34° 3'8" 48°12' 53"

Blasting cost

11.8%

m The cost of purchasing explosives
m The total cost of transport. escort, personnel, consumption monitoring, and container
B The salary of blasting company

The cost of secondary fragmentation and adverse effects of blasting

Figure 3. Components of BC.
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Figure 4. Geographical location of limestone mines.

285


http://ime.org.ir).

Bastami et al./ Journal of Mining & Environment, Vol. 11, No. 1, 2020

Table 2. Input and output variables and their constraints.

Type Parameter Unit Symbol Max Min Mean Star_1dz_1rd
deviation
Input ANFO 2508.488  8551.3 1020 12400 AN Kg
Number of electric detonators 1224 348 45 650 Det -
Emolite 1154 295.4 40 600 EM Kg
Hole number 136.6 271.5 29 553 N -
Hole length 3.2 9.5 4 20.5 H m
Hole diameter 8.2 83 76 100 D mm
Burden 0.53 2.36 1.7 35 B m
Spacing 0.61 2.8 1.9 4 S m
Stemming 0.53 1.83 0.85 3.6 T m
Sub-drilling 0.42 0.82 0.2 15 J m
Specific gravity 0.04 2.66 2.6 2.7 Yr tony +
Rock hardness 0.16 3.27 3 35 HA Mhos
Uniaxial compressive strength 49.9 600.6 530 671 Jc Kg/cmz
Constraints Fragmentation 7.94 36 20 47 Fr cm
Fly rock 19.2 97 60 140 Fl m
Back break 14 3.4 1 6 BB m
Output Blast cost 3995 13468 7157 23481 BC Rials/ton

Using the box plot in the SPSS 24 software, the
outlier data was identified and removed from the
collected data, and then the number of data reached
146 patterns. A laser-meter and a total station
surveying camera were used to measure the back-
break and fly rock, respectively. The rock
fragmentation resulting from each blasting pattern
in the mine was measured using the Split Desktop
V. 5 software. Imaging was randomly done with
the help of a camera by considering the
dimensional variability and using two scales at the
top and bottom of the blasting coupe. The
photographs were taken in large, medium, and
small sizes. An average of 12-24 images was
analyzed to eliminate the possible errors and

Software Analysis

increase the reliability of image analysis results in
each blast of the studied mines. Then the images
were analyzed using the Split Desktop 5 software
to determine the real fragmentation (dso). Next, the
dimensional distribution curve of each blasting was
obtained separately. Finally, the results of the
analysis of all images in the software were
combined. Figure 5 illustrates the steps of image
analysis using the Split Desktop software in one of
the studied mines.

The correlation between the input variables was
obtained by the Pearsons correlation coefficient to
predict BC based on the data collected from six
limestone mines in the first stage (Table 3).

Percent Passing

10 00

Size[cm)

sourfcoeskrop - SPUITEETEEEE

Fragmentation Distribution

Figure 5. Process of using the Split Desktop software.
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Table 3. Pearson’s correlation coefficient matrix.

Variables AN Det EM N H D B S T J Yr HA ac
AN 1 0554 0.567 0.34 0295 0.206 0.1'9 4 0.2'5 4 0.637 0.631 0.424 0376 0.194
Det 0.554 1 0759 0845 o0 g,75 059 oo gesg 035 0423 0581 0.494
EM 0.567 0759 1 0699 ., -034 oo geos 0431 0105 0704 0785 0.723

N 0.34 0.845 0.699 1 0.703 0.6181 0.7'2 4 0.7'11 0.7'65 0.5' 4 0204 0579 051
H 0.295 204 g4y 0703 1 0675 0569 0535 0757 0579 0061 .., 027
D 0.206 ,.5 -034 .0 0675 1 0631 0514 0647 047 ./ .40 0319
B o10a 059 ocig g7oq 0569 0631 1 0964 0802 0747 oo ear 0384
S 0254 0508 0526 o711 0535 0514 0964 1 0787 0745 4,17 go7s o391
T 0.637 0.5'59 0. 431 0.7'65 0.757 0.647 0.802 0.787 1 0769 0.67 4 047 0.3;77
J 003l 935 0105 o0s4p 0579 047 0747 0745 0769 1 0398 007 0.114
Yr 0.424 0423 0704 0294 0061 o 0/ (107 0217 o074 0398 1 0842 0848
HA 0.376 0581 0.785 0.579 0.2'5 4 0.2' 49 0.5' a4 0.5'7 4 047 007 0842 1 0945
ac 0.194 0494 0723 051 -0.27 0.3;19 0.3-8 4 0.3;91 0.3;77 0.114 0.848 0945 1
The rate of two-way linear relationship between the Xi =X min
X nom =~ v (1)

variables, known as the correlation matrix, is given
in Table 3. In this matrix, the negative entries
represent the inverse relation and the positive
entries represent the direct relation between the
variables.

4. BC prediction

4.1. Prediction with GEP model

This section aims to find a function in the template
of BC =f(AN, Det, EM,H, N, D, B, S, T, J, Yr, HA,
oc) to predict BC, where AN, Det, EM, H, N, D, B,
S, T, J, HA, Yr, and oc are the independent
variables and BC is the dependent variable.

Gene Xpro Tools is a powerful flexible modeling
software developed by Ferreira et al. in 2000 and
can be used for function finding, classification,
time series prediction, and logic synthesis. In the
present work, 80% of the data was used for
modeling and 20% for random model testing out of
the 146 blasts recorded in six limestone mines.
Since the input and output parameters have
different units and ranges of variation, the data
must be normalized before any modeling in smart
methods. Data normalization increases speed and
decreases error in modeling and prevents over-
fitting. In the present work, the data was
normalized using Equation 1 at intervals 0 and 1:
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X max -X min

where X; indicates the initial data, X,,;, shows the
minimum variable value, X4, IS the maximum
variable value, and X,,n IS considered as the
normalized value.
The modeling process can be described using the
GEP algorithm in the following five steps [33, 49]:
A) Step 1. the cost function is determined to
evaluate the fitness of the produced chromosomes.
For this purpose, the root mean square error
(RMSE) equation is used:

RMSE = /1 SO -T;)?
Ni=1

where 0; shows the it" real value, T; indicates the
ith predicted value, and n is considered as the
number of data series.

B) Step 2: the terminals (problem inputs) and
functions are defined to create the GEP
chromosomes. In the present work, the terminals
were 13 input parameters (Table 2), and the
following important functions were selected by
studying the structure of empirical relationships
and examining the regression relationship between
the inputs and outputs:

@)
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Functions Set = {+,—x &, sqrt, Inv,"2,"3,"4,
3Rt, 4Rt, cos, tg, Not}

©)

where 3Rt and 4Rt are the third and fourth roots of
the variable, respectively.

C) Step 3: the structure of the chromosomes must
be determined. The structure of each chromosome
depends on the number of genes and the size of
their head. Increasing the number of genes and
chromosomes can partly improve the performance
of the GEP model. However, as the number of
genes exceeds their optimal value, the complexity
of the model increases, leading to a possible over-
fitting phenomenon [33].

D) Step 4: genetic operators and their rates are
determined. In the present work, all genetic
operators were regarded as suggested by Ferreira
and other researchers [22, 24, 36, 37and 50]. To
determine the rate of operators, Ferreira proposes
the values that are suitable for most of the
engineering problems [24, 34]. Our investigations
showed that the values proposed by Ferreira were
appropriate for the present work.

E) Step 5: a linking function is required to bind the
genes. In the present work, the addition linking
function was used for a better performance. Table
4 displays the genetic operator rates and basic
settings of the five models of the BC function.

Table 4. Genetic operator rates and basic settings of five BC function models.

Type of Value
setting Parameter 1 2 3 4 5
Fitness function RMSE RMSE RMSE RMSE RMSE
Number of chromosomes 30 32 30 28 35
. . Number of generations 9000 9000 9000 9000 9000
Basic settings Head size 9 12 10 10 8
Number of genes 4 3 4 5 4
Linking function Addition Addition Addition Addition Addition
Mutation rate 0.00138 0.00138 0.00138 0.00138 0.00138
Inversion rate 0.00546 0.00546 0.00546 0.00546 0.00546
IS transposition rate 0.00546 0.00546 0.00546 0.00546 0.00546
Genetic RIS transposition rate 0.00546 0.00546 0.00546 0.00546 0.00546
operators Gene transposition rate 0.00277 0.00277 0.00277 0.00277 0.00277
One-point recombination rate 0.00277 0.00277 0.00277 0.00277 0.00277
Two-point recombination rate 0.00277 0.00277 0.00277 0.00277 0.00277
Gene recombination rate 0.00277 0.00277 0.00277 0.00277 0.00277

In the above steps, the adjusted GEP models were
implemented and the values of the correlation
coefficient (R*) and RMSE were calculated for
each one of the models in the train and test phases
based on Equations 2 and 4 [38]. The results
obtained are displayed in Table. 5.

30 T)x(0; -0)

R? =100
n — n —\2
\/Z(Ti -T;)*x X (©0; —-0;)

i-1 i-1

where 0; is the i"" real value, T; is the i"" predicted
value, 0; is the average real value, T; is the average

4)

predicted value, and n is the number of series.
Based on this table, model 3 was selected as the
best GEP model with a higher accuracy and a lower
error compared to the other models.

The superior chromosome has four genes in the BC
function, each representing a sub-ET (Figure 6). A
large tree is formed by joining these four sub-ETs
by the addition function. Each one of the genes can
be obtained from the corresponding mathematical
equation (Equations. 5-8). Finally, the general
relation of BC prediction using the GEP model is
calculated by Equation 9.

Table 5. Evaluation criteria for five different GEP models.

Training stage

Testing stage

Model No. R? RMSE R? RMSE
1 0.919 1122 0.910 1356
2 0.904 1238 0.884 1435
3 0.943 961 0.933 1088
4 0.897 1269 0.864 1540
5 0.912 1172 0.913 1235
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Figure 6. The tree structure of each gene in the GEP model for BC prediction.

sub —ETy: H'x(l—(Nxcos(HA'xoc'—B'xoc'))) (5) between the measured values of BC predicted with
. the help of the GEP model in the train phase:
. o\ . AN -1020
b ~ET, 0154 x| -2 (D'-H ) +1-N 6) =380 (10)
N —29
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BC =(Genel+Gene 2+Gene3+Gene4)x16324 + 7157 ©) D= D2—476 (13)
The wvalues of the decision variables S _19
(AN',N',H',D',B',S',HA',crc')Of normal numbers S’= 21' (14)
are between zero and one in the models presented H.A _3
for the BC function, and the output indicates a HA = 05 (15)
natural value by applying the input coefficients and .
integers. Equations 10-17 should be used instead of _B-17 (16)
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Figure 7. Relationship between the predicted and measured values of BC and GEP model (in the train phase).
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4.2. Prediction with ANNs model

Selecting the number of datasets used to train
network is very important. The lack or excess
number of datasets used will decrease the
performance of network. An optimal layout in each
case is achieved by trial-and-error. In this research
work, 146 data were randomly divided into the
training (80%) and testing (20%) groups. The
model was trained by the MLP method using the
feed-forward back-propagation algorithm. The
dataset was normalized to improve the efficiency
of the train process with -1 to 1 values. Then
different types of networks were tested with
different layers and neurons as well as transferring
functions in order to determine the optimal network
structure with the least error [51]. R? and RMSE
were determined for different network structures
(Table 6).

As shown in Table 6, the MLP network (with feed
forward, along with 13 input neurons, 14 neurons
in the first middle layer, 5 neurons in the second

middle layer, one output neuron, and the Logsig,
Tansig, and Purlin transfer functions) is able to
predict BC most accurately. This network with the
architecture of 13-14-5-1 has the minimum
estimation error, which is regarded as the
appropriate model. Figure 8 displays the optimal
network structure, and Figure 9 illustrates the
relationship between the measured values of BC
predicted with the ANNs model during the train
phase. The appropriate network structure was
determined by a form of test and error process. To
this end, similar articles were studied; first,
networks with one or two hidden layers were
evaluated, which are often more suitable for the
engineering problems [13, 46, 48].

In the GEP and regression models, two datasets
(train and test) are used. Here, in order to compare
the outputs of the ANN model with the actual data
and the above-mentioned models, the validation
and train data are classified into one category and
the test data in another.

Table 6. R2and RMSE for some of the models.

. . Lo R All data

No. Architecture Hidden activation Output activation R? RMSE
1 13-15-1 Logsig Purelin 0.954 853
2 13-20-1 Tansig Purelin 0.963 775
3 13-12-1 Logsig Poslin 0.477 4112
4 13-17-1 Tansig Poslin 0.541 3994
5 13-17-5-1 Tansig-Tansig Purelin 0.955 866
6 13-20-10-1 Logsig-Logsig Purelin 0.945 942
7 13-6-18-1 Tansig-Tansig Purelin 0.962 791
8 13-7-14-1 Logsig-Logsig Purelin 0.955 870
9 13-16-8-1 Logsig-Logsig Poslin 0.512 3995
10 13-22-12-1 Tansig-Tansig Poslin 0.462 4033
11 13-14-5-1 Logsig-Tansig Purelin 0.971 677
12 13-19-11-1 Tansig-Logsig Purelin 0.967 719
13 13-15-6-1 Hardlims-Hardlims Purelin 0.510 2795
14 13-17-5-1 Satlins-Satlins Purelin 0.928 1168

Input Layer Hidden Layer 1 Hidden Layer 2 Output
BC
B ———
5 1

Figure 8. The optimum structure of ANNSs.
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Figure 9. Relationship between the predicted and measured values of BC with the ANN model (in the train

4.3. Prediction by multivariate regression
Multivariate regression is a statistical method used
to explore the relationship between the dependent
and independent variables and data analysis in
modeling. It is also used to predict the dependent
variable from the independent variables and obtain
the relationship between them [52, 53]. Descriptive
statistics for data adjustment and inferential
statistics (correlation coefficient and multivariate
regression) were used to predict BC after collecting
the raw data.

In this method, 146 blasting records from six
limestones of Iran were applied; 80% of the records
were randomly used for modeling and 20% were
used for the testing model. In the NLMR and LMR
methods, the 13 parameters mentioned in Table 2
were used as the model inputs. The LMR model

was created using the SPSS 24 software and
forward method in order to predict BC [23]:

BC = 22148.722 - 6624.528S - 0.597AN +
217.96D - 1711.786T

In addition to the linear model, the data was
processed by the non-linear polynomial, power,
exponential, and logarithmic models. With respect
to the higher R?value of the logarithmic model than
the other non-linear models, it was used for BC

prediction as follows:
105.648

BC = g 1627 |\ 028 1y 0176 (19)

Figure 10 displays the relationship between the
measured and predicted values of the BC values
with the NLMR maodel in the train phase.

NMLR - Train

25000

20000
g y=0.9027x + 1244.8
£ R*=0.913
—
5
) 15000
N
Q
[--]
=
£ 10000
=2
g .
=¥

5000
0 - -
0 5000 10000

15000 20000 25000

Measured BC (Rials/ton)

Figure 10. Relationship between the predicted and measured values of BC with the NMLR model (in train

(18)
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5. Discussion

We used 13 similar parameters as the inputs for
modeling using the ANN, GEP, NLMR, and LMR
methods in order to compare their results. The
parameters were the ANFO value, number of
detonators, Emolite value, hole number, hole
length, hole diameter, burden, spacing, stemming,
sub-drilling, specific gravity of rock, hardness, and
uniaxial compressive strength.

In the present work, the basis of the performance
evaluation of models was to compare the results
with each other and with the actual data. The
statistical indices of RMSE and R? were used for
this purpose [38, 52, 53]. The performance
evaluation indices were calculated for the proposed
models according to the training and testing data
(Table 7).

Table 7. Performance indices for the four models.

Training stage

Testing stage

Model R? RMSE R? RMSE

Linear multivariate regression 0.885 1210 0.855 1161
Nonlinear multivariate regression 0.913 1089 0.931 1098
Gene expression programming 0.943 961 0.933 1088
Artificial neural network 0.978 581 0.954 973

Theoretically, a prediction model is excellent when
Rz =1 and RMSE = 0. The accuracy of the results
of the GEP and ANN models compared to the
actual values of BC in the testing phase is
illustrated in Figures 11 and 12. Also the amount of
consistency resulting from these models with the
actual data is shown in Figures 13 and 14,
respectively. As displayed in Table 7, the R? values
were 0.855, 0.931, 0.933, and 0.954 for the LMR,
NLMR, GEP, and ANN models, respectively,
while the RMSE values for these four models were

respectively, suggesting the superiority of the ANN
model. As observed, the consistency and accuracy
of the ANN model (with real data) are significantly
higher than those of the LMR, NLMR, and GEP
models. Although ANN is regarded as one of the
intelligent and powerful techniques in parameter
prediction, its most important drawback is the
inability to provide a mathematical equation for
engineering operations. On the other hand, based
on the results given in Table 7, the GEP model
showed a more reliable output by providing a

calculated as 1161, 1098, 1088, and 973, mathematical equation to predict BC.
GEP- Test

25000
A y=0.9278x + 866.27 .
S 20000 - R*=0.933 e
2 N P2 )
o i ) el
2 15000 -
E /‘g, *
T 10000 - ',’
[ ‘_.:-l' ..

5000

0 . . ;
a S000 10000 15000 20000 25000

Measured BC(Rials/ton)

Figure 11. Relationship between the predicted and measured values of BC with the GEP model.
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Figure 12. Relationship between the predicted and measured values of BC with the ANN model.

ANN - Test
25000
*
//‘/
20000 - e
= o
S y=1.0525x-807.07 N ’o// .
2 R2=0.954 o
£ 15000 - ”o
& ’/4/
Q >
2 e
T 10000 - o~
k> wd
t &
R
5000 -
0 T T T T
0 5000 10000 15000 20000 25000

Meaured BC (Rials/ton)

Figure 13. Comparison of the predicted cost of the GEP model with the actual cost in the testing phase.
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Figure 14. Comparison of the predicted cost of the ANN model with the actual cost in the testing phase.

6. Sensitivity analysis

One of the basic measures after modeling is to
determine the sensitivity of the output parameter to
each input parameter. In other words, the relative
impact of the input parameters on the BC function

can be determined by implementing the real values
and the developed ANN model using the sensitivity
analysis (Equation 20). For this purpose, the
Relevancy Factor (RF) method was used in the
present work [54, 55]:
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S (Pui - P (g - 1)

r(pkvu)=\/n'1 (20)

n
3 (pri — Pk x X (ui - in)?
i=1 i=1

where Py ; indicates the i value of the k™ input
parameter, P, represents the average value related
to the k'™ parameter, u; means the i value for the
output parameter, f is considered as the average

0.6

value for the output parameter, and n shows the
number of input variables.

Figure 15 displays the results of the ANNs model
sensitivity analysis using Equation 20. As shown,
the spacing and ANFO values have the most and
least effects on the BC function, respectively.
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Figure 15. Sensitivity analysis of BC based on the input variables.

7. Conclusions

In the present work, the LMR, NLMR, GEP, and
ANN models were used for BC prediction after
collecting 146 datasets from six limestone mines in
Iran and determining the input parameters and
blasting constraints. The model presented with the
ANN model in the testing step had a lower RMSE
(973) and a higher R? (0.954) than the LMR,
NLMR, and GEP models. Comparing the results of
the ANN model with those of the LMR, NLMR,
and GEP models based on the real data indicated
that the ANN model was more consistent with the
real BCs. The MLP network was used in two
hidden layers with 14 and 5 neurons, and Logsig,
Tansig, and purlin transfer functions, while the
architecture 13-14-5-1 was used in the feed-
forward back-propagation algorithm as the best
combination for predicting BC. The RF method
was used in ANNs for sensitivity analysis of the
target function to the input parameters, and the
results obtained indicated that the spacing and
ANFO values had the highest and least effects on
the BC function, respectively. In addition, a
positive correlation was observed between the
number of detonators, the amount of Emolite, hole
number, specific gravity, hardness, and uniaxial
compressive strength of rock and BC function,
while a negative correlation was reported between
the ANFO value, hole length, hole diameter,
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burden, spacing, stemming, sub-drilling, and BC
function. Although this model can estimate BCs
with a high reliability, some factors may lead to
uncertainty in the model. Therefore, it is suggested
that the proposed models be optimized and
modified considering the uncertainty parameters.
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Appendix 1
Table A-1. Datasets used for constructing models.

Case Input parameters Constraints Output
No. AN Det EM N H D B S T J yr HA &6 Fr FL BB BC
1 5500 270 260 270 63 76 18 21 09 05 27 35 671 25 140 3 18,239
2 9,300 490 500 436 68 76 18 22 09 05 27 35 671 27 140 3 15,486
3 10,000 650 500 404 8 76 17 2 09 05 27 35 671 25 140 35 18,110
4 4300 230 280 215 6 7% 17 2 1 05 27 35 671 25 120 23,481
5 6200 590 320 500 4 76 18 2 11 05 27 35 671 30 120 4 20,946
6 10,000 500 600 350 9 7% 17 2 1 05 27 35 671 25 120 43 19,753
7 10,000 553 480 553 54 76 17 2 1 05 27 35 671 25 120 4 18,948
8 5300 350 280 348 47 76 2 25 12 06 27 35 671 40 100 5 15,959
9 6,600 480 400 480 44 76 18 22 11 05 27 35 671 30 100 4 18,738
10 6500 350 380 350 6 76 18 21 11 05 27 35 671 30 120 4 17,684
1 7,300 400 360 400 53 76 17 21 1 05 27 35 671 26 120 4 19,165
12 6500 500 360 500 4 76 17 2 1 05 27 35 671 25 110 4 21,949
13 10,000 470 580 470 63 76 17 2 1 05 27 35 671 25 115 45 19,705
14 10,000 440 520 399 7 7% 17 2 1 05 27 35 671 25 110 4 21,449
15 8,500 480 400 480 7% 17 2 1 05 27 35 671 27 110 4 21,131
16 10,000 440 440 387 72 76 17 2 1 05 27 35 671 25 112 4 21,345
17 6,700 500 340 468 4 76 17 2 1 05 27 35 671 25 110 4 22,837
18 8200 500 440 498 48 76 19 23 11 06 27 35 671 35 100 5 16,918
19 8600 500 500 500 52 76 2 22 12 06 27 35 671 40 100 5 15,804
20 9,500 500 460 500 54 76 19 22 11 06 27 35 671 35 105 55 17,182
21 7,800 440 360 422 76 18 21 11 05 27 35 671 30 100 5 19,897
22 10000 500 500 500 76 18 23 11 05 27 35 671 30 100 5 15,009
23 9,700 500 480 495 62 76 18 23 11 05 27 35 671 30 100 5 14,828
24 9,200 400 400 394 69 76 18 23 11 05 27 35 671 30 100 5 16,592
25 7,900 400 380 355 77 76 18 23 11 05 27 35 671 30 100 5 15,049
26 10000 460 460 445 7 7 2 25 12 06 27 35 671 40 100 5 13,315
27 6,800 280 300 281 76 76 2 25 12 06 27 35 671 40 105 5 13,983
28 8800 430 380 430 65 76 2 25 12 06 27 35 671 40 100 5 13,504
29 8100 430 380 429 58 76 2 22 12 06 27 35 671 40 100 5 15,763
30 8,400 370 320 362 7 76 19 22 11 06 27 35 671 35 110 4 16,514
31 10000 500 460 391 82 76 19 21 11 06 27 35 671 35 110 5 16,036
32 8000 440 300 440 57 76 19 21 17 06 27 35 671 40 140 3 16,283
33 3200 200 120 194 54 76 27 32 14 05 26 3 530 25 140 3 11,546
34 3100 200 70 80 11 76 27 32 20 05 26 3 530 35 80 4 13,796
35 7000 320 180 230 87 76 27 32 17 05 26 3 530 30 110 4 9,932
36 6000 220 200 220 8 76 27 32 16 05 26 3 530 30 120 4 9,261
37 7700 340 180 310 75 76 27 32 15 05 26 3 530 25 130 3 8,552
38 9800 360 220 360 8 76 27 32 16 05 26 3 530 30 120 4 7,868
39 11400 520 300 520 68 76 28 34 15 06 26 3 530 35 130 5 7,233
40 9650 520 240 460 66 76 28 34 14 06 26 3 530 35 140 5 7,164
M 7900 420 180 380 65 76 28 34 14 06 26 3 530 35 140 5 7,559
42 9100 380 200 380 73 76 28 34 16 06 26 3 530 40 110 5 7,157
43 9050 240 140 210 85 76 28 34 18 06 26 3 530 35 90 5 10,466
44 9050 520 200 260 10 76 28 34 19 06 26 3 530 40 8 6 8,189
45 10250 370 300 270 12 76 2 3 2 05 265 32 550 35 80 45 10,278
46 9860 380 460 300 103 76 2 25 18 05 265 32 550 35 8 5 13,109
47 9000 460 440 460 67 76 2 25 17 05 265 32 550 35 100 5 11,934
48 10000 460 300 330 97 76 2 25 18 05 265 32 550 35 8 5 12,915
49 8800 510 350 510 62 76 2 25 17 05 265 32 550 35 100 5 11,064
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Table A-1. Datasets used for constructing models.

50 OB60 460 300 230 13 76 2 2.5 2 05 265 32 550 35 80 5 13,783
51 9800 310 285 310 102 76 1.8 2 2 05 265 32 550 25 80 4 16,555
52 10500 300 210 157 13 96 2.4 3 2 06 265 3.2 550 45 110 6 13,356
53 9200 347 320 347 8.6 76 18 19 17 05 265 32 550 25 120 3 18,862
54 9350 400 270 396 7.4 76 18 19 13 05 265 32 550 25 140 3 17,612
55 5900 250 180 128 9 9% 23 24 16 06 265 32 550 40 120 4 21,060
56 12400 320 250 190 124 9% 23 26 18 06 265 3.2 550 40 120 5 15,250
57 10660 280 230 170 12 9% 23 26 18 06 265 32 550 40 120 5 16,187
58 10700 290 230 200 105 9% 23 26 18 06 265 32 550 40 120 5 15,549
59 10800 330 220 190 11 9% 23 26 18 06 265 32 550 40 120 5 15,913
60 11100 270 240 210 103 9% 23 26 1.7 06 265 32 550 40 120 5 15,049
61 10800 270 240 210 10 9% 23 26 17 06 265 32 550 40 120 5 15,408
62 10500 290 220 160 123 9% 23 26 16 06 265 3.2 550 40 130 4 16,919
63 10700 300 276 240 8.8 9% 23 26 16 06 265 32 550 40 130 4 15,506
64 11350 300 230 200 11 9% 23 26 17 06 265 32 550 43 110 45 15,248
65 11000 300 220 160 132 9% 23 26 20 06 265 32 550 45 90 5 15,939
66 10250 310 250 180 112 9% 23 26 19 06 265 3.2 550 45 100 55 16,380
67 11100 410 260 190 114 9% 23 26 19 06 265 3.2 550 45 100 6 17,463
68 10700 300 250 160 13 9% 23 26 2 06 265 3.2 550 47 90 6 16,590
69 11300 340 250 162 136 96 23 26 22 06 265 32 550 47 90 6 15,916
70 10260 310 230 170 118 96 23 2.6 2 06 265 3.2 550 47 90 6 17,030
71 11240 320 250 161 135 96 23 26 21 06 265 3.2 550 47 90 6 16,235
72 11300 270 260 162 135 9% 23 26 21 06 265 32 550 47 90 6 15,527
73 11500 260 210 150 147 9% 23 26 22 06 265 32 550 47 90 6 14,952
74 10000 390 268 390 85 76 1.7 2 15 02 263 33 600 30 80 15 16,292
75 9700 340 270 333 9 76 1.7 2 16 03 263 33 600 35 60 15 17,306
76 9800 490 320 490 6.4 76 1.7 2 1.0 02 263 33 600 20 100 2 16,557
7 10000 330 290 324 10 76 1.7 2 16 03 263 33 600 30 80 15 16,244
78 9800 320 270 320 95 76 1.7 2 15 03 263 33 600 30 80 15 17,081
79 9900 400 350 242 105 90 26 3 26 05 263 33 600 38 80 1 9,764
80 9700 520 380 520 6.2 76 1.7 2 1.4 02 263 33 600 20 100 2 18,616
81 9800 440 380 398 8.2 76 1.7 2 15 03 263 33 600 35 70 2 17,799
82 9900 450 180 447 7.2 76 1.7 2 15 03 263 33 600 25 90 2 15,987
83 9700 320 340 240 10 90 2.6 3 26 04 263 33 600 38 80 1 9,924
84 10000 520 340 480 76 18 21 11 02 263 33 600 25 90 2 15,164
85 9800 360 300 350 76 18 21 15 02 263 33 600 40 60 15 14,421
86 8700 530 400 300 10 76 2 2.5 2 1 2.7 3.3 620 30 90 1.8 13,591
87 8400 400 380 320 8.8 76 2 2.5 2 1 2.7 3.3 620 30 90 1.8 13,232
88 9500 380 360 380 8.2 76 2 2.5 2 1 2.7 3.3 620 30 90 1.8 13,030
89 8300 500 320 290 9.8 76 2 2.5 2 1 2.7 3.3 620 30 90 1.8 13,141
90 8700 400 380 310 9.7 76 2 2.5 2 1 2.7 3.3 620 30 90 1.8 12,393
91 9800 420 420 360 9 76 2 2.5 2 1 2.7 3.3 620 30 90 1.8 13,079
92 8500 400 360 320 9.8 76 2 2.5 2 1 2.7 3.3 620 30 90 1.8 11,370
93 9700 390 320 385 83 76 2 2.5 2 1 2.7 3.3 620 30 90 1.8 11,316
94 6900 220 200 155 10 90 3 35 25 15 27 3.3 620 45 75 3 9,795
95 10000 260 240 195 9.2 100 35 4 21 15 27 3.3 620 45 80 3 8,271
96 7800 200 160 170 10 90 3 35 25 15 27 3.3 620 45 75 3 9,118
97 10000 260 230 130 17 90 3 35 25 15 27 3.3 620 45 75 3 8,282
98 10000 260 270 133 158 90 3 35 25 15 27 3.3 620 45 75 3 8,912
99 10000 270 320 135 16 90 3 35 25 15 27 3.3 620 45 75 3 9,058
100 10000 280 380 134 167 90 3 35 25 15 27 3.3 620 45 75 3 8,618
101 10000 280 300 129 17 90 3 35 25 15 27 3.3 620 45 75 3 8,664
102 10000 290 270 136 161 90 3 35 25 15 27 3.3 620 45 75 3 9,021
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103 8500 250 260 125 16 90 3 35 25 15 2.7 3.3 620 45 75 3 8,512
104 10000 270 330 132 163 90 3 35 25 15 27 3.3 620 45 75 3 9,174
105 9800 280 280 130 165 90 3 35 25 15 27 3.3 620 45 75 3 8,696
106 10000 300 300 127 17.7 90 3 35 25 15 27 3.3 620 45 75 3 8,461
107 10000 400 300 200 11 90 3 35 25 15 27 3.3 620 45 75 3 9,532
108 10000 330 290 162 136 90 3 35 25 15 27 3.3 620 45 75 3 8,887
109 10000 400 270 200 11 90 3 35 25 15 27 3.3 620 45 75 3 9,223
110 10000 380 280 190 113 90 3 35 25 15 27 3.3 620 45 75 3 9,903
111 9000 300 340 199 108 90 3 35 25 15 27 3.3 620 45 75 3 8,883
112 9500 100 430 190 116 90 3 35 25 15 27 3.3 620 45 75 3 7,971
113 10000 400 320 210 107 90 3 35 25 15 27 3.3 620 45 75 3 9,792
114 10000 430 350 215 106 90 3 35 25 15 27 3.3 620 45 75 3 9,046
115 9800 400 310 200 110 90 3 35 25 15 27 3.3 620 45 75 3 9,261
116 8200 310 320 310 7.6 76 2 25 17 1 2.7 3.3 620 25 100 15 13,882
117 8900 350 400 315 83 76 2 25 17 1 2.7 3.3 620 25 100 15 14,127
118 9200 510 440 320 8.6 76 2 25 17 1 2.7 3.3 620 25 100 15 14,425
119 9200 570 460 325 8.3 76 2 25 16 1 2.7 3.3 620 25 100 15 14,877
120 9400 450 380 330 85 76 2 25 17 1 2.7 3.3 620 25 100 15 13,365
121 9500 400 440 316 7.2 90 3 3.5 2 15 27 3.3 620 38 80 2 9,072
122 8600 346 360 346 7.2 76 2 2.5 2 1 2.7 3.3 620 30 90 1.8 14,495
123 9900 270 300 162 14 90 3 35 25 15 27 3.3 620 45 75 3 8,442
124 10000 280 360 170 126 90 3 35 25 15 27 3.3 620 45 75 3 9,721
125 9800 330 230 165 132 90 3 35 25 15 27 3.3 620 45 75 3 8,887
126 10000 260 360 175 126 90 3 35 25 15 27 3.3 620 45 75 3 8,829
127 10000 330 270 108 204 90 3 35 36 15 27 3.3 620 45 75 3 8,708
128 9400 330 240 165 126 90 3 35 25 15 27 3.3 620 45 75 3 9,466
129 9800 290 320 243 9 90 3 35 25 15 27 3.3 620 45 75 3 8,876
130 9800 420 370 420 7.4 76 2 2.5 2 1 2.7 3.3 620 30 90 1.7 12,660
131 9800 320 290 201 108 90 3 35 25 15 27 3.3 620 45 80 3 8,936
132 10000 340 350 168 13 90 3 35 25 15 27 3.3 620 45 80 3 9,038
133 1470 112 40 56 9 76 2.4 3 2.2 1 2.6 3 540 30 100 1.3 14,435
134 3700 172 150 86 104 90 35 4 2.5 1 2.6 3 540 45 90 2 7,911
135 2600 120 120 60 10 90 33 38 23 1 2.6 3 540 40 90 2 10,337
136 2070 157 80 87 8.4 76 2.4 3 2 08 26 3 540 30 110 11 12,195
137 2800 90 100 80 8 90 35 22 11 26 3 540 45 90 2 8,396
138 1650 78 60 38 104 90 35 25 11 26 3 540 45 90 2 10,024
139 1380 108 40 54 9 76 24 38 22 09 26 3 540 30 100 1.2 11,669
140 1620 78 60 38 104 90 3 3 25 11 26 3 540 40 90 15 15,448
141 1500 70 60 35 104 76 24 38 2 1 2.6 3 540 30 110 11 15,503
142 3670 180 140 90 10 90 32 38 25 11 26 3 540 45 85 2 9,181
143 2340 112 80 56 104 90 3 35 25 12 26 3 540 40 85 1.8 11,818
144 1020 73 40 73 55 76 2.4 3 15 05 26 3 540 20 110 1 12,930
145 2320 122 90 61 9 90 3 35 25 1 2.6 3 540 40 90 1.8 12,181
146 1020 45 40 29 8.5 90 3 35 25 1 2.6 3 540 40 90 1.8 15,182

In this Table, rows 1 to 32 belong to Tajareh Mine of Khorramabad, rows 33 to 44 belong to Tang Fani Mine
of Pol Dokhtar, rows 45 to 73 belong to Barkhordarl Mine of Nurabad, rows 74 to 85 belong to Moslem Abad
Mine of Hamedan, rows 86 to 132 belong to Sepahan Mobarakeh Mine of Esfahan, and rows 133 to 146 belong
to Abelou mine of Neka.
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