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Abstract 
Displacements around a tunnel, occurring as a result of excavation, consist of the elastic 

and plastic parts. In this paper, we discuss the elastic part of displacements as a result of 

excavation, called net displacement. In general, the previous analytical solutions 

presented for determining the displacements around a circular tunnel in an elastic medium 

do not give the net displacements directly. The well-known Kirsch solution is the most 

widely used method for determining the induced stresses and net displacements around a 

circular opening in a biaxially-loaded plate of homogeneous, isotropic, continuous, 

linearly elastic material. However, the complete solution for obtaining the net 

displacements has not been presented or highlighted in the available literature. Using the 

linear elasticity, this paper reviews and presents three different analytical methods for 

determining the net displacements directly as well as induced stresses around a circular 

tunnel. The three solution methods are the Lame' method, airy stress function method, and 

complex variable method. The tunnel is assumed to be situated in an elastic, continuum, 

and isotropic medium in the plane strain condition. The solutions are presented for both 

the hydrostatic and non-hydrostatic in situ stresses in the 2D biaxial loading condition 

along with an internal pressure. Loading and unloading in tunneling occurring as a result 

of excavation and stress differences between the induced and initial ones are considered 

to evaluate the net displacements directly. Finally, some examples are given to 

demonstrate the complete solution and show the difference between the net elastic 

displacements as a result of excavation and total elastic displacements that are not real. 

1. Introduction 

Determining the induced stresses and displacement 

fields around a circular opening (for example a 

circular tunnel) as a result of excavation has always 

been an interesting topic in tunneling, mining, 

petroleum, and civil engineering. Although the 

numerical methods such as the finite element method 

are often used these days to calculate the stresses and 

displacements around openings, the analytical 

methods (mainly by use of linear elasticity) for 

simplified shapes such as cylindrical (circular) 

excavation are highly useful in understanding the 

effect of a particular parameter on the results (for 

instance, the effect of rock mass deformation 

modulus on displacements around a circular 

opening). Although in reality, rock masses are not 

actually linearly elastic, a rock mass behaves as 

linearly elastic for incremental stress changes. This 

approximation in rock mechanics is accurate enough 

for solving the problems like determining the stress-

strain relationships in a rock mass. 

In 1898, Kirsch has presented equations for 

determining the stresses in an infinite plate with a 

circular hole located in a biaxially-loaded 

homogeneous, isotropic, continuous, and linearly 

elastic material. This analytical solution has been 

widely used in different geotechnical and rock 

mechanical problems, and it is also much treated in 

the textbooks of rock mechanics and elasticity theory 

[1, 2]. Using the equations, a deep understanding of 

the physics related to the rock mechanical issues can 
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be achieved. However, in most textbooks [3–7], only 

the last equations are presented and the procedure for 

obtaining the equations is not given 

comprehensively in detail. 

Although the procedure for obtaining the stress and 

displacement fields around a circular hole 

(hydrostatic or non-hydrostatic in situ stress 

conditions) have been presented in some other 

reference books [2, 8–13], the net displacements 

around a circular tunnel (the displacements as a 

result of excavation only) has not been highlighted 

or even considered in these books. In fact, the 

equations presented for evaluating the displacements 

around a circular tunnel differ from the Kirsch 

equations. On the other hand, the total displacements 

that consider the in situ stress effect before 

excavation is taken in to account, which can be 

misleading in tunneling.  

Determination of ground displacements produced by 

excavation of circular opening (net displacements as 

a result of excavation only) is one of the most 

important problems associated with tunneling. As a 

case in example, an effective method for monitoring 

an underground opening is to measure the relative 

displacements of points on the walls at surface or at 

different depths. Considering the fact that elastic 

displacement is some part of total displacement and 

to interpret such data, it is helpful and necessary to 

know the magnitudes of displacements associated 

with the elastic behavior [5,14]. 

The problem of a circular opening in an infinite 

continuum medium and the stress and displacements 

fields around the opening as a result of excavation 

(tunneling) includes both the loading and unloading 

in the tangential and radial directions, respectively. 

Actually, it is the stress differences (between the 

original one and the current induced one that may be 

increased or decreased) that cause the net 

displacements, not the current induced stress field. 

This is a very subtle key point in determining the net 

displacements.  

The reference textbooks such as those by 

Timoshenko and Goodier [15] may be used to fully 

understand the elasticity and related methods of the 

analysis of stress and strain around a circular 

opening. However, it should be noted that after 

excavation, only net displacements must be 

considered in the analysis related to tunneling. For 

example, in the analysis of the rock bolt-ground 

interaction, the net displacements will affect the rock 

bolts since they are installed after excavation, and the 

initial displacements originated by the constant far 

field stress do not affect the rock bolts. This has been 

considered by some researchers such as Bobet [16]. 

Also in evaluating the stresses and displacements 

around a circular tunnel in the elastic-plastic 

conditions, the elastic net displacements that are 

some part of the total displacements should be used 

in the analysis. In many published papers [14, 16–

30], the net displacements have been used in the 

analyses, mainly in the hydrostatic in situ stress 

condition. However, the procedure for obtaining the 

net displacements has not been explained in detail. 

Einstein and Schwartz [31] have presented a solution 

for the net displacements of tunnel as a result of 

excavation only. They called this displacement the 

incremental displacement, which has been evaluated 

by subtracting the displacement as a result of initial 

stresses from the one as a result of the current 

induced stresses. Bobet [16] has also used the same 

procedure in the elastic solution for deep tunnels. 

This procedure may not be convenient in the stress-

strain analysis. Thus a direct solution for obtaining 

the net displacement is presented in this paper. 

In this work, three methods were used for 

determining the net displacements induced as well as 

the induced stresses around a circular opening in the 

elastic condition. These methods are as follow: 

A. Lame' method (hollow cylinder using strength of 

material); 

B. Airy stress function method; 

C. Complex variable method. 

Although most of the mathematical skills and 

solutions may be found in the reference textbooks 

involving elasticity, these methods are reviewed and 

presented in detail to evaluate directly the net 

displacements around a circular tunnel by emphasis 

on the loading and unloading around circular 

opening as a result of excavation. Actually it is 

emphasized that in tunneling instead of only the 

mechanical viewpoint, the ground real condition due 

to the existence of in situ stresses before excavation 

should be considered (rock mechanical instead of 

only mechanical viewpoint). 

All the three methods are used for the hydrostatic in 

situ stress condition, and the last two methods are 

used for the non-hydrostatic in situ stress condition. 

Finally, calculating the net displacements is 

discussed in each method and some examples are 

presented for clarity. 

2. Problem definition and assumptions 

A circular tunnel with internal radius, a, located in an 

elastic, homogenous, isotropic material in the plane 

strain condition is considered. Both the hydrostatic 

in situ stress (Figure 1) and non-hydrostatic in situ 

stress (Figure 2) conditions are taken in to account in 

the analyses. 
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In the hydrostatic in situ stress condition, before 

excavation, the in situ (initial) stress oP exists. After 

excavation, the amount of oP will decrease and 

increase in the radial and tangentially directions, 

respectively, in the vicinity of the tunnel (induced 

stresses will emerge). The inner pressure iP may 

exist due to the tunnel face confinement effect (along 

the tunnel axis), support pressure or internal fluid 

pressure. The plane strain condition is assumed in 

this problem, which means that the strains occur in 

the plane shown in Figure 1. Moreover, the problem 

is axi-symmetric, meaning that the radial and 

tangential induced stresses (
r ,

 ) in the rock mass 

around tunnel are principal stresses. Assuming that 

the stresses along the tunnel axis remain the mean 

principal stresses,
r and  will be the minimum and 

the maximum principal stresses, respectively. In the 

non-hydrostatic in situ stress condition, before 

excavation, the in situ stresses in the horizontal and 

vertical directions are h and v , which differ from 

each other in two directions. The parameter K is 

defined as the horizontal to vertical stress ratio 

(initially). 

 
Figure 1. Problem geometry in hydrostatic in situ stress condition. 

 
Figure 2. Problem geometry in non-hydrostatic in situ stress condition. 

The main purpose in this problem is to obtain 

directly the elastic net displacements around a 

circular tunnel using the elasticity and different 

analytical methods in the hydrostatic and non-

hydrostatic stress conditions. In this problem, the 

compression pressures (stresses) are assumed to be 

positive and the displacements inward the 

excavation are considered positive. This is an 
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assumption in this problem and, in some other 

references, the positive directions of displacements 

are assumed in the opposite directions (thus the final 

equation differs in a negative sign). 

3. Solutions for hydrostatic in situ stress 

In the hydrostatic in situ stress condition, three 

methods will be used to solve the problem, as follow: 

A- Lame' solution (hollow cylinder using strength of 

material): 

In this method, using the stress equilibrium 

equations, strain compatibility, and properties of 

material, a differential equation is obtained. Then 

using the boundary conditions, the differential 

equation is solved and the radial and tangential 

stresses around tunnel are evaluated. Then 

considering the strain-stress relations in the plane 

strain condition and axi-symmetric assumption, the 

net displacements around the tunnel are determined 

as a result of excavation. This problem was 

originally solved by Lame in 1833 and referred to as 

the Lame' problem [10, 11]. In this work, the stresses 

and net displacements will be evaluated in an infinite 

medium (infinite outer boundary, 𝑏 → ∞).  

B- Airy stress function method: 

In this method, a stress function (called the Airy 

stress function) that satisfies the biharmonic 

compatibility equation is selected. Based on this 

function, the stresses around an opening (tunnel) are 

determined. Then using the stress-strain relations 

and the boundary condition, the net displacements 

are defined.  

C- Complex variable method: 

This method provides a very powerful tool for the 

solution of many problems in elasticity. In this 

method, the stresses and displacements are defined 

based on two complex variable functions that satisfy 

the equilibrium equations and the Hook's law. It 

should be mentioned that due to the geometry of the 

problem, the cylindrical (polar) coordinate will be 

used to solve the problem. Since the cylinder is long, 

every ring of unit thickness measured perpendicular 

to the plane of paper is stress alike [10]. For the case 

of tunneling in infinite media, the limit of radius 𝑏 

will be considered as infinite. Moreover, the gravity 

is not considered to maintain the axi-symmetric 

condition. 

3.1 Lame' solution (hollow cylinder using strength of 

material) 

Although the Lame's solution is presented in the 

reference books published by Popove [10] and 

Ameen [11], a detailed solution is reviewed and 

presented here with the geological, rock mechanics, 

and tunnelling viewpoint to calculate the net 

displacements as a result of excavation. Each 

infinitesimal element selected in a ring around a 

circular opening should be in a static equilibrium. By 

summing the forces and moments on a 2D element 

(as shown in Figure 1), the stress equilibrium 

equation can be obtained as: 

𝑑𝜎𝑟

𝑑𝑟
+

𝜎𝑟 − 𝜎𝜃

𝑟
= 0 (1) 

where 𝜎𝑟  and 𝜎𝜃  are the radial and tangential 

stresses, respectively, and r is the distance of the 

element from the tunnel center. This equation has 

two unknown stresses and requires to be written 

based on one unknown, so it can be solved.  

The radial and tangential strains occur as a result of 

radial displacement. Due to the axi-symmetric nature 

of the problem, the strain-displacement relations can 

be written as: 

𝜀𝜃 =
𝑢

𝑟
, 𝜀𝑟 =

𝑑𝑢

𝑑𝑟
 (2) 

where 𝜀𝑟  and 𝜀𝜃  are the radial and tangential 

strains, respectively, and u is the radial 

displacement in the distance r from the tunnel 

center. The generalized Hooke's law relating strains 

to stress is given in the following expressions: 

𝜀𝑟 =
1

𝐸
[𝜎𝑟 − 𝜈(𝜎𝜃 + 𝜎𝑧)] 

(3) 𝜀𝜃 =
1

𝐸
[𝜎𝜃 − 𝜈(𝜎𝑟 + 𝜎𝑧)] 

𝜀𝑧 =
1

𝐸
[𝜎𝑧 − 𝜈(𝜎𝑟 + 𝜎𝜃)] 

where 𝜎𝑧 is the stress along the tunnel axis, and 𝐸 

and   are the elastic modulus and Poisson’s ratio 

of rock material. Due to the plane strain 

condition, 𝜀𝑧 = 0 , which means 𝜎𝑧 = 𝜈(𝜎𝑟 + 𝜎𝜃). 

Thus by recalculating and reordering the equations, 

it can be written that: 

𝜎𝑟 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈)𝜀𝑟 + 𝜈𝜀𝜃] 

(4) 

𝜎𝜃 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[𝜈𝜀𝑟 + (1 − 𝜈)𝜀𝜃] 

Substitution of Equation (2) in Equation (4) and then 

replacing the result in Equation (1), the following 

differential equation based on the radial 

displacement variable can be achieved: 

𝑑2𝑢

𝑑𝑟2
+

1

𝑟

𝑑𝑢

𝑑𝑟
−

𝑢

𝑟2
= 0 (5) 

This is a second-order homogenous ordinary 

differential equation known as the Euler–Cauchy 

Equation, which can be converted into one with 
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constant coefficient by substituting. Then the answer 

of the resulting constant coefficient differential 

equation can be obtained by solving an algebraic 

equation known as the characteristic equation [32, 

33]. Finally, the general solution of Equation (5) will 

be in the following form: 

𝑢 = 𝐶1 𝑟 +
𝐶2

𝑟
 (6) 

where 𝐶1  and 𝐶2  are constants, which should be 

determined from the boundary conditions. The point 

is that the displacement of the excavation boundary 

is unknown and should be determined (unknown 

boundary condition). On the other hand, the external 

and internal pressures (stresses) are known. Thus the 

known boundary conditions are:  𝑟 = 𝑎   ⇒  𝜎𝑟 =
𝑃𝑖      &      𝑟 = 𝑏 = ∞  ⇒  𝜎𝑟 = 𝑃𝑜. 

Based on Equation (6), it can be written that: 
𝑑𝑢

𝑑𝑟
=

𝐶1 −
𝐶2

𝑟2  Then by considering Equations (2) and (4) 

and the known boundary conditions, the following 

relations can be written: 

𝜎𝑟(𝑟=𝑎) = 𝑃𝑖 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈) (𝐶1 −

𝐶2

𝑎2)

+
𝜈

𝑎
(𝐶1 𝑎 +

𝐶2

𝑎
)] 

(7) 

𝜎𝑟(𝑟=𝑏→∞) = 𝑃𝑜 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
𝐶1 (8) 

Solving the equations simultaneously for 𝐶1  and 

𝐶2 yields: 

𝐶2 =
(1 + 𝜈)

𝐸
(𝑃𝑜 − 𝑃𝑖)𝑎2 

(9) 

𝐶1 =
(1 + 𝜈)(1 − 2𝜈)

𝐸
𝑃𝑜 

This is obtained by considering the outer boundary 

approaches to infinity (b  ). Then the amount 

of induced radial and tangential stresses can be 

obtained as: 

𝜎𝑟 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[𝐶1 − (1 − 2𝜈)

𝐶2

𝑟2
]   ⇒  𝜎𝑟

= 𝑃𝑜 − (𝑃𝑜 − 𝑃𝑖) (
𝑎

𝑟
)

2

 

(10) 

𝜎𝜃 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[𝐶1 + (1 − 2𝜈)

𝐶2

𝑟2]   ⇒  𝜎𝜃

= 𝑃𝑜 + (𝑃𝑜 − 𝑃𝑖) (
𝑎

𝑟
)

2

 

(11) 

The induced stresses around a circular opening as a 

result of excavation and changing the initial stress 

condition (decreasing the internal boundary pressure 

from 𝑃𝑜  to 𝑃𝑖 ) are solved. These equations have 

been used in many papers in rock engineering such 

as Brown [34]. In the internal boundary ( r a ), the 

induced stresses are𝜎𝑟 = 𝑃𝑖  &  𝜎𝜃 = 2𝑃𝑜 − 𝑃𝑖. In the 

case of zero internal pressure (𝑃𝑖 = 0), the stresses 

will be 𝜎𝑟 = 0  &  𝜎𝜃 = 2𝑃𝑜, which is a very well-

known stress concentration around circular tunnel in 

the hydrostatic stress condition.  

Now the aim is to calculate directly the net 

displacement in the plane strain condition. As it was 

mentioned, the net displacement as a result of 

excavation occurs due to loading (in tangential 

direction) and unloading (in radial direction) in 

comparison to the initial stress conditions. This 

means that in the stress-strain relations, 𝛥𝜎𝑟 = 𝜎𝑟 −
𝑃𝑜and 𝛥𝜎𝜃 = 𝜎𝜃 − 𝑃𝑜 (the stress difference factors 

that cause the net displacement) should be used. 

Considering the plane strain condition (𝜀𝑧 = 0, 𝜎𝑧 =
𝜈(𝜎𝑟 + 𝜎𝜃) ) and Equations (2) and (3), it can be 

written that: 

𝑑𝑢

𝑑𝑟
=

1

𝐸
[(1 − 𝜈2)𝛥𝜎𝑟 − 𝜈(1 + 𝜈)𝛥𝜎𝜃] 

(12) 
𝑢

𝑟
=

1

𝐸
[(1 − 𝜈2)𝛥𝜎𝜃 − 𝜈(1 + 𝜈)𝛥𝜎𝑟] 

Using Equations (10) and (11) and r  and 
 , 

the second relation of Equation (12) can be written 

as: 

𝑢

𝑟
=

1 + 𝜈

𝐸
[(1 − 𝜈)(𝑃𝑜 − 𝑃𝑖) (

𝑎

𝑟
)

2

+ 𝜈(𝑃𝑜 − 𝑃𝑖) (
𝑎

𝑟
)

2

]    ⇒   𝑢

=
1 + 𝜈

𝐸
(𝑃𝑜 − 𝑃𝑖)

𝑎2

𝑟
  

(13) 

Therefore, the net displacement can be obtained 

using Equation (13), which has been used in papers 

such as Brown [34]. In the tunnel boundary, it can be 

written that 𝑟 = 𝑎    ⇒   𝑢 =
1+𝜈

𝐸
(𝑃𝑜 − 𝑃𝑖)𝑎 . 

Equation (13) differs with the thick wall hallow 

cylinder (Lame' solution) displacement, as presented 

in the books by Popov [10] and Ameen [11], in which 

the total stresses has been considered (displacement 

as a result of internal and external boundary loading 

only, without considering the initial stresses effects). 

The procedure developed by Airy [35] and described 

by Timoshenko and Goodier [15] in establishing a 

particular form of the field equation for isotropic 

elasticity and plane strain can be followed to solve 

the problem. The Airy stress function formulation is 

based on the general idea of developing a 

representation for the stress field that satisfies 

equilibrium and yields a single governing equation 

from the compatibility statement. In the polar 

coordinate, the stress components in terms of an Airy 

stress function ( , )r   were defined as [2, 13]:  

𝜎𝑟 =
1

𝑟

𝜕𝜙

𝜕𝑟
+

1

𝑟2

𝜕2𝜙

𝜕𝜃2
 (14) 
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𝜎𝜃 =
𝜕2𝜙

𝜕𝑟2
 

𝜏𝑥𝑦 =
1

𝑟2

𝜕𝜙

𝜕𝜃
−

1

𝑟

𝜕2𝜙

𝜕𝑟𝜕𝜃
 

From these equations and the compatibility 

equations in term of stresses, a fourth-order 

biharmonic partial differential equation in term of 

the function   in cylindrical coordinate can be 

derived [15]: 

(
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2
) (

𝜕2𝜙

𝜕𝑟2
+

1

𝑟

𝜕𝜙

𝜕𝑟
+

1

𝑟2

𝜕2𝜙

𝜕𝜃2
) = 0 

(15) 𝑜𝑟 

𝛻4𝜙 = 0 

The solution to this equation can be obtained by the 

method of separation of variables such as𝜙(𝑟, 𝜃) =
𝑅(𝑟). 𝜓(𝜃), where 𝑅(𝑟) is a function of r only, and 

𝜓(𝜃) is a function of 𝜃  only. The details of the 

complete solution have been given by Little [36], 

although the original development is credited to 

Michell [37]. By selecting a suitable stress function 

that satisfies this equation and considering the 

appropriate boundary condition, the biharmonic 

equation can be solved. Then the stress components 

(stress fields around an opening) will be defined [13, 

15]. For the axi-symmetric problem shown in Figure 

1, the stress distributions do not depend on 𝜃, which 

means that the derivatives of 𝜓 with respect to 𝜃 

is zero. Thus the following equation will be resulted 

from Equation 15: 

𝛻4𝜙 = 0   ⇒   
𝑑4𝜙

𝑑𝑟4
+

2

𝑟

𝑑3𝜙

𝑑𝑟3
−

1

𝑟2

𝑑2𝜙

𝑑𝑟2
+

1

𝑟3

𝑑𝜙

𝑑𝑟
= 0 (16) 

This is an ordinary fourth-order differential equation. 

Using the same solution of Equation (5), the general 

solution can be obtained in the form of: 

𝜙 = 𝐴ln𝑟 + 𝐵𝑟2ln𝑟 + 𝐶𝑟2 + 𝐷 (17) 

In this expression, the constants𝐴, 𝐵, 𝐶 , and 𝐷are 

determined by considering both the requirement for 

uniqueness of displacements and the pressure 

boundary conditions for the problem. The stress 

components are given by [7]: 

𝜎𝑟 =
𝐴

𝑟2
+ 𝐵(2ln𝑟 + 1) + 2𝐶 

(18) 
𝜎𝜃 = −

𝐴

𝑟2
+ 𝐵(2ln𝑟 + 3) + 2𝐶 

𝜏𝑟𝜃 = 0 

It can be shown that uniqueness of displacements 

requires 𝐵 = 0, and the stress components are 𝜎𝑟 =
𝐴

𝑟2 + 2𝐶 and 𝜎𝜃 = −
𝐴

𝑟2 + 2𝐶 . Considering the 

boundary condition as 𝑟 = 𝑎   ⇒  𝜎𝑟 = 𝑃𝑖  and𝑟 =
𝑏  ⇒  𝜎𝑟 = 𝑃𝑜, the constants can be obtained as: 

𝐴 =
𝑃𝑜 − 𝑃𝑖

𝑎2 − 𝑏2
𝑎2𝑏2 

(19) 

2𝐶 =
𝑃𝑖𝑎2 − 𝑃𝑜𝑏2

𝑎2 − 𝑏2
 

Therefore, the induced radial and tangential stresses 

can be determined as: 

𝜎𝑟 =
1

𝑟2

𝑃𝑜 − 𝑃𝑖

𝑎2 − 𝑏2
𝑎2𝑏2 +

𝑃𝑖𝑎2 − 𝑃𝑜𝑏2

𝑎2 − 𝑏2
 (20) 

𝜎𝜃 = −
1

𝑟2

𝑃𝑜 − 𝑃𝑖

𝑎2 − 𝑏2
𝑎2𝑏2 +

𝑃𝑖𝑎2 − 𝑃𝑜𝑏2

𝑎2 − 𝑏2
 (21) 

These are the stress distribution in a thick wall 

hollow cylinder (Lame' problem). Since 𝜏𝑟𝜃 is zero, 

the stress components 𝜎𝑟 and 𝜎𝜃 are the principal 

stresses. As it is considered that the tunnel is located 

in an infinite medium, the limits if these equation 

when 𝑏 → ∞ can be calculated as follow: 

𝜎𝜃 = 𝑃𝑜 + (𝑃𝑜 − 𝑃𝑖) (
𝑎

𝑟
)

2

 

(22) 

𝜎𝑟 = 𝑃𝑜 − (𝑃𝑜 − 𝑃𝑖) (
𝑎

𝑟
)

2

 

These are the same as Equations (10) and (11), 

obtained from the Lame's solution method. As 

explained in the previous section, the net 

displacement can be obtained using Equations (12) 

and (13). The general procedure to solve this 

problem (Figure 1) has been presented in references 

such as Obert and Duvall [2], Ameen [11], and Sadd 

[13]; however, none of them have calculated the net 

displacement.  

Developed by Kolosov [38] and Muskhelishvili [39], 

the complex variable method provides a very 

powerful tool for the solution of many problems in 

elasticity. In this method, the displacements and 

stresses are represented in terms of two analytical 

functions of a complex variable. It is shown that the 

Airy stress function can be expressed as the real part 

of two analytic functions of a complex variable z [12, 

13]. The procedure of obtaining the Airy stress 

function in the complex form is presented in 

Appendix 1, following the procedure presented by 

Sadd [13] and in a different way that Jaeger and 

Cook [12] presented. The Airy stress function can be 

presented in the following complex form: 

𝜙 = 𝜙(𝑧, 𝑧̅) =
1

2
(𝑧𝛾(𝑧)̅̅ ̅̅ ̅̅ + 𝑧̅𝛾(𝑧) + 𝜒(𝑧) + 𝜒(𝑧)̅̅ ̅̅ ̅̅ )

= Re(𝑧̅𝛾(𝑧) + 𝜒(𝑧)) 
(23) 
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where 𝛾(𝑧)  and 𝜒(𝑧)  are the arbitrary complex 

functions, the bar denotes the conjugate complex, 

and Re  is the real part of the different terms.  

As it is presented in Appendix 1, the stresses and 

displacements can also be presented based on the 

assumed complex functions as: 

𝜎𝑥 + 𝜎𝑦 = 2(𝛾′(𝑧) + 𝛾′(𝑧)̅̅ ̅̅ ̅̅ ̅) = 4Re(𝛾′(𝑧)), 

(24) 

𝜎𝑦 − 𝜎𝑥 + 2𝑖𝜏𝑥𝑦 = 2(𝑧̅𝛾″(𝑧) + 𝜓′(𝑧)) 

2𝐺(𝑢 + 𝑖𝑣) = 𝜅𝛾(𝑧) + 𝑧𝛾′(𝑧)̅̅ ̅̅ ̅̅ ̅ − 𝜓(𝑧)̅̅ ̅̅ ̅̅  (25) 

Where 𝜓(𝑧) = 𝜒′(𝑧) , 𝐺 is the shear modulus of 

medium, u  and v  are the displacements in the x 

and y directions, respectively, and 𝜅 = 3 − 4𝜈  is 

for the plane strain condition.  

Using the transformation laws, the stresses and 

displacements in the polar coordinates can be written 

as: 

𝜎𝑟 + 𝜎𝜃 = 𝜎𝑥 + 𝜎𝑦 

(26) 

𝜎𝜃 − 𝜎𝑟 + 2𝑖𝜏𝑟𝜃 = (𝜎𝑦 − 𝜎𝑥 + 2𝑖𝜏𝑥𝑦)𝑒2𝑖𝜃  

𝑢𝑟 + 𝑖𝑣𝜃 = (𝑢 + 𝑖𝑣)𝑒−𝑖𝜃  (27) 

The solution to particular problems in a two 

dimension involves selection of the suitable forms of 

the analytic functions 𝛾(𝑧) and𝜓(𝑧). Many useful 

solutions involve the polynomials in z or 𝑧−1 [7]. 

To solve the problem depicted in Figure 1, the 

following arbitrary analytical functions can be 

chosen: 

𝛾(𝑧) = 𝑐𝑧 

(28) 

𝜓(𝑧) = 𝑑
𝑧⁄  

where c  and d  are the constants that can be in a 

complex form, and will be defined based on the 

boundary conditions. Based on Equations (24) and 

(26), it can be written that: 

𝜎𝑟 + 𝜎𝜃 = 2(𝛾′(𝑧) + 𝛾′(𝑧)̅̅ ̅̅ ̅̅ ̅) = 4Re(𝛾′(𝑧))

= 4Re(𝑐) 
(29) 

𝜎𝜃 − 𝜎𝑟 + 2𝑖𝜏𝑟𝜃 = (𝜎𝑦 − 𝜎𝑥 + 2𝑖𝜏𝑥𝑦)𝑒2𝑖𝜃

= −
2𝑑

𝑧2
𝑒2𝑖𝜃   = −

2𝑑

𝑟2
 

(30) 

   (𝑧 = 𝑟𝑒𝑖𝜃)  

Equating the real and imaginary parts will result in 

𝜏𝑟𝜃 = 0  and 𝜎𝜃 − 𝜎𝑟 = −
2𝑑

𝑟2 . By considering the 

boundary conditions as 𝑟 = 𝑎   ⇒  𝜎𝑟 =
𝑃𝑖      &      𝑟 = 𝑏 = ∞  ⇒  𝜎𝑟 = 𝑃𝑜 , the following 

equation (𝜎𝑟) should be solved to find the constants: 

𝜎𝜃 − 𝜎𝑟 = −
2𝑑

𝑟2
 

(31) 

𝜎𝜃 + 𝜎𝑟 = 4𝑐 ⇒ 𝜎𝑟 = 2𝑐 +
𝑑

𝑟2
 

This will give the constants as:  

2𝑐 =
𝑏2𝑃𝑜 − 𝑎2𝑃𝑖

𝑏2 − 𝑎2
 

(32) 

𝑑 =
(𝑃𝑖 − 𝑃𝑜)𝑎2𝑏2

𝑏2 − 𝑎2
 

This is the same as Equation (19). Then the radial 

and tangential induced stresses can be given as: 

𝜎𝑟 =
𝑏2𝑃𝑜 − 𝑎2𝑃𝑖

𝑏2 − 𝑎2
+

(𝑃𝑖 − 𝑃𝑜)𝑎2𝑏2

𝑏2 − 𝑎2
×

1

𝑟2
 

(33) 

𝜎𝜃 =
𝑏2𝑃𝑜 − 𝑎2𝑃𝑖

𝑏2 − 𝑎2
−

(𝑃𝑖 − 𝑃𝑜)𝑎2𝑏2

𝑏2 − 𝑎2
×

1

𝑟2
 

This is the same as Equations (20) and (21). By 

considering the tunnel excavation in an infinite 

medium (b  ), the following equations will be 

resulted, which are the same as Equations (10) and 

(11). 

𝜎𝑟 = 𝑃𝑜 − (𝑃𝑜 − 𝑃𝑖) (
𝑎

𝑟
)

2

 

(34) 

𝜎𝜃 = 𝑃𝑜 + (𝑃𝑜 − 𝑃𝑖) (
𝑎

𝑟
)

2

 

Equations (25) and (27) can be used to evaluate the 

displacement, as Jaeger and Cook [12] have 

explained in the general solution procedure. 

However, this will not give the net displacement. As 

explained in the previous section, the net 

displacement can be obtained using the explained 

procedure using Equations (12) and (13). 

4. Solutions for non-hydrostatic in situ stress 

In the previous sections, the hydrostatic in situ stress 

condition has been considered. In this section, the 

problem shown in Figure 2 will be considered with 

zero internal pressure. The solution of this problem 

will yield the Kirsch equations. To solve this 

problem, the Airy stress function and the complex 

variable methods will be used (the Lame method 

cannot be used to solve this problem). Then the 

procedure for evaluating the net displacements will 

be presented. 

The general solution of this problem using the Airy 

stress function method has been presented by Obert 

and Duvall [2] using the complex variable method 

given by Jaeger and Cook [12], and using both 

methods explained by Sadd [13]. However, the net 

displacements have not been given the same as the 
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Kirsch solution. In this section, the solutions will be 

reviewed, and this key point will be discussed. 

Finally, the internal pressure effect will also be 

considered. 

4.1. Airy stress function method 

At first, the problem depicted in Figure 2 with zero 

internal pressure is considered. Then the effect of 

internal pressure in a circular hole in an infinite 

medium is superimposed. At a large distance from 

the opening, the polar components of stress will be 

those resulting from the initial stress only. 

Considering the stress transformation laws, the 

stresses at r  are (boundary conditions at 

infinity): 

( ) cos2
2 2

( ) cos2
2 2

( ) sin2
2

h v h v
r r

h v h v
r

h v
r r

P P P P

P P P P

P P





 

 

 







 
 


 

 







 
(35) 

The boundary conditions at tunnel boundary ( r a ) 

are: 

(𝜎𝑟)𝑟=𝑎 = (𝜏𝑟𝜃)𝑟=𝑎 = 0 (36) 

Since the stress distributions depend on  , the 

following Airy stress function may be selected: 

𝜙 = 𝐴′log𝑟 + 𝐵′𝑟2 + (𝐶′𝑟2 + 𝐷′𝑟4 + 𝐸′𝑟−2

+ 𝐹′)cos2𝜃 
(37) 

where 𝐴′, 𝐵′, 𝐶′, 𝐷′, 𝐸′, 𝐹′are constants, which will 

be determined from the boundary conditions. The 

stress components can be determined as: 

𝜎𝑟 =
1

𝑟

𝜕𝜙

𝜕𝑟
+

1

𝑟2

𝜕2𝜙

𝜕𝜃2

=
𝐴′

𝑟2
+ 2𝐵′ + (−2𝐶′

− 6𝐸′𝑟−4 − 4𝐹𝑟−2)cos2𝜃 

(38) 

𝜎𝜃 =
𝜕2𝜙

𝜕𝑟2
= −

𝐴′

𝑟2
+ 2𝐵′ + (2𝐶′ + 12𝐷′𝑟2

+ 6𝐸′𝑟−4)cos2𝜃 

(39) 

𝜏𝑟𝜃 =
1

𝑟2

𝜕𝜙

𝜕𝜃
−

1

𝑟

𝜕2𝜙

𝜕𝑟𝜕𝜃
= (2𝐶′ + 6𝐷′𝑟2 − 6𝐸′𝑟−4

− 2𝐹𝑟−2)sin2𝜃 

(40) 

Combining these equations with the boundary 

conditions, the constants will be determined, and 

then the following equations yield: 

𝜎𝑟 =
𝑃ℎ + 𝑃𝑣

2
(1 −

𝑎2

𝑟2
) +

𝑃ℎ − 𝑃𝑣

2
(1 +

3𝑎4

𝑟4
−

4𝑎2

𝑟2
) cos2𝜃 (41) 

𝜎𝜃 =
𝑃ℎ + 𝑃𝑣

2
(1 +

𝑎2

𝑟2) −
𝑃ℎ − 𝑃𝑣

2
(1 +

3𝑎4

𝑟4 ) cos2𝜃 (42) 

𝜏𝑟𝜃 = −
𝑃ℎ − 𝑃𝑣

2
(1 −

3𝑎4

𝑟4
+

2𝑎2

𝑟2
) sin2𝜃 (43) 

These are the well-known Kirsch equations for the 

induced stresses. 

As it was explained, the net displacements occur due 

to loading and unloading in comparison to the initial 

stress conditions. This means that in the stress-strain 

relations, the stress differences ( 𝛥𝜎𝑟 = 𝜎𝑟 − 𝜎𝑟
∞ , 

𝛥𝜎𝜃 = 𝜎𝜃 − 𝜎𝜃
∞ and 𝛥𝜏𝑟𝜃 = 𝜏𝑟𝜃 − 𝜏𝑟𝜃

∞ ) should be 

used, and thus: 

𝛥𝜎𝑟 = −
𝑃ℎ + 𝑃𝑣

2

𝑎2

𝑟2 +
𝑃ℎ − 𝑃𝑣

2
(

3𝑎4

𝑟4 −
4𝑎2

𝑟2 ) cos2𝜃 (44) 

𝛥𝜎𝜃 =
𝑃ℎ + 𝑃𝑣

2

𝑎2

𝑟2
−

𝑃ℎ − 𝑃𝑣

2
(

3𝑎4

𝑟4
) cos2𝜃 (45) 

𝛥𝜏𝑟𝜃 = −
𝑃ℎ − 𝑃𝑣

2
(−

3𝑎4

𝑟4
+

2𝑎2

𝑟2
) sin2𝜃 (46) 

The strain-displacement relations in a polar system 

are: 

𝜀𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 

(47) 𝜀𝜃 =
𝑢𝑟

𝑟
+

1

𝑟

𝜕𝑣𝜃

𝜕𝜃
 

𝛾𝑟𝜃 =
1

𝑟

𝜕𝑢𝑟

𝜕𝜃
+

𝜕𝑣𝜃

𝜕𝑟
−

𝑣𝜃

𝑟
 

Considering the plane strain condition and Equation 

(47), it can be written that: 

𝜕𝑢𝑟

𝜕𝑟
=

1 + 𝜈

𝐸
[(1 − 𝜈)𝛥𝜎𝑟 − 𝜈𝛥𝜎𝜃] (48) 

𝑢𝑟

𝑟
+

1

𝑟

𝜕𝑣𝜃

𝜕𝜃
=

1 + 𝜈

𝐸
[(1 − 𝜈)𝛥𝜎𝜃 − 𝜈𝛥𝜎𝑟] (49) 

1

𝑟

𝜕𝑢𝑟

𝜕𝜃
+

𝜕𝑣𝜃

𝜕𝑟
−

𝑣𝜃

𝑟
=

2(1 − 𝜈)

𝐸
𝛥𝜏𝑟𝜃 (50) 

Integration of these equations and finding the 

integration constants based on the boundary 

conditions (the constants will be zero following the 

same procedure presented by Obert and Duvall), the 

displacements are given by: 

𝑢𝑟 =
1 + 𝜈

𝐸

𝑎2

𝑟
[
𝑃ℎ + 𝑃𝑣

2
+

𝑃ℎ − 𝑃𝑣

2
(4(1 − 𝜈) −

𝑎2

𝑟2
) cos2𝜃] (51) 

𝑣𝜃 = −
1 + 𝜈

𝐸

𝑃ℎ − 𝑃𝑣

2

𝑎2

𝑟
[2(1 − 2𝜈) +

𝑎2

𝑟2] sin2𝜃 (52) 
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where 𝑢𝑟 is the radial inward displacement and 𝑣𝜃 

is the tangential displacement (Figure 2). These are 

the net displacement relations (Kirsch solution) 

around a circular opening, which are different from 

the relations presented by Obert and Duvall [2] and 

Jaeger and Cook [12]. It should be noted that due to 

the assumed directions for the displacements, in 

some references such as Hudson [6], there is a 

negative sign difference in the 𝑢𝑟  and 𝑣𝜃 

equations.  

In the case that there is an internal pressure,  𝑃𝑖 , 

superposition can be used to evaluate the induced 

stresses and displacements. Simply, consider a 

pressurized hole in an infinite medium. The solution 

to this problem can be easily determined from the 

general case of the Lame' problem by choosing 𝑃𝑜 =
0  and 𝑏 → ∞  (Figure 1). Thus the following 

equations can be written: 

𝜎𝑟 = 𝑃𝑖 (
𝑎

𝑟
)

2

 

(53) 𝜎𝜃 = −𝑃𝑖 (
𝑎

𝑟
)

2

 

𝑢 = −
1 + 𝜈

𝐸
𝑃𝑖

𝑎2

𝑟
 

These relations can be superimposed to Equations 

(41), (42), and (51), respectively, for considering the 

effect of the internal pressure in the Kirsch solution. 

4.2. Complex variable method 

The problem depicted in Figure 2 with zero internal 

pressure is considered. Following the analytical 

functions, it can be assumed that: 

𝛾(𝑧) =
𝑃ℎ + 𝑃𝑣

4
(𝑧 +

𝐴″

𝑧
) 

(54) 

𝜓(𝑧) = 𝜒′(𝑧) =
𝑃𝑣 − 𝑃ℎ

2
(𝑧 +

𝐵″

𝑧
+

𝐶″

𝑧3
) 

where , ,A B C    are the real constants. By 

differentiation with respect to 𝑧(𝑧 =

𝑟𝑒𝑖𝜃),𝛾′
𝑧,𝛾′

𝑧
̅̅ ̅̅ , 𝛾″

𝑧, and 𝜓′
𝑧 can be obtained. Based 

on Equations (24) and (26), and using the Euler 

formula ( 𝑒𝑖𝜃 = cos𝜃 + 𝑖sin𝜃 ), the following 

equations yield: 

𝜎𝑟 + 𝜎𝜃 = (𝑃ℎ + 𝑃𝑣)(1 −
𝐴″

𝑟2
cos2𝜃) (55) 

𝜎𝜃 − 𝜎𝑟 = −(𝑃𝑣 − 𝑃ℎ)
𝐵″

𝑟2

+ [(𝑃𝑣 − 𝑃ℎ) + (𝑃ℎ + 𝑃𝑣)
𝐴″

𝑟2
− (𝑃𝑣

− 𝑃ℎ)
3𝐶″

𝑟4
] cos2𝜃 

(56) 

𝜏𝑟𝜃 = [−
𝑃ℎ + 𝑃𝑣

2

𝐴″

𝑟2 +
𝑃𝑣 − 𝑃ℎ

2
(1 +

3𝐶″

𝑟4 )] sin2𝜃 (57) 

Solving equations (55) and (56) simultaneously 

results: 

𝜎𝑟 =
𝑃ℎ + 𝑃𝑣

2
+

𝑃𝑣 − 𝑃ℎ

2

𝐵″

𝑟2

− [(𝑃ℎ + 𝑃𝑣)
𝐴″

𝑟2

+
𝑃𝑣 − 𝑃ℎ

2
(1 −

3𝐶″

𝑟4 )] cos2𝜃 

(58) 

𝜎𝜃 =
𝑃ℎ + 𝑃𝑣

2
−

𝑃𝑣 − 𝑃ℎ

2
[
𝐵″

𝑟2 + (−1 +
3𝐶″

𝑟4 ) cos2𝜃] (59) 

For zero radial pressure on the opening wall at 

r a , the boundary conditions are 𝜎𝑟 = 0 

and 𝜏𝑟𝜃 = 0 , which allow determination of the 

constants as: 

𝐴″ = −
𝑃𝑣 − 𝑃ℎ

𝑃ℎ + 𝑃𝑣

2𝑎2 

(60) 
𝐵″ = −

𝑃ℎ + 𝑃𝑣

𝑃𝑣 − 𝑃ℎ

𝑎2 

𝐶″ = −𝑎4 

Finally, the so-called Kirsch stress equations yield 

the bi-axially in situ stress condition, the same as 

Equations (41), (42), and (43). 

It should be noted that this solution is a little bit 

different from the solution presented by Jaeger and 

Cook, in which a uniaxially stressed plane was taken 

into account, and then superposition was used for 

considering the biaxial stress condition. 

Using Equations (25) and (27), Jaeger and Cook [12] 

evaluated displacements around the opening, which 

are not net displacements (the displacements as a 

result of initial stresses should be subtracted). To the 

contrary, after calculating the induced stresses, 

Equations (47) through (52) can be used for 

determining the net displacements. As explained 

earlier, the internal pressure effect can be considered 

using the superposition theorem. 

5. Examples 

In order to demonstrate the presented analytical 

method for determining the net displacement directly 

and show the differences with the analytical methods 

presented in the aforementioned references (for 

displacement around a tunnel), some examples are 

solved with assumed rock mass parameters and in 

situ stresses. As a case in example, a tunnel (a = 1 m) 

situated in the hydrostatic condition (Po = 10 MPa) 

with internal pressure (Pi = 0.5 MPa), and elastic 

rock mass parameters as E = 5000 MPa, and   = 
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0.25 are considered. As shown in Figure 3, the 

analytical solutionss presented in the references give 

a total displacement that comprises the initial stress 

effects on the displacement (initial displacement). 

This displacement increases with increase in the 

distance from the tunnel wall, which can be 

misleading. To the contrary, based on the presented 

method for directly determining the net displacement 

as a result of excavation, the net displacement is 

maximum in the tunnel wall and decreases inside the 

rock mass. The initial displacements as a result of in 

situ stresses can be determined by subtracting the net 

displacement from the total one.  

In order to compare the analytical results with the 

numerical results (for the purpose of validation of the 

proposed solution), a numerical modelling was done 

using the Phase 2 finite element software. The 4-

Nodes quadrilateral mesh type with small 

dimensions are considered to get the accurate results 

[40]. In Figure 3, the results of the numerical 

analyses are shown along with the analytical results, 

which shows a good agreement. 

It is worthwhile to mention that in the numerical 

modeling, an initial displacement also occurs, which 

is usually set to zero to get the net displacements as 

a result of excavation only. 

To see the effect of rock mass elastic parameter 

change on the displacements, two different rock 

mass types are considered. The result is shown in 

Figure 4. As it can be seen, the general trends for the 

net displacement are similar but the amount is 

different. The same procedure can be shown for the 

non-hydrostatic in situ stress conditions. 

 
Figure 3. Net elastic displacement and total elastic displacements as a result of the excavation-hydrostatic in situ 

stress. 

 
Figure 4. Displacements around a circular tunnel with two assumed rock mass types in the hydrostatic in situ 

stress. 
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6. Conclusions 

Linear elasticity has been applied in many aspects of 

rock mechanics in order to understand the basic 

concepts, especially the stress and strain 

relationships such as their distribution around an 

excavated tunnel. However, there are some subtle 

points that can be misleading in its application in 

geomechanics. Directly determining the elastic net 

displacements, as a case in example, was presented 

in this work. Although the procedure for calculating 

the displacements and induced stresses around a 

circular tunnel in elastic condition is given in the 

literature, the net displacements have not been 

highlighted or even presented directly. Moreover, in 

some literature, as a result of considering the effect 

of the in situ (initial) stresses, the presented 

equations for calculating displacements around a 

circular tunnel differ from the Kirsch equations, 

which can be misleading in tunneling. This happens 

by mainly neglecting the geomechanics viewpoint in 

the application of linear elasticity.  

In this paper, determining the induced stresses and 

net displacements around a circular tunnel in a 

biaxially loaded plate of homogeneous, isotropic, 

continuous, linearly elastic material in plain strain 

condition are reviewed and presented using different 

methods analytically and with the application of 

linear elasticity. Three solution methods including 

the Lame' method (hollow cylinder using strength of 

material), airy stress function method, and complex 

variable method are used for both the hydrostatic and 

non-hydrostatic in situ stresses in 2D biaxial loading 

condition. Presenting the Kirsch solution 

comprehensively, both loading and unloading in the 

tangential and radial directions, respectively, in 

tunneling (differences between induced stresses and 

initial stresses as a result of circular tunnel 

excavation) has been considered in equations, based 

on which, the net displacements can be calculated 

directly. Although most of the mathematical 

solutions may be found in the reference textbooks 

involving elasticity, these methods are presented by 

emphasis on loading and unloading around circular 

opening as a result of excavation. Actually, it is 

highlighted that in tunneling instead of only 

mechanical viewpoint, the ground real condition due 

to the existence of in situ stresses before excavation 

should be considered in determining the net 

displacements. 
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Appendix 

The Sadd (2009) procedure is used to present the 

Airy stress function and stress components in 

complex forms. In complex functions, the following 

relations exist: 

𝑧 = 𝑥 + 𝑖𝑦, 𝑧̅ = 𝑥 − 𝑖𝑦𝑥 =
1

2
(𝑧 + 𝑧̅), 𝑦 =

1

2
(𝑧 − 𝑧̅) 

To differentiate a complex function relative to x  

and y : 

𝜕()

𝜕𝑥
=

𝜕()

𝜕𝑧

𝜕𝑧

𝜕𝑥
+

𝜕()

𝜕�̅�

𝜕�̅�

𝜕𝑥
=

𝜕()

𝜕𝑧
+

𝜕()

𝜕�̅�
,  

𝜕()

𝜕𝑦
=

𝜕()

𝜕𝑧

𝜕𝑧

𝜕𝑦
+

𝜕()

𝜕�̅�

𝜕�̅�

𝜕𝑦
=

𝑖(
𝜕()

𝜕𝑧
−

𝜕()

𝜕�̅�
) 

The Laplacian operator in complex form is: 

𝛻2() =
𝜕2()

𝜕𝑥2 +
𝜕2()

𝜕𝑦2 =
𝜕

𝜕𝑥
(

𝜕()

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜕()

𝜕𝑦
) 

(
𝜕

𝜕𝑧
+

𝜕

𝜕𝑧̅
) (

𝜕()

𝜕𝑧
+

𝜕()

𝜕𝑧̅
) − (

𝜕

𝜕𝑧
−

𝜕

𝜕𝑧̅
) (

𝜕()

𝜕𝑧
−

𝜕()

𝜕𝑧̅
) = 4

𝜕2()

𝜕𝑧𝜕𝑧̅
 

This is the harmonic operator. Then the biharmonic 

operator will be 𝛻2𝛻2() = 16
𝜕2()

𝜕𝑧2𝜕�̅�2. 

The idea is to represent the Airy stress function in 

terms of functions of a complex variable and 

transform the plane problem into one involving the 

complex variable theory. Using the above relations, 

the variables 𝑥 and 𝑦 can be expressed in terms of 

𝑧  and 𝑧̅ , and thus functions of 𝑥  and 𝑦 can be 

expressed as functions of 𝑧  and𝑧̅ . Applying this 

concept to the Airy stress function, it can be written 

that 𝜙 = 𝜙(𝑧, 𝑧̅) . Therefore, the governing 

biharmonic elasticity equation is
𝜕4𝜙

𝜕𝑧2𝜕�̅�2 = 0.  

To solve this equation, integration should be done. In 

each stage, the integration constant will be 

considered as a function of the other variable, as 

follow: 
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𝜕3𝜙

𝜕𝑧2𝜕�̅�
= 𝑎(𝑧)  

𝜕2𝜙

𝜕𝑧𝜕�̅�
= ∫ 𝑎(𝑧)𝑑𝑧 + 𝑏(𝑧̅) = 𝑐(𝑧) + 𝑏(𝑧̅)𝜕𝜙

𝜕𝑧
= 𝑧̅𝑐(𝑧) + ∫ 𝑏(𝑧̅)𝑑𝑧̅ + 𝑑(𝑧) = 𝑧̅𝑐(𝑧) +

𝑒(𝑧̅) + 𝑑(𝑧)  𝜙 = 𝑧̅∫ 𝑐(𝑧)𝑑𝑧 + 𝑧𝑒(𝑧̅) + ∫ 𝑑(𝑧)𝑑𝑧 + 𝑓(𝑧̅) = 𝑧̅𝑔(𝑧) + 𝑧𝑒(𝑧̅) + ℎ(𝑧) + 𝑓(𝑧̅) 

 

Since the Airy stress function ( ) should be real, 

thus: 

𝜙 = Re[𝑧̅𝑔(𝑧) + 𝑧𝑒(𝑧̅) + ℎ(𝑧) + 𝑓(𝑧̅)]  

Re[𝑧̅𝑔(𝑧)] =
1

2
[𝑧̅𝑔(𝑧) + 𝑧𝑔(𝑧̅)], Re[𝑧𝑒(𝑧̅)] =

1

2
[𝑧𝑒(𝑧̅) + 𝑧̅𝑒(𝑧)] 

Re[ℎ(𝑧) + 𝑓(𝑧̅)] =
1

2
[ℎ(𝑧) + ℎ(𝑧̅) + 𝑓(𝑧̅) + 𝑓(𝑧)]  

𝜙 =
1

2
[𝑧̅𝑔(𝑧) + 𝑧𝑔(𝑧̅) + 𝑧𝑒(𝑧̅) + 𝑧̅𝑒(𝑧) + ℎ(𝑧) + ℎ(𝑧̅) + 𝑓(𝑧̅) + 𝑓(𝑧)]  

𝜙 =
1

2
(𝑧(𝑔(𝑧̅) + 𝑒(𝑧̅)) + 𝑧̅(𝑔(𝑧) + 𝑒(𝑧)) + (ℎ(𝑧) + 𝑓(𝑧)) + (ℎ(𝑧̅) + 𝑓(𝑧̅))) 

Considering 𝛾(𝑧) = 𝑔(𝑧) + 𝑒(𝑧)  and 𝜒(𝑧) =
ℎ(𝑧) + 𝑓(𝑧) , the Airy stress function in complex 

form will be 𝜙(𝑧, 𝑧̅) =
1

2
(𝑧𝛾(𝑧)̅̅ ̅̅ ̅̅ + 𝑧̅𝛾(𝑧) + 𝜒(𝑧) +

𝜒(𝑧)̅̅ ̅̅ ̅̅ ) = Re(𝑧̅𝛾(𝑧) + 𝜒(𝑧)). 

This is Equation (27) presented in the paper. To 

obtain the stress components: 

  

 

𝜎𝑥 =
𝜕2𝜙

𝜕𝑦2
= − (

𝜕

𝜕𝑧
−

𝜕

𝜕𝑧̅
) (

𝜕

𝜕𝑧
−

𝜕

𝜕𝑧̅
) 𝜙 = − (

𝜕2𝜙

𝜕𝑧2
− 2

𝜕2𝜙

𝜕𝑧𝜕𝑧̅
+

𝜕2𝜙

𝜕𝑧̅2
) 

𝜎𝑦 =
𝜕2𝜙

𝜕𝑥2
= (

𝜕

𝜕𝑧
+

𝜕

𝜕𝑧̅
) (

𝜕

𝜕𝑧
+

𝜕

𝜕𝑧̅
) 𝜙 = (

𝜕2𝜙

𝜕𝑧2
+ 2

𝜕2𝜙

𝜕𝑧𝜕𝑧̅
+

𝜕2𝜙

𝜕𝑧̅2
) 

𝜎𝑥 + 𝜎𝑦 = 4
𝜕2𝜙

𝜕𝑧𝜕𝑧̅
= 2[𝛾′(𝑧) + 𝛾′(𝑧)̅̅ ̅̅ ̅̅ ̅] 

𝜎𝑦 − 𝜎𝑥 = 2 (
𝜕2𝜙

𝜕𝑧2
+

𝜕2𝜙

𝜕𝑧̅2
) 

𝜏𝑥𝑦 = −
𝜕2𝜙

𝜕𝑥𝜕𝑦
= −𝑖 (

𝜕

𝜕𝑧
+

𝜕

𝜕𝑧̅
) (

𝜕

𝜕𝑧
−

𝜕

𝜕𝑧̅
) 𝜙 = −𝑖 (

𝜕2𝜙

𝜕𝑧2
−

𝜕2𝜙

𝜕𝑧̅2
) 

𝜎𝑦 − 𝜎𝑥 + 2𝑖𝜏𝑥𝑦 = 4
𝜕2𝜙

𝜕𝑧2
= 2[𝑧̅𝛾″(𝑧) + 𝜓′(𝑧)] 
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¢Åv Ă¤å¾ñ ½v¾é ā¹wæ¤LÅv ¹½Āù Ìõw· Ĉĉw¬zw« üĊĊÞ£ ½¹ ĂĊõÿv Èþ£ wz Ĉĉwêõv Èþ£ ãwö¤·v āv¾úă Ăz ¿v ĈÉwý Ìõw· Ĉĉw¬zw« ãwö¤·v û¹v¹ ûwÊý ½ĀÚþù Ăz wĄ¤ýv ½¹ )

Èþ£ ¾Ċ§w£ Ăí ôí Ĉĉw¬zw« ÿ ć½wæ³Ĉù ¾Úý ½¹ v½ ĂĊõÿv ćwăów¨ù I¹¾Ċñ)¢Åv āºÉ ĂÆĉwêù ĈöĊö´£ Çÿ½ ªĉw¤ý wz ÿ āºÉ ô³ ć¹ºÝ ćwă 

5ćºĊöí ¡wúöí ā¾ĉv¹ ôýĀ£ IĈÖ· Ă¤ĊÆĊ¤ÅwõvćwĄÉÿ½ IìĊ¤Åwõv ÔĊ´ù IÌõw· Ĉĉw¬zw« Ićv )ĈöĊö´£ 

 

 

 

 


