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Abstract

Displacements around a tunnel, occurring as a result of excavation, consist of the elastic
and plastic parts. In this paper, we discuss the elastic part of displacements as a result of
excavation, called net displacement. In general, the previous analytical solutions
presented for determining the displacements around a circular tunnel in an elastic medium
do not give the net displacements directly. The well-known Kirsch solution is the most
widely used method for determining the induced stresses and net displacements around a
circular opening in a biaxially-loaded plate of homogeneous, isotropic, continuous,
linearly elastic material. However, the complete solution for obtaining the net
displacements has not been presented or highlighted in the available literature. Using the
linear elasticity, this paper reviews and presents three different analytical methods for
determining the net displacements directly as well as induced stresses around a circular
tunnel. The three solution methods are the Lame' method, airy stress function method, and
complex variable method. The tunnel is assumed to be situated in an elastic, continuum,
and isotropic medium in the plane strain condition. The solutions are presented for both
the hydrostatic and non-hydrostatic in situ stresses in the 2D biaxial loading condition
along with an internal pressure. Loading and unloading in tunneling occurring as a result
of excavation and stress differences between the induced and initial ones are considered
to evaluate the net displacements directly. Finally, some examples are given to
demonstrate the complete solution and show the difference between the net elastic
displacements as a result of excavation and total elastic displacements that are not real.
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1. Introduction

Determining the induced stresses and displacement
fields around a circular opening (for example a
circular tunnel) as a result of excavation has always
been an interesting topic in tunneling, mining,
petroleum, and civil engineering. Although the
numerical methods such as the finite element method
are often used these days to calculate the stresses and
displacements around openings, the analytical
methods (mainly by use of linear elasticity) for
simplified shapes such as cylindrical (circular)
excavation are highly useful in understanding the
effect of a particular parameter on the results (for
instance, the effect of rock mass deformation
modulus on displacements around a circular
opening). Although in reality, rock masses are not
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actually linearly elastic, a rock mass behaves as
linearly elastic for incremental stress changes. This
approximation in rock mechanics is accurate enough
for solving the problems like determining the stress-
strain relationships in a rock mass.

In 1898, Kirsch has presented equations for
determining the stresses in an infinite plate with a
circular hole located in a biaxially-loaded
homogeneous, isotropic, continuous, and linearly
elastic material. This analytical solution has been
widely used in different geotechnical and rock
mechanical problems, and it is also much treated in
the textbooks of rock mechanics and elasticity theory
[1, 2]. Using the equations, a deep understanding of
the physics related to the rock mechanical issues can
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be achieved. However, in most textbooks [3-7], only
the last equations are presented and the procedure for
obtaining the equations is not  given
comprehensively in detail.

Although the procedure for obtaining the stress and
displacement fields around a circular hole
(hydrostatic or non-hydrostatic in situ stress
conditions) have been presented in some other
reference books [2, 8-13], the net displacements
around a circular tunnel (the displacements as a
result of excavation only) has not been highlighted
or even considered in these books. In fact, the
equations presented for evaluating the displacements
around a circular tunnel differ from the Kirsch
equations. On the other hand, the total displacements
that consider the in situ stress effect before
excavation is taken in to account, which can be
misleading in tunneling.

Determination of ground displacements produced by
excavation of circular opening (net displacements as
a result of excavation only) is one of the most
important problems associated with tunneling. As a
case in example, an effective method for monitoring
an underground opening is to measure the relative
displacements of points on the walls at surface or at
different depths. Considering the fact that elastic
displacement is some part of total displacement and
to interpret such data, it is helpful and necessary to
know the magnitudes of displacements associated
with the elastic behavior [5,14].

The problem of a circular opening in an infinite
continuum medium and the stress and displacements
fields around the opening as a result of excavation
(tunneling) includes both the loading and unloading
in the tangential and radial directions, respectively.
Actually, it is the stress differences (between the
original one and the current induced one that may be
increased or decreased) that cause the net
displacements, not the current induced stress field.
This is a very subtle key point in determining the net
displacements.

The reference textbooks such as those by
Timoshenko and Goodier [15] may be used to fully
understand the elasticity and related methods of the
analysis of stress and strain around a circular
opening. However, it should be noted that after
excavation, only net displacements must be
considered in the analysis related to tunneling. For
example, in the analysis of the rock bolt-ground
interaction, the net displacements will affect the rock
bolts since they are installed after excavation, and the
initial displacements originated by the constant far
field stress do not affect the rock bolts. This has been
considered by some researchers such as Bobet [16].
Also in evaluating the stresses and displacements
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around a circular tunnel in the elastic-plastic
conditions, the elastic net displacements that are
some part of the total displacements should be used
in the analysis. In many published papers [14, 16—
30], the net displacements have been used in the
analyses, mainly in the hydrostatic in situ stress
condition. However, the procedure for obtaining the
net displacements has not been explained in detail.
Einstein and Schwartz [31] have presented a solution
for the net displacements of tunnel as a result of
excavation only. They called this displacement the
incremental displacement, which has been evaluated
by subtracting the displacement as a result of initial
stresses from the one as a result of the current
induced stresses. Bobet [16] has also used the same
procedure in the elastic solution for deep tunnels.
This procedure may not be convenient in the stress-
strain analysis. Thus a direct solution for obtaining
the net displacement is presented in this paper.

In this work, three methods were used for
determining the net displacements induced as well as
the induced stresses around a circular opening in the
elastic condition. These methods are as follow:

A. Lame' method (hollow cylinder using strength of
material);

B. Airy stress function method,;

C. Complex variable method.

Although most of the mathematical skills and
solutions may be found in the reference textbooks
involving elasticity, these methods are reviewed and
presented in detail to evaluate directly the net
displacements around a circular tunnel by emphasis
on the loading and unloading around circular
opening as a result of excavation. Actually it is
emphasized that in tunneling instead of only the
mechanical viewpoint, the ground real condition due
to the existence of in situ stresses before excavation
should be considered (rock mechanical instead of
only mechanical viewpoint).

All the three methods are used for the hydrostatic in
situ stress condition, and the last two methods are
used for the non-hydrostatic in situ stress condition.
Finally, calculating the net displacements is
discussed in each method and some examples are
presented for clarity.

2. Problem definition and assumptions

A circular tunnel with internal radius, a, located in an
elastic, homogenous, isotropic material in the plane
strain condition is considered. Both the hydrostatic
in situ stress (Figure 1) and non-hydrostatic in situ
stress (Figure 2) conditions are taken in to account in
the analyses.
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In the hydrostatic in situ stress condition, before
excavation, the in situ (initial) stress P, exists. After

excavation, the amount of P, will decrease and

increase in the radial and tangentially directions,
respectively, in the vicinity of the tunnel (induced
stresses will emerge). The inner pressure P, may

exist due to the tunnel face confinement effect (along
the tunnel axis), support pressure or internal fluid
pressure. The plane strain condition is assumed in
this problem, which means that the strains occur in
the plane shown in Figure 1. Moreover, the problem
is axi-symmetric, meaning that the radial and

tangential induced stresses (o, , g, ) in the rock mass

around tunnel are principal stresses. Assuming that
the stresses along the tunnel axis remain the mean
principal stresses, o, and o, will be the minimum and

the maximum principal stresses, respectively. In the
non-hydrostatic in situ stress condition, before
excavation, the in situ stresses in the horizontal and
vertical directions are o}, and g, , which differ from

each other in two directions. The parameter K is
defined as the horizontal to vertical stress ratio
(initially).

dr

+ r

Figure 1. Problem geometry in hydrostatic in situ stress condition.
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Figure 2. Problem geometry in non-hydrostatic in situ stress condition.

The main purpose in this problem is to obtain
directly the elastic net displacements around a
circular tunnel using the elasticity and different
analytical methods in the hydrostatic and non-
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hydrostatic stress conditions. In this problem, the
compression pressures (stresses) are assumed to be
positive and the displacements inward the
excavation are considered positive. This is an
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assumption in this problem and, in some other
references, the positive directions of displacements
are assumed in the opposite directions (thus the final
equation differs in a negative sign).

3. Solutions for hydrostatic in situ stress

In the hydrostatic in situ stress condition, three
methods will be used to solve the problem, as follow:
A- Lame' solution (hollow cylinder using strength of
material):

In this method, using the stress equilibrium
equations, strain compatibility, and properties of
material, a differential equation is obtained. Then
using the boundary conditions, the differential
equation is solved and the radial and tangential
stresses around tunnel are evaluated. Then
considering the strain-stress relations in the plane
strain condition and axi-symmetric assumption, the
net displacements around the tunnel are determined
as a result of excavation. This problem was
originally solved by Lame in 1833 and referred to as
the Lame' problem [10, 11]. In this work, the stresses
and net displacements will be evaluated in an infinite
medium (infinite outer boundary, b — o).

B- Airy stress function method:

In this method, a stress function (called the Airy
stress function) that satisfies the biharmonic
compatibility equation is selected. Based on this
function, the stresses around an opening (tunnel) are
determined. Then using the stress-strain relations
and the boundary condition, the net displacements
are defined.

C- Complex variable method:

This method provides a very powerful tool for the
solution of many problems in elasticity. In this
method, the stresses and displacements are defined
based on two complex variable functions that satisfy
the equilibrium equations and the Hook's law. It
should be mentioned that due to the geometry of the
problem, the cylindrical (polar) coordinate will be
used to solve the problem. Since the cylinder is long,
every ring of unit thickness measured perpendicular
to the plane of paper is stress alike [10]. For the case
of tunneling in infinite media, the limit of radius b
will be considered as infinite. Moreover, the gravity
is not considered to maintain the axi-symmetric
condition.

3.1 Lame' solution (hollow cylinder using strength of
material)

Although the Lame's solution is presented in the
reference books published by Popove [10] and
Ameen [11], a detailed solution is reviewed and
presented here with the geological, rock mechanics,
and tunnelling viewpoint to calculate the net
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displacements as a result of excavation. Each
infinitesimal element selected in a ring around a
circular opening should be in a static equilibrium. By
summing the forces and moments on a 2D element
(as shown in Figure 1), the stress equilibrium
equation can be obtained as:

do,
dr

where o, and oy are the radial and tangential
stresses, respectively, and r is the distance of the
element from the tunnel center. This equation has
two unknown stresses and requires to be written
based on one unknown, so it can be solved.

The radial and tangential strains occur as a result of
radial displacement. Due to the axi-symmetric nature
of the problem, the strain-displacement relations can
be written as:

0, — Opg

0 1)

r

& =1 &
&7 T ar

_du

O]

where ¢, and &g are the radial and tangential
strains, respectively, and U is the radial
displacement in the distance r from the tunnel
center. The generalized Hooke's law relating strains
to stress is given in the following expressions:

& = %[O-T - V(O-G + O-Z)]
1

€ =% log —v(o, + 0,)] ©))
1

& = E [O-z - V(ar + 0-9)]

where ¢, is the stress along the tunnel axis, and E
and v are the elastic modulus and Poisson’s ratio
of rock material. Due to the plane strain
condition, e, = 0 , which means o, = v(a, + agy).
Thus by recalculating and reordering the equations,
it can be written that:

o [(1 =V +vep)

T a+v(d-2v)

(4)
E

Ta+va-2v)

Substitution of Equation (2) in Equation (4) and then
replacing the result in Equation (1), the following

o [ve, + (1 —v)gy]

differential equation based on the radial
displacement variable can be achieved:

d’u 1ldu u

g (®)
dr? rdr r?

This is a second-order homogenous ordinary

differential equation known as the Euler—Cauchy
Equation, which can be converted into one with
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constant coefficient by substituting. Then the answer
of the resulting constant coefficient differential
equation can be obtained by solving an algebraic
equation known as the characteristic equation [32,
33]. Finally, the general solution of Equation (5) will
be in the following form:

C
u=(]1r+?2 (6)

where C; and C, are constants, which should be
determined from the boundary conditions. The point
is that the displacement of the excavation boundary
is unknown and should be determined (unknown
boundary condition). On the other hand, the external
and internal pressures (stresses) are known. Thus the
known boundary conditions are: r=a = o, =
P, & r=b=ow = g,=P,.

Based on Equation (6), it can be written that:‘;—‘r‘ =
Ccl1- % Then by considering Equations (2) and (4)
and the known boundary conditions, the following
relations can be written:

_p - E _ _&e
Irir=a) = Fi = A+v)Q-2v) [(1 v) (Cl a2> )
+=(c a+%)]
a 1 a
=P = E C 8
Orr=boo) = Fo = Ty A — oy 1 (8)

Solving the equations simultaneously for C; and
C, vyields:

¢, = (1 +v)

(P, — P,)a?
©)
1+v)A-2v)
s
This is obtained by considering the outer boundary
approaches to infinity (b — ). Then the amount

of induced radial and tangential stresses can be
obtained as:

___E c,
" =amasmla w2 e (10)
2
-
— E C,
= mrma=m|a T a5 = (11)
2

=Po+(Po_Pi)(g)

The induced stresses around a circular opening as a
result of excavation and changing the initial stress
condition (decreasing the internal boundary pressure
from P, toP;) are solved. These equations have
been used in many papers in rock engineering such
as Brown [34]. In the internal boundary (r =a), the
induced stresses areo,. = P; & a9 = 2P, — P;. Inthe
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case of zero internal pressure (P; = 0), the stresses
will be g, = 0 & g9 = 2P,, which is a very well-
known stress concentration around circular tunnel in
the hydrostatic stress condition.

Now the aim is to calculate directly the net
displacement in the plane strain condition. As it was
mentioned, the net displacement as a result of
excavation occurs due to loading (in tangential
direction) and unloading (in radial direction) in
comparison to the initial stress conditions. This
means that in the stress-strain relations, 4o, = g, —
P,and Aoy = g9 — P, (the stress difference factors
that cause the net displacement) should be used.
Considering the plane strain condition (¢, = 0,0, =
v(o, + 0g) ) and Equations (2) and (3), it can be
written that:

du

1
o 1= V)0, —v(1 +v)day]

(12)
[(1=v®A06s —v(1 +v)A0,]

mIH

Using Equations (10) and (11) and Ao, and Ag,,

the second relation of Equation (12) can be written
as:

u_ 1+v

Zla-we-r )
+v(P, — P) (;)2] > u

1+v a?
_(Po_Pi)T

(13)

Therefore, the net displacement can be obtained
using Equation (13), which has been used in papers
such as Brown [34]. In the tunnel boundary;, it can be

written that r=a = u= ﬂ(P —P)a
Equation (13) differs with the thlck wall hallow
cylinder (Lame' solution) displacement, as presented
in the books by Popov [10] and Ameen [11], in which
the total stresses has been considered (displacement
as a result of internal and external boundary loading
only, without considering the initial stresses effects).
The procedure developed by Airy [35] and described
by Timoshenko and Goodier [15] in establishing a
particular form of the field equation for isotropic
elasticity and plane strain can be followed to solve
the problem. The Airy stress function formulation is
based on the general idea of developing a
representation for the stress field that satisfies
equilibrium and yields a single governing equation
from the compatibility statement. In the polar
coordinate, the stress components in terms of an Airy
stress function ¢(r,d) were defined as [2, 13]:

19¢ 1%

“ar Tra0z (14)

oy =
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9%¢

Og = W
109 1%
vy =230 " roroe

From these equations and the compatibility
equations in term of stresses, a fourth-order
biharmonic partial differential equation in term of
the function ¢ in cylindrical coordinate can be

derived [15]:

2 19 1 02\[d% 1d¢ 13%

— ettt s |s ot 5 | =0

ar2  ror r2d0%2J\or? rodr r2d02
or (15)
|74¢ =0

The solution to this equation can be obtained by the
method of separation of variables such as¢(r, 0) =
R(r).y(60), where R(r) is a function of r only, and
Y(0) is a function of 6 only. The details of the
complete solution have been given by Little [36],
although the original development is credited to
Michell [37]. By selecting a suitable stress function
that satisfies this equation and considering the
appropriate boundary condition, the biharmonic
equation can be solved. Then the stress components
(stress fields around an opening) will be defined [13,
15]. For the axi-symmetric problem shown in Figure
1, the stress distributions do not depend on 8, which
means that the derivatives of iy with respect to 6
is zero. Thus the following equation will be resulted
from Equation 15:

d*¢ 2d°¢ 1d*¢ 1dp
dr*  rdr3 r2dr? r3dr
This is an ordinary fourth-order differential equation.

Using the same solution of Equation (5), the general
solution can be obtained in the form of:

Vi =0 = o (16)

¢ = Alnr + Br?lnr + Cr* + D (17)

In this expression, the constants4, B,C, and Dare
determined by considering both the requirement for
uniqueness of displacements and the pressure
boundary conditions for the problem. The stress
components are given by [7]:

A
o, =r—2+B(21nr+ 1)+ 2C

A
g = —r—2+B(21nr+3) +2C (18)
T =0
It can be shown that uniqueness of displacements
requires B = 0, and the stress components are o,
iz+ 2C and oy = —iz+ 2C . Considering the
r T
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boundary condition as r=a = o, =P; andr =
b = o, = P,, the constants can be obtained as:

_ B -P

" a2 — b2 a’b?
(19)
20 = Piaz - Pobz
- a? — b2

Therefore, the induced radial and tangential stresses
can be determined as:

_ 1 Po — Pi 2.2 Piaz — Pobz (20)
T _p2 a? — b2
1 PO - Pi 2,2 Piaz - Pobz
%= gz —p2* a? — b? @)

These are the stress distribution in a thick wall
hollow cylinder (Lame' problem). Since t,4 is zero,
the stress components o, and g, are the principal
stresses. As it is considered that the tunnel is located
in an infinite medium, the limits if these equation
when b — oo can be calculated as follow:

o9 =P, +(Po _Pi)(;)z
(22)

Oy =Po_(Po_Pi)(;)2

These are the same as Equations (10) and (11),
obtained from the Lame's solution method. As
explained in the previous section, the net
displacement can be obtained using Equations (12)
and (13). The general procedure to solve this
problem (Figure 1) has been presented in references
such as Obert and Duvall [2], Ameen [11], and Sadd
[13]; however, none of them have calculated the net
displacement.

Developed by Kolosov [38] and Muskhelishvili [39],
the complex variable method provides a very
powerful tool for the solution of many problems in
elasticity. In this method, the displacements and
stresses are represented in terms of two analytical
functions of a complex variable. It is shown that the
Airy stress function can be expressed as the real part
of two analytic functions of a complex variable Z [12,
13]. The procedure of obtaining the Airy stress
function in the complex form is presented in
Appendix 1, following the procedure presented by
Sadd [13] and in a different way that Jaeger and
Cook [12] presented. The Airy stress function can be
presented in the following complex form:

1, —— —
¢ =¢(22) =5(2v(2) + 2v(2) + x(2) + X(2)
= Re(zy(2) + x(2))

(23)
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where y(z) and y(z) are the arbitrary complex
functions, the bar denotes the conjugate complex,
and Re isthe real part of the different terms.

As it is presented in Appendix 1, the stresses and
displacements can also be presented based on the
assumed complex functions as:

o +0, =2(y'(2) +v'(2)) = 4Re(y'(2)),
(24)

0.

y — Oy T ZiTxy =2(zy"(2) +¢¥'(2))

26(u+iv) = ky(2) + zv'(2) — Y (2) (25)

Where (z) = x'(z), Gis the shear modulus of
medium, U and V are the displacements in the x
and y directions, respectively, and k =3 —4v is
for the plane strain condition.

Using the transformation laws, the stresses and
displacements in the polar coordinates can be written
as:

0, + 09 =0, + 0y,

(26)
0g — 0, + 2it,9 = (0, — 0, + 2iTy, )e??
-0

U +ivg = (u + iv)e (27)

The solution to particular problems in a two
dimension involves selection of the suitable forms of
the analytic functions y(z) andy(z). Many useful
solutions involve the polynomials in Z or z=1 [7].
To solve the problem depicted in Figure 1, the
following arbitrary analytical functions can be
chosen:

y(2) =cz

(28)
¥(2) =Y,
where ¢ and d are the constants that can be in a
complex form, and will be defined based on the

boundary conditions. Based on Equations (24) and
(26), it can be written that:

g, + 05 =2(y'(2) +v'(2)) = 4Re(y'(2))

29
= 4Re(c) (29)

0g — 0, + 2i1,9 = (0, — 0, + 2iTy,)e??
2d 2d (30)

2i6

e

z?2 r2

(z = re'?)
Equating the real and imaginary parts will result in
7,9 =0 anday — o, i—f. By considering the
boundary conditions as r=a = g,=

P, & r=b=w = g,=PF,, the following
equation (a,-) should be solved to find the constants:
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2d
Og —O0p = ——
oo (31)
09+0T=4czaT=ZC+r—2
This will give the constants as:
_ bZPO — aZPi
2c = g
(32)
4 (P Ba?h?
- b2 — g2

This is the same as Equation (19). Then the radial
and tangential induced stresses can be given as:

bZPO - aZPi (PL - Po)azbz 1

Tz T o a r2
(33)

bZPO — azPi (Pl — Po)azbz 1

% = b2 —q2  bZ—q? r2

This is the same as Equations (20) and (21). By
considering the tunnel excavation in an infinite
medium (b —> o0), the following equations will be
resulted, which are the same as Equations (10) and
(12).

o= b= =P (D)
(34)

Og =P0+(P0_Pi)(;)2

Equations (25) and (27) can be used to evaluate the
displacement, as Jaeger and Cook [12] have
explained in the general solution procedure.
However, this will not give the net displacement. As
explained in the previous section, the net
displacement can be obtained using the explained
procedure using Equations (12) and (13).

4. Solutions for non-hydrostatic in situ stress

In the previous sections, the hydrostatic in situ stress
condition has been considered. In this section, the
problem shown in Figure 2 will be considered with
zero internal pressure. The solution of this problem
will yield the Kirsch equations. To solve this
problem, the Airy stress function and the complex
variable methods will be used (the Lame method
cannot be used to solve this problem). Then the
procedure for evaluating the net displacements will
be presented.

The general solution of this problem using the Airy
stress function method has been presented by Obert
and Duvall [2] using the complex variable method
given by Jaeger and Cook [12], and using both
methods explained by Sadd [13]. However, the net
displacements have not been given the same as the
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Kirsch solution. In this section, the solutions will be
reviewed, and this key point will be discussed.
Finally, the internal pressure effect will also be
considered.

4.1. Airy stress function method

At first, the problem depicted in Figure 2 with zero
internal pressure is considered. Then the effect of
internal pressure in a circular hole in an infinite
medium is superimposed. At a large distance from
the opening, the polar components of stress will be
those resulting from the initial stress only.
Considering the stress transformation laws, the
stresses at I =oo are (boundary conditions at
infinity):
_R.+R
(O-r)r:oo - 2
P.+R

v

2
PR

PR

+ —
2
P,-P

\i

cos 26

(0 = c0s 20 (35)

sin26

(Trﬁ)r:oo =

The boundary conditions at tunnel boundary (r =a)
are:

(O-T)r=a = (Tre)r:a =0 (36)

Since the stress distributions depend on @ , the
following Airy stress function may be selected:
¢ =Alogr+B'r*+ (C'r*+D'r*+E'r ™2

+ F")cos26 (37)

where A’,B’,C',D’,E’, F'are constants, which will
be determined from the boundary conditions. The
stress components can be determined as:

106 1%
o= Yor T r2ae?
A , (38)
= T_Z +2B"+ (—2C
— 6E'r™* — 4Fr~%)cos26
= o’°¢ = A 2B’ 2C' +12D'r?
O-G_F__T_2+ +( + r (39)
+ 6E'r™*)cos20
19 10%
6 =230 1 0rae (40)

= (2C' +6D'r* — 6E'r™*
— 2Fr~%)sin20
Combining these equations with the boundary
conditions, the constants will be determined, and
then the following equations yield:
a? 3a* 4a?
(1_r_2)+ (1+r_4_

P, —P,
2

Py +P,
)

Oy

)cosZG (41)

r2
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Py +P, 2\ P, -P 3a*
0g = — ”<1+z—2)— hz v<1+ri4)c0520 (42)
__Phoh 3ah 207 e 43
Trg = — 2 _T‘_4’+T‘_2 Sin ( )

These are the well-known Kirsch equations for the
induced stresses.

As it was explained, the net displacements occur due
to loading and unloading in comparison to the initial
stress conditions. This means that in the stress-strain
relations, the stress differences (40, = g, — 0",
Aoy = g9 — 0y’ and At.g = 1,9 — T,9) Should be
used, and thus:

P, +P,a*> P,—P,(3a* 4a®
Ao, = — 2 7‘_2 2 T‘_‘l' - T‘_Z cos26 (44)
P, + P, a? P, — P, (3a*
AO’@ = 2 T_z_ 2 T'_4' cos26 (45)
P,—PB,( 3a* 2a*\ .
AT, = — > T +— sin26 (46)

The strain-displacement relations in a polar system
are:

_Ou,
& = ar
Uy 16179
=—4+—-— 47
%6 r r 068 (47
_ 16ur 6179 Vg
0 =316 T or  r

Considering the plane strain condition and Equation
(47), it can be written that:

ou 1+v

Orr =— [(1 —=v)40, — vAay] (48)
u, 1dvg 1+v

LA — — 49
—+ -2 i [(1 —v)4cy — vAa,] (49)
10u, 0dvg v 2(1-v)

— 7 _ - 7 50
rdd or r E tré (50)

Integration of these equations and finding the
integration constants based on the boundary
conditions (the constants will be zero following the
same procedure presented by Obert and Duvall), the
displacements are given by:

1+va*[P,+P, P,—P a?
U =———|— v 5 17(4(1—1/)—T—2>c0526] (51)

1+vP, —P,a? a?] .
Vo= — T 2(1_2V)+r_2 sin26 (52)
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where u, isthe radial inward displacement and vg
is the tangential displacement (Figure 2). These are
the net displacement relations (Kirsch solution)
around a circular opening, which are different from
the relations presented by Obert and Duvall [2] and
Jaeger and Cook [12]. It should be noted that due to
the assumed directions for the displacements, in
some references such as Hudson [6], there is a
negative sign difference in the wu, and vy
equations.

In the case that there is an internal pressure, P; ,
superposition can be used to evaluate the induced
stresses and displacements. Simply, consider a
pressurized hole in an infinite medium. The solution
to this problem can be easily determined from the
general case of the Lame' problem by choosing P, =
0 and b — oo (Figure 1). Thus the following
equations can be written:

= ()

r
a 2
o9 = —P; (;) (53)
3 1+vP a?
w= E 'r

These relations can be superimposed to Equations
(41), (42), and (51), respectively, for considering the
effect of the internal pressure in the Kirsch solution.

4.2. Complex variable method

The problem depicted in Figure 2 with zero internal
pressure is considered. Following the analytical
functions, it can be assumed that:

P, + P, A"
h v (Z + _)
4
BII

P,—P c"
(7,0
Z Z

2
where A”",B”",C" are the real constants. By
differentiation with respect to z(z=
re®)y’ ¥y’ y', andy’_ can be obtained. Based
on Equations (24) and (26), and using the Euler

formula ( e'® = cos@ + isinf ), the following
equations yield:

y(2) =
(54)

V(@) =x'(2) =

n

o, +09 = (P, +P)(1—- r—2c0529) (55)
BU
O — Op = _(Pv_Ph)r_z
AII
HlE-r+r@ErrS-@  (56)

"

- P ](:0529

4
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P,+P,A" PB,—P,
2 2

3C” )
Trg = |— 1+ T_4' sin26

Solving equations (55) and (56) simultaneously
results:

(57)

r2

P,+P, P,—P,B"
=Ttz
- [(Ph +h) 5 (58)
B,—P,( 3C"
+ 2 (1 — )] cos260
P,+P, PB,—P,|B" 3C”
gy =— v v2 ﬁ+<_1+ 7ﬁ4>c0520] (59)

For zero radial pressure on the opening wall at
r=a , the boundary conditions are o,=0
and 7,9 = 0, which allow determination of the
constants as:

B,—P
A= - —12g?
P, + P,
Brl — _Ph + PU a2 (60)
B, — P,
CH — _a4

Finally, the so-called Kirsch stress equations yield
the bi-axially in situ stress condition, the same as
Equations (41), (42), and (43).

It should be noted that this solution is a little bit
different from the solution presented by Jaeger and
Cook, in which a uniaxially stressed plane was taken
into account, and then superposition was used for
considering the biaxial stress condition.

Using Equations (25) and (27), Jaeger and Cook [12]
evaluated displacements around the opening, which
are not net displacements (the displacements as a
result of initial stresses should be subtracted). To the
contrary, after calculating the induced stresses,
Equations (47) through (52) can be used for
determining the net displacements. As explained
earlier, the internal pressure effect can be considered
using the superposition theorem.

5. Examples

In order to demonstrate the presented analytical
method for determining the net displacement directly
and show the differences with the analytical methods
presented in the aforementioned references (for
displacement around a tunnel), some examples are
solved with assumed rock mass parameters and in
situ stresses. As a case in example, a tunnel (a=1m)
situated in the hydrostatic condition (Po = 10 MPa)
with internal pressure (Pi = 0.5 MPa), and elastic

rock mass parameters as E = 5000 MPa, and v
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0.25 are considered. As shown in Figure 3, the
analytical solutionss presented in the references give
a total displacement that comprises the initial stress
effects on the displacement (initial displacement).
This displacement increases with increase in the
distance from the tunnel wall, which can be
misleading. To the contrary, based on the presented
method for directly determining the net displacement
as a result of excavation, the net displacement is
maximum in the tunnel wall and decreases inside the
rock mass. The initial displacements as a result of in
situ stresses can be determined by subtracting the net
displacement from the total one.

In order to compare the analytical results with the
numerical results (for the purpose of validation of the
proposed solution), a numerical modelling was done
using the Phase 2 finite element software. The 4-

Nodes quadrilateral mesh type with small
dimensions are considered to get the accurate results
[40]. In Figure 3, the results of the numerical
analyses are shown along with the analytical results,
which shows a good agreement.

It is worthwhile to mention that in the numerical
modeling, an initial displacement also occurs, which
is usually set to zero to get the net displacements as
a result of excavation only.

To see the effect of rock mass elastic parameter
change on the displacements, two different rock
mass types are considered. The result is shown in
Figure 4. As it can be seen, the general trends for the
net displacement are similar but the amount is
different. The same procedure can be shown for the
non-hydrostatic in situ stress conditions.

Displacements and Induced stresses - Hydrostatic in situ stress (K0=1)
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Figure 3. Net elastic displacement and total elastic displacements as a result of the excavation-hydrostatic in situ
stress.
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Figure 4. Displacements around a circular tunnel with two assumed rock mass types in the hydrostatic in situ
stress.
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6. Conclusions

Linear elasticity has been applied in many aspects of
rock mechanics in order to understand the basic
concepts, especially the stress and strain
relationships such as their distribution around an
excavated tunnel. However, there are some subtle
points that can be misleading in its application in
geomechanics. Directly determining the elastic net
displacements, as a case in example, was presented
in this work. Although the procedure for calculating
the displacements and induced stresses around a
circular tunnel in elastic condition is given in the
literature, the net displacements have not been
highlighted or even presented directly. Moreover, in
some literature, as a result of considering the effect
of the in situ (initial) stresses, the presented
equations for calculating displacements around a
circular tunnel differ from the Kirsch equations,
which can be misleading in tunneling. This happens
by mainly neglecting the geomechanics viewpoint in
the application of linear elasticity.

In this paper, determining the induced stresses and
net displacements around a circular tunnel in a
biaxially loaded plate of homogeneous, isotropic,
continuous, linearly elastic material in plain strain
condition are reviewed and presented using different
methods analytically and with the application of
linear elasticity. Three solution methods including
the Lame' method (hollow cylinder using strength of
material), airy stress function method, and complex
variable method are used for both the hydrostatic and
non-hydrostatic in situ stresses in 2D biaxial loading
condition.  Presenting the Kirsch  solution
comprehensively, both loading and unloading in the
tangential and radial directions, respectively, in
tunneling (differences between induced stresses and
initial stresses as a result of circular tunnel
excavation) has been considered in equations, based
on which, the net displacements can be calculated
directly. Although most of the mathematical
solutions may be found in the reference textbooks
involving elasticity, these methods are presented by
emphasis on loading and unloading around circular
opening as a result of excavation. Actually, it is
highlighted that in tunneling instead of only
mechanical viewpoint, the ground real condition due
to the existence of in situ stresses before excavation
should be considered in determining the net
displacements.
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Appendix

The Sadd (2009) procedure is used to present the
Airy stress function and stress components in
complex forms. In complex functions, the following
relations exist:

z=x+1y, z_=x—iy:>x=%(z+z‘), y=%(z—z‘)

To differentiate a complex function relative to X
andY:

90 _ 209z , 809z _ 90 , 90 90 _209z , 000z _
ax  dzdx 98z dx 9z = 8z’ dy  dzady o8zady
iG2=%)
0z 0z
The Laplacian operator in complex form is:
2(y =220 , 2°0 _ 0 00y, 0 00
v O T ax? + ay? ax(ax) + ay (ay):>
(6 +6)(6()+6()) (6 6)(6() 6())_462()
dz 0dz/)\oz 0z 0z 0z/)\dz 0z) =~ 0z0z

This is the harmonic operator. Then the biharmonic
operator will be 7272() = 1622

82%287%

The idea is to represent the Airy stress function in
terms of functions of a complex variable and
transform the plane problem into one involving the
complex variable theory. Using the above relations,
the variables x and y can be expressed in terms of
z andz, and thus functions of x and ycan be
expressed as functions of z andz. Applying this
concept to the Airy stress function, it can be written

that ¢ = ¢(z,z) . Therefore, the governing
, , - S L
biharmonic elasticity equation iso——— = 0.

To solve this equation, integration should be done. In
each stage, the integration constant will be
considered as a function of the other variable, as
follow:



Hazrati Aghchai et al./ Journal of Mining & Environment, Vol 11, No. 2, 2020

0 —a)= 2L = [a@)dz +b(@) = c(2) + b =L = 2c(2) + [ b(@D)dZ + d(2) = 2c(2) +

e(2) +d(2)= ¢ = zJ c(2)dz + ze(2) + [ d(2)dz + f(2) = zg(2) + ze(2Z) + h(2) + f(2)

Since the Airy stress function (@) should be real,
thus:

¢ = Re[zg(2) + ze(Z2) + h(2) + f(2)]=
Re[Zg(2)] = 5 [29(2) + 2g(2)], Re[ze()] = ;[ze(2) + Ze(2)]
Re[h(2) + f(2)] = 5 [h(z) + h(@) + f(D) + f()] =

¢ =2129(2) +29(2) + ze(2) + Ze(2) + h(2) + h(2) + f (D) + f(2)] =

1
¢ =5(2(g@) +e@) +2(g(2) +e(2) + (h(2) + f(2)) + (h(2) + £(2)))

Considering y(z) =g()+e(z) and x(z)= This is Equation (27) presented in the paper. To
h(z) + f(z), the Airy stress function in complex obtain the stress components:

form will be(z,2) =3 (zv (@) + Zv(2) + x(2) +
x(2)) = Re(Zy (2) + x(2)).

0% (6 6 6 0%¢
Ox = dy2  \oz az az az 622 azaz 072
=20 (L (2, 0)¢ 09 00 0%

A AV P TIAV PRI T z2 6262 072
2¢ .
ox + 0, —4a a_—2[y’(z)+y’(z)]
92 qb 0%¢
Oy = _2 azz 0z 972
0%¢ (0 d\s/0 0 ’p 0%¢
e (2 o525
0xdy dz 0z/\0z 0z 0z 0z
2¢

0y — 0y + 2iTy, = 6 - =2[zy"(2) + Y’ (2)]
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