
 Corresponding author: o.asghari@ut.ac.ir (O. Asghari). 
 

Shahrood 
University of 
Technology 

Iranian Society 
of Mining 

Engineering 
(IRSME) 

 

 

Journal of Mining and Environment (JME) 

 
journal homepage: www.jme.shahroodut.ac.ir 

 

 
Vol. 11, No. 2, 2020, 481-503. 
DOI: 10.22044/jme.2020.8710.1757  

 

An Optimum Selection of Simulated Geological Models by Multi-Point 

Geostatistics and Multi-Criteria Decision-Making Approaches; a Case 

Study in Sungun Porphyry-Cu deposit, Iran 

 
S. Talesh Hosseini1, O. Asghari1*, S.A. Torabi2 and M. Abedi3 

1- Simulation and Data Processing Laboratory, School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran. 

2- School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran. 
3-Geo-Exploration Targeting Laboratory (GET-Lab), School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran. 

 
Received 19 July 2019; received in revised form 20 February 2020; accepted 21 February 2020  

 

Keywords 

Sophisticated geological 

units 

Training image 

SNESIM algorithm 

Multi-criteria decision-

making 

Sungun Porphyry-Cu 

Deposit. 

Abstract 
An accurate modeling of sophisticated geological units has a substantial impact on 

designing a mine extraction plan. Geostatistical simulation approaches, via defining a 

variogram model or incorporating a training image (TI), can tackle the construction of 

various geological units when a sparse pattern of drilling is available. The variogram-

based techniques (derived from two-point geostatistics) usually suffer from reproducing 

complex and non-linear geological units as dyke. However, multipoint geostatistics 

(MPS) resolves this issue by incorporating a training image from a prior geological 

information. This work deals with the multi-step Single Normal Equation Simulation 

(SNESIM) algorithm of dyke structures in the Sungun Porphyry-Cu system, NW Iran. In 

order to perform a multi-step SNESIM algorithm, the multi-criteria decision-making and 

MPS approaches are used in a combined form. To this end, two TIs are considered, one 

for simulating dyke structures in the shallow depth, and two for simulating dyke structures 

in a deeper depth. In the first step, a TI is produced using geological map, which has been 

mined out during the previous exploration operations. After producing TI, the 35 

realizations are simulated for the shallow depth of deposit in the area under study. To 

select the best realization (as a TI for the next step) of the simulation results, several 

statistical criteria are used and the results obtained are compared. To this end, a hybrid 

multi-criteria decision-making is designed on the basis of a group of statistical criteria. In 

the next step, the dyke structures in the deeper depth are also simulated by the new TI. 

1. Introduction  

There have been several studies dedicated to the 

modeling of different geological scenarios using 

various developed geostatistical methods [e.g. 1]. 

The conventional two-point geostatistics methods 

based on the variogram models have been 

employed to spatially interpolate the data [e.g. 2, 

3], and they are now popular in different fields 

including mining, geology, and petroleum [4]. The 

critical issue in modeling geological structures is 

arising from the presence of heterogeneities and 

discontinuities in geological units like a swarm of 

dykes. The variogram-based techniques cannot 

reproduce those non-linear continuities, and 

subsequently, they have a lack of accuracy in the 

reconstruction of a plausible geological model [e.g. 

5]. As a solver in tackling such issues in the 

geological studies, the multiple-point geostatistics 

(MPS) has been proposed, where a training image 

(TI) prior to the geological/geophysical 

information is incorporated in the interpolation 

techniques [e.g. 6].  

Various MPS techniques such as those of Tran 

(1994) [7] and Roberts (1998) [8] have been 

employed to improve the applicability of 
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geostatistical modeling. Strebelle (2000) [9] has 

proposed the Single Normal Equation Simulation 

(SNESIM) algorithm, and later Caers (2001) [10] 

has used an invaluable tool to extract the features 

of patterns by combining the neural networks and 

MPS. Journel (2002) [11] has proposed the 

stationary relationship and information fusion to 

improve the simulation results. Note that an 

updated relationship has been introduced by Zhang 

and Journel (2002) to control the target function 

[12]. Arpat and Caers (2004) [13] have developed 

the Simulation Patch-based (SIMPAT) algorithm 

and its modified version [14]. The SNESIM 

algorithm, proposed by Strebelle (2002) [15], has 

been coded by Remy et al. (2007) [16] in the 

SGeMS open-source software. Zhang (2006) [17] 

has introduced the Filter-based Simulation 

(FILTERSIM) algorithm, later coded by Wu et al. 

(2007) [18] in SGeMS. Mariethoz et al. (2010) [19] 

have proposed the Direct Sampling (DS) algorithm 

as a novel and strong algorithm in MPS. Tahmasebi 

et al. (2012) [20] have proposed a new algorithm 

(CCSIM) for both the unconditional and 

conditional simulations with a raster path. Many 

research papers on the pattern-based approach have 

also published [21, 22]. Tahmasebi et al. (2014) 

[23] have developed and improved the CPU 

performance of the CCSIM algorithm in term of 

simulating categorical variables. Moura et al. 

(2017) [24] have proposed the LSHSIM method as 

a new method that generates realizations faster than 

the MS-CCSIM method [23]. Bavand Savadkoohi 

et al. (2019) [25] have used an effective 

combination of CCF and discrete wavelet 

transform (DWT) to improve the simulation 

results. 

The key advantage of the MPS method, rather than 

the variogram model (two-point geostatistics), is 

the incorporation of a training image (TI) [26], 

where such a space underlies the total patterns and 

structures of the sought region [27]. The primary 

idea of TI has been presented based on the 

geological data [28]. In order to obtain TI, different 

methods such as the object-based simulation 

algorithm have been presented. If the geological 

model considers the repeatability of the geological 

phenomena, it can be assumed as an image. Novel 

methods with ability of importing a higher order 

statistics in simulation process utilize such images 

[29].  

The ultimate motive of this research work was to 

run a multi-step SNESIM MPS method. In the first 

step, TI was prepared based on the geological 

setting, and then the dykes of shallow regions were 

simulated based on the best realization. It is 

expected that the resulting simulated model is in 

close consistency with the real environment. Note 

that the optimum selection of the simulated 

geological model was casted in a multiple criteria 

decision-making (MCDM) problem, whilst the 

established statistical criteria could appropriately 

pick up the optimum geological model [an example 

of the statistical criteria can be found in 30-33]. The 

VIKOR method as the well-known MCDM 

approach [34, 35] was used to prioritize all 

realizations of geological models, leading to an 

optimal selection of the searched target. Since all 

the statistical criteria do not have an equal 

importance, we applied the Best-Worst Method 

(BWM), originally proposed by Rezaie (2015) [36] 

as an extension to the Analytic Hierarchy Process 

(AHP) to assign weight to each criterion before 

running the VIKOR method. The optimum 

realization was passed through the second step, 

where deeper portions of dykes were simulated 

successfully (Figure 1). 

The major purpose of this research work was to 

model dykes as important mineralization control 

factors in the Sungun porphyry copper deposit. For 

this aim, the SNESIM algorithm was used as a 

strong MPS algorithm. The choice of a TI and its 

representativeness was a challenging issue subject 

to ongoing developments. In order to increase the 

accuracy of TI, the SNESIM algorithm was utilized 

with a staged algorithm. To this end, in the first 

step, the geological map and information were used 

to produce a TI for simulating the dyke structures 

in the shallow depth. Then the SNESIM method 

was used for reproducing the complex patterns of 

dykes in the shallow depth of the deposit. In the 

second step, the best realization was selected using 

the proposed hybrid MCDM method, which 

benefited from a mixture of the VIKOR, AHP, and 

BWM methods. The best realization was used as TI 

to reproduce 35 realizations over a deeper depth 

within the region of interest. Finally, several 

statistical criteria in the realizations were compared 

with those in TI (Figure 1). 

2. Methodology 

The following sub-sections describe concisely the 

MPS algorithm, AHP-BMW weighting approach, 

and VIKOR methodology, respectively.   

2.1. SNESIM algorithm 

The SNESIM algorithm, as introduced by Strebelle 

(2000) [9], solves the problem of two-point 

geostatistics by keeping the flexibility of the pixel-

based techniques [26], where the probability 

functions are extracted from a TI. For the sake of 
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being as a pixel-based technique for simulation of 

complex geological phenomena, it outperforms the 

reproduced conditional data by scanning each 

considered pattern in input TI [26 and 37].  In 

addition, the number of iterations is controlled by 

the probability rules to estimate a variable value at 

the desired simulated point [26 and 38]. 

 
Figure 1. A flowchart illustrating the procedure according to the main purpose of this work. 

In a sequential simulation approach, obtaining the 

cumulative probability density function (CPDF) 

plays an important role [26 and 39]. The point that 

should be noted is that CPDF of variogram-based 

geostatistics is obtained by the relationship 

between two points at each moment, whereas it is 

derived from the relationship between 𝑛 points at a 

moment in MPS [15]. 

𝐴𝑘, as a binary indicator variable of an occurrence 

for state 𝑠𝑘 at location 𝑢, is defined by the 

following equation [15, 26, and 38]: 

𝐴𝑘 = {
1          𝑖𝑓 𝑆(𝑢) = 𝑠𝑘

0                      𝑖𝑓 𝑛𝑜𝑡
  (1) 

where 𝐷 is denoted as a binary random variable 

connected to the occurrence of state 𝑑𝑛, which is 

formed with 𝑛 conditional data [15, 26, and 38] 

such that: 

𝐴𝑘 = {
1 𝑖𝑓 𝑆(𝑢𝑎) = 𝑠𝑘𝑎

, ∀𝑎 = 1, … , 𝑛

0                                          𝑖𝑓 𝑛𝑜𝑡
  (2) 

The main purpose is to calculate the conditional 

probability value of 𝐷 occurrence (𝑠𝑘 at 

location 𝑢), assuming that the event 𝑑𝑛 happens in 

a 𝐷 proximity. The conditional probability value is 

obtained through ordinary kriging (with 𝑛 + 1 

order statistics) in association with 𝐴𝑘 and event 𝐷 

[26]: 
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𝑃𝑟𝑜𝑏{𝐴𝑘 = 1|𝐷 = 1}
= 𝐸{𝐴𝑘} + 𝜆[1 − 𝐸(𝐷)] 

(3) 

where 𝐷 = 1 represents the occurrence of 𝐷, and 

𝐸{𝐷} = 𝑃𝑟𝑜𝑏{𝐷 = 1} denotes the probability 

value of the event occurrence. Therefore, the 

weight value (𝜆) can be calculated as [15]: 

𝜆𝑉𝑎𝑟{𝐷} = 𝐶𝑜𝑣{𝐴𝑘 , 𝐷} (4) 

Where: 

𝐶𝑜𝑣{𝐴𝑘 , 𝐷} = 𝐸{𝐴𝑘, 𝐷} − 𝐸{𝐴𝑘}𝐸{𝐷} (5) 

Equation (4) can be re-written as [15]: 

𝜆 =
𝐸{𝐴𝑘, 𝐷} − 𝐸{𝐴𝑘}𝐸{𝐷}

𝐸{𝐷}(1 − 𝐸{𝐷})
  (6) 

So: 

𝑃𝑟𝑜𝑏{𝐴𝑘 = 1|𝐷 = 1} = 𝐸{𝐴𝑘} +
𝐸{𝐴𝑘 , 𝐷} − 𝐸{𝐴𝑘}𝐸{𝐷}

𝐸{𝐷}(1 − 𝐸{𝐷})

=
𝐸{𝐴𝑘 , 𝐷}

𝐸{𝐷}
=

𝑃𝑟𝑜𝑏{𝐴𝑘 = 1|𝐷 = 1}

𝑃𝑟𝑜𝑏{𝐷 = 1}
 

 

(7) 

According to Equation (7), it is a Bayesian relation. 

TI is scanned in the later stage. The numerator is 

obtained by counting the number of iterations of 

events in TI, and the denominator is associated 

with a central cell value 𝑆(𝑢) equal to 𝑠𝑘 (𝑐𝑘 and 𝑐) 

[15]. Finally, it is expected that the deduction value 

is similar to that of the target function of TI. Thus 

we have Equation (8). 

𝑝(𝑢; 𝑠𝑘|(𝑛)) = 𝑃𝑟𝑜𝑏{𝐴𝑘 = 1|𝐷 = 1}

= 𝑃𝑟𝑜𝑏{𝑆(𝑢) = 𝑠𝑘|(𝑛)}

≅
𝑐𝑘(𝑑𝑛)

𝑐(𝑑𝑛)
 

 (8) 

2.2. AHP-BWM approach 

The AHP method, proposed by Saaty (1977) [40], 

is a strong technique by capability of ranking 

several alternatives in a MCDM problem. One of 

the major features of this method is its flexibility 

for doing sensitivity analysis on the criteria and 

sub-criteria [41]. In addition, it is on the basis of 

constructing pairwise comparison matrices 

(PCMs) [42]. However, the main shortcoming is 

pertaining to the need for constructing several 

PCMs, leading to a huge number of pairwise 

comparisons. In order to tackle such a deficiency, 

Rezaie (2015) [36] has proposed BWM, in which 

the best and worst criteria are first chosen before 

estimating the weights of a number of 

criteria/factors. Then two pairwise comparison 

vectors (among the best/worst criteria and other 

criteria) are performed. The final stage of BWM is 

to formulate and solve a max-min problem for 

calculating the weights of different criteria [26 and 

43-44]. Not only the BWM method reduces the 

applied information (PCMs) but also this approach 

produces the results more valid than the other 

MCDM approaches [45]. 

Here, a hybrid AHP-BWM method is implemented 

by depicting the decision problem as a linear 

hierarchy based upon the AHP method. Then the 

weights of different factors in different levels of 

this hierarchy are determined via BWM. The 

following steps are required for running the hybrid 

AHP-BWM method [36 and 43-47]: 

Step 1. Determining a linear hierarchy structure of 

the decision problem (designing a decision tree). 

Step 2. Defining the best and worst criteria at each 

level. 

Step 3. At each level of the hierarchy, constructing 

the first pairwise comparison vector as the 

preference degrees of the best criterion over all the 

other criteria. The elements of the pairwise 

comparison vector must be scaled at an interval 

from 1 to 9. This best-to-others vector can be 

written as: 

𝐴𝐵 = (𝑎𝐵1, 𝑎𝐵2, … , 𝑎𝐵𝑛), 

where 𝑎𝐵𝑛 represents the preference degree of the 

best criterion (𝐵) than the criterion 𝑗, and 𝑎𝐵𝐵 is 

equal to one. 

Step 4. At each level of the hierarchy, constructing the 

second pairwise comparison vector as the preference 

degrees of all criteria over the worst criterion. The 

elements of the pairwise comparison vector must be at a 

similar scale. This others-to-worst vector can be written 

as: 

𝐴𝑊 = (𝑎1𝑊, 𝑎2𝑊, … , 𝑎𝑛𝑊)𝑇, 

where 𝑎𝑗𝑊 represents the preference degree of the 

criterion 𝑗 than the worst criterion (𝑊), and 𝑎𝑊𝑊 is 

equal to one. 

Step 5. Calculating the optimal weights 

include𝑠 (𝑊1
∗, 𝑊2

∗, … , 𝑊𝑛
∗). The pairs 

𝑤𝐵

𝑤𝑗
= 𝑎𝐵𝑗 

and 
𝑤𝑗

𝑤𝑤
= 𝑎𝑗𝑤 are formed for determination of the 

optimal weights. After this stage, in order to satisfy 

the explained conditions for each 𝑗, the maximum 

absolute differences |
𝑤𝐵

𝑤𝑗
− 𝑎𝐵𝑗| and |

𝑤𝑗

𝑤𝑤
− 𝑎𝑗𝑤| 

should be minimized for each 𝑗. Thus the optimal 

weights can be obtained by reviewing the 

following non-linear programming model:  

min 𝑚𝑎𝑥𝑗 {|
𝑤𝐵

𝑤𝑗
− 𝑎𝐵𝑗| , |

𝑤𝑗

𝑤𝑤
− 𝑎𝑗𝑤| } 
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∑ 𝑤𝑗 = 1

𝑠.𝑡.

𝑗

 
 (9) 

𝑤𝑗 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 

Also the non-linear model (Equation 9) is changed 

to a linear model, as follows: 

min 𝜉 

(10) 

𝑠. 𝑡. 

|𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗| ≤ 𝜉, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

|𝑤𝑗 − 𝑎𝑗𝑤𝑤𝑤| ≤ 𝜉, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

∑ 𝑤𝑗 = 1

𝑗

 

𝑤𝑗 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 

The optimal weights and 𝜉∗ values are obtained by 

solving the above model. 

Step 6. Calculating the consistency ratio (CR) by 

means of the  𝜉∗ value and consistency index (CI). 

It is clear that a higher value of 𝜉∗ represents a 

higher value of CR since 𝑎𝐵𝑗 × 𝑎𝑗𝑊 = 𝑎𝐵𝑊 

and 𝑎𝐵𝑊 ∈ {1, 2, … ,9}, the maximum value for ξ 

can be calculated. According to CI in Table 1 and 

Equation (11), CR can be inferred by: 

CR =
𝜉∗

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥
  (11) 

Based on the CR value, the values equal to or lesser 

than 0.1 represent a reliable result. 

Table 1. CI table for using the BWM method. 

𝒂𝑩𝑾 1 2 3 4 5 6 7 8 9 

𝑪𝑰 (𝐦𝐚𝐱 𝛏) 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23 

 

2.3. VIKOR methodology 

Opricovic and Tzeng (2004) [34] have introduced 

the first version of the VIKOR technique as a 

powerful tool to select the best alternative in 

MCDM problems. According to its formulation, 

different alternatives under various criteria and 

sub-criteria are compared by an ideal solution on 

the basis of a distance measure [48-51]. As a 

prominent approach, it can be utilized in 

compromise ranking problems [52]. An integrated 

function, so-called LP-metric, is used to generate 

the compromise ranking [35]. The alternatives and 

criteria are defined as 𝐴1, … , 𝐴𝑛 and 𝐶1, … , 𝐶𝑚, 

respectively, where 𝑎𝑖𝑗 represents the score of the 

𝑖th alternative based on the 𝑗th criterion function. 

Based on the LP-metric, expansion of the VIKOR 

method can be defined as: 

𝐿𝑝,𝑗 = {∑[𝑤𝑖(𝑓𝑖
+ − 𝑎𝑖𝑗)/(𝑓𝑖

+ − 𝑓𝑖
−)]𝑝

𝑚

𝑖=1

}

1
𝑝

 

 (12) 

where 1 ≤ 𝑃 ≤ ∞ and 𝑖 = 1, … , 𝑚. 

where 1 ≤ 𝑃 ≤ ∞ and 𝑖 = 1, … , 𝑚. 

In the conventional formulation, 𝐿𝑖𝑗 = 𝑆𝑗 =

∑ [𝑤𝑖(𝑓𝑖
+ − 𝑎𝑖𝑗)/(𝑓𝑖

+ − 𝑓𝑖
−)]𝑚

𝑖=1  and 𝐿∞𝑗 = 𝑅𝑗 =

𝑚𝑎𝑥𝑖{
𝑤𝑖(𝑓𝑖

+−𝑎𝑖𝑗)

𝑓𝑖
+−𝑓𝑖

− } are subsequently calculated [29], 

where 𝑤𝑖 is the weight of the 𝑗th criterion. As 

mentioned, this weight was extracted by 

implementing the AHP-BMW in this work. 𝐿𝑖𝑗 

provides the information for maximum group 

utility, while 𝐿∞𝑗 is the information of minimum 

opposite individual effect. The VIKOR algorithm 

can be summarized in the following steps [35]: 

Step 1. Calculating the positive ideal solution (𝑓𝑖
+) 

and negative ideal solution (𝑓𝑖
−) alternative values 

for each criterion (𝑖 = 1, … , 𝑚) by the following 

equations: 

If it is a benefit mode problem 

(13) 
𝑓𝑖

+ = 𝑚𝑎𝑥𝑗{𝑎𝑖𝑗}, 𝑓𝑖
− = 𝑚𝑖𝑛𝑗{𝑎𝑖𝑗} 

If it is a cost mode problem. 

𝑓𝑖
+ = 𝑚𝑖𝑛𝑗{𝑎𝑖𝑗}, 𝑓𝑖

− = 𝑚𝑎𝑥𝑗{𝑎𝑖𝑗} 

Step 2. Calculating the 𝑆𝑗 and 𝑅𝑗 values by the 

aforementioned equations (𝑗 = 1,2, … , 𝐽). 

Step 3. Determining the 𝑄𝑗 (𝑗 = 1,2, … , 𝐽) value: 

𝑄𝑗 = (
𝑆𝑗 − 𝑆+

𝑆− − 𝑆+
) + (1 − 𝛾) (

𝑅𝑗 − 𝑅+

𝑅− − 𝑅+
) (14) 

The parameters in Equation (14) are equal to 𝑆+ =

𝑚𝑖𝑛𝑗{𝑆𝑗}, 𝑆− = 𝑚𝑎𝑥𝑗{𝑆𝑗},  𝑅+ = 𝑚𝑖𝑛𝑗{𝑅𝑗}, 𝑅− =

𝑚𝑎𝑥𝑗{𝑅𝑗} , and 𝛾 represents the weight of the 

strategy of ‘‘the majority of criteria’’ (or ‘‘the 

maximum group utility’’). 𝛾 is generally assumed 

equal to 0.5. Also 𝑄𝑗 denotes the weight of VIKOR 

for the 𝑗th alternative.  

Step 4. Based on the 𝑆𝑗, 𝑅𝑗, and 𝑄𝑗 values, 

alternatives are sorted in a decreasing order. 
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Step 5. Selecting the best alternative, the best 

compromise solution can be selected by satisfying 

these two conditions: 

1. Acceptable advantage: 

𝑄(𝐴(2)) − 𝑄(𝐴(1)) ≥ 𝐷𝑄 (15) 

where:  

𝐷𝑄 =
1

𝑛 − 1
 (𝐷𝑄 = 0.25 𝑖𝑓 𝑛 ≤ 4) 

and based on the 𝑄 value, 𝐴(1) and 𝐴(2) are the 

alternatives with the first and second positions, 

respectively. In addition, 𝑛 denotes the number of 

the available alternatives.  

2. Acceptable stability in decision-making. 

According to this condition, the alternative 𝐴(1)  

should be located in the best rank at the 𝑆, 𝑅, and 

𝑄 criteria. If the first condition is not satisfied 

and 𝑄(𝐴(𝑁)) − 𝑄(𝐴(1)) < 𝐷𝑄, then 

𝐴(1), 𝐴(2), … , 𝐴(𝑛) are selected as the same 

compromise solution. If the second condition is not 

satisfied, the alternatives 𝐴(1) and 𝐴(2) are selected 

as the same compromise solution. 

3. Case study 

The region of interest is located in the NW Iran at 

the East-Azerbaijan Province (Figure 2). The 

Sungun porphyry copper system occurs over the 

Sahand-Bazman volcanic and plutonic belt (or the 

Urumia-Dokhtar Magmatic Assemblages, 

UDMA). The field survey and petrology studies 

identify several stocks in the Sungun system, 

which causes a hydrothermal alteration system 

[53]. Diorite/granodiorite to quartz monzonite 

rocks have dominated this copper system [54, 55]. 

The tonnage of the Sungun porphyry deposit is 

more than 500 Mt sulfide reserve at an average 

grade of 0.76% copper and 0.01% molybdenum. 

The mineralized portions of the Sungun deposit 

occurred mostly in stock units with depletion in 

dyke intrusions [53]. The important stocks in 

association with porphyry copper mineralization 

include porphyry stock I (quartz monzonite) and II 

(quartz monzonite to granodiorite/diorite) [56]. 

Note that there are four types of dykes in the 

region, which typically comprise quartz monzonite 

to granodiorite/diorite [56]. These dykes have cut 

the Cu mineralization at several phases leading to 

sectors with a depleted content of Cu ore. 

 
Figure 2. Location and geology map of the Sungun porphyry copper deposit. 
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The general trend of dykes is NW-SE (parallel to 

the UDMA tectonic unit), and their thickness 

changes from a few centimeters to several tens of 

meters (Figure 3). Among different dyke patterns 

in Sungun, DK1 has the most frequencies, where 

its constituents change from quartz diorite to quartz 

monzonite. Based on the isotope, mineralogy, and 

alteration studies, the DK1 unit is divided into the 

three types of DK1a, DK1b, and DK1c. Roughly 

speaking, the average grade of copper is very low 

and below the economic cut-off value in the DK1.  

 
Figure 3. DK1 map of the Sungun porphyry copper deposit. 

The Sungun deposit was sampled by the vertical, 

horizontal, and steep drill holes in the detailed 

exploration phase. The drilled holes were designed 

in a regular network at an interval of 100 m. All the 

collected and analyzed samples was 41520 for 

grade and geological features. In order to satisfy 

the stationarity conditions, those portions of the 

Sungun system obeying such conditions were 

simulated (Figure 4). According to Figure 3, DK1a 

and DK1b have dominated the studied region. 

Therefore, they were used for simulation of the 

dykes. To sequentially simulate the dykes of 

shallow area, the DK1 map of the Sungun porphyry 

copper deposit (prepared from surface geological 

map) can be used as a TI to run the first step of 

MPS. After extracting DK1a and DK1b, TI was 

projected on the topography map (Figure 5). The 

proportion and variance of TI and actual data need 

to be compared as well to check TI 

representativeness. Table 2 shows that the main 

statistics of TI is similar to that obtained with the 

hard data.  

Table 2. Statistical parameters of TI and hard data. 

 Proportion Variance 

TI 0.338 0.224 

Hard data 0.321 0.221 

 
(a) 

 
(b) 

Figure 4. (a) Top view and (b) 3D view of drilled 

holes in the Sungun porphyry copper deposit for 

those regions with stationarity conditions. 
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Figure 5. Training image extracted from the DK1 map for modelling the dykes of shallow region. 

4. Optimum selection of simulated dyke model  

The primary input of the SNESIM algorithm is the 

simulation grid. A block model of the desired area 

was produced with the grid size of 10 × 10 ×10 m. 

At the first step, TI derived from the DK1 map was 

inserted as an important input. The search radius 

was fixed with a constant value for all directions. 

In this case, it can be clearly seen that the SNESIM 

algorithm is capable of identifying the conditional 

data patterns [57]. In this work, the continuity of 

the dykes was reduced by means of the anisotropy 

search pattern. Based on the trial-and-error 

method, the range of the search pattern was 

assumed to be 150 m. The number of data in the 

search pattern is a main factor of the SNESIM 

algorithm. In addition to the importance of this 

factor in controlling the reproduced patterns, this 

factor has the highest impact on the computational 

efficiency of the algorithm. Taking the runtime of 

the algorithm and reproducing the large-scale 

structures into account, the number of data in the 

search pattern was about 140. The simulation could 

be performed by the conditional or non-conditional 

data. Because of the high reality of modeling in the 

conditional simulation, this type of simulation was 

used here for the hard data collected by drilling. 

According to the research work by Liu (2006) [57], 

the simulated facies may not satisfy the directional 

parameters and stationarity conditions, and 

therefore, zoning trick can tackle such a problem in 

this work.  

4.1. Shallow region simulation 

Taking TI of the DK1 map, and the lithology data 

from the drilled holes in the shallow regions of the 

Sungun into consideration, simulation of DK1a and 

DK1b was carried out through running the 

SNESIM algorithm. After the first step, the 

optimum simulated realization was searched for 

generating a TI input for implementing simulation 

at deeper portions in the second step. Various 

statistical criteria such as single-point statistics, 

two-point statistics, multiple-point statistics, 

connectivity reproduction, and high order 

covariance reproduction (Cumulants) are 

incorporated in a MCDM problem to choose the 

best realization of simulation.  

The single-point characteristics of different 

realizations for selection of the best simulated 

output were used as the proportion and variance 

criteria, where TI was used to compare all the 

simulation results. The proportion and variance 

obtained from all realizations are plotted in 

Figures. 6a and 6b, respectively. They represent a 

little difference between the single-point statistical 

parameters of the simulation in all realizations and 

those derived from TI, enhancing the advantage of 

the SNESIM algorithm in considering the 

servosystem factor. 
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(a) 

 
(b) 

Figure 6. Graphical comparison of the single-point statistics parameters of the TI and SNESIM realizations (a) 

proportion, and (b) variance. 

When there are differences between the proportion 

of the target function for hard data and the TI map, 

the servosystem factor must be used for the 

SNESIM algorithm [15]. The difference between 

the proportion of the target function and the 

simulation can be reduced by means of the 

servosystem factor. This correction must be done 

by the servosystem factor at each step of the 

simulation process. Let us assume that 𝑃(𝐴) and 

𝑃𝑐(𝐴) are the target function of hard data and 

moment target function of TI, respectively. The 

correction function is represented by the following 

equation: 

𝑃𝑛𝑒𝑤(𝐴|𝐵) = 𝑃(𝐴|𝐵) + 𝜇(𝑃(𝐴) − 𝑃𝑐(𝐴)) (16) 

where 𝜇 can be calculated as: 

𝜇 =
𝜆

1 − 𝜆
, 𝜆 ∈ [0,1] (17) 

It is clear that a higher value of 𝜆 coincides with a 

higher correction. Figure 7 indicates the sensitivity 

of the target function versus the servosystem factor 

(𝜆), meanwhile the final correction value is equal 

to 0.87. 

 

 
Figure 7. The linear variation of the target function versus the servosystem factor. 
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Based on the proportion and variance of TI, a 

quantitative comparison of the single-point 

statistics parameters of the SNESIM realizations 

was done by the following equations: 

Δ𝜇 = 𝜇𝑅 − 𝜇𝑇𝐼 (18) 

Δ𝜎 = 𝜎𝑅 − 𝜎𝑇𝐼 (19) 

where 𝜇𝑅 and 𝜎𝑅 are the proportion and variance of 

the realizations, respectively. Also 𝜇𝑇𝐼 and 𝜎𝑇𝐼 are 

the proportion and variance of TI, respectively. It 

is clear that a lower value of 𝜇Δ  and 𝜎Δ  represents 

a more appropriate realization. 

Since variogram is a tool for checking the two-

point statistics, we compared the omni-directional 

variogram model of TI and each realization as a 

criterion in selection of the best simulated result. 

The omni-directional variogram obtained from the 

five realizations (as representatives of all) and TI 

are all shown in Figure 8a. This process must be 

plotted for all realizations. In order to a 

quantitatively compare the variogram models, the 

Gamma–Gamma plots were used [17], where the 

correlation coefficients between TI and all 

realizations are obtained by the Gamma–Gamma 

plots. Note that a higher correlation coefficient 

corresponds to a more suitable realization. The 

Gamma-Gamma plot of the realization #30 versus 

TI is shown in Figure 8b. Such plots must be 

calculated for all realizations. Based on the highest 

slope of the linear curve fitted between TI and 

realization #30 (0.802), this realization generated 

the most suitable one.  

 
(a) 

 
(b) 

Figure 8. Omni-directional variogram of five realizations and TI for shallow region (a) and Gamma-Gamma plot 

of the realization #30 versus TI (b).  
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The TI and SNESIM realizations were compared 

through multi-point statistics using the Peredo and 

Ortiz method (2011) [58], where all realization 

must be scanned after selecting a search pattern in 

1D, 2D or 3D. Then the clustering of the extracted 

patterns is done to locate all similar patterns in 

different clusters. The frequency of similar patterns 

is saved as the important factor. The reproduced 

patterns of the SNESIM realizations and TI were 

compared through plotting the frequency chart of 

patterns on the SNESIM realizations and TI. 

Assuming a 5 × 5 network due to the original TI, 

the obtained result from the realization #30 versus 

TI was shown in Figure 9. Based on the fitted linear 

curve for the first and third quarter, the optimum 

realization can be introduced via this criterion.  

 

 
Figure 9. Frequency chart of reproduced patterns 

on the realization #30 and TI. 

Since the main purpose of this work was to 

reproduce the dyke connectivity, this feature of the 

dykes can be a suitable criterion in the optimum 

selection of a realization among all the generated 

geological models. Generally speaking, 𝑛-point 

probability of connection in a particular direction 

is calculated by the following equation [59]:  

𝐸 {∏ 𝐼[𝑢 + (𝑗 − 1)ℎ; 𝑧]

𝑛

𝑗=1

} = 𝜑(𝑛) (20) 

It is clear that increasing the number of points 

causes the reduction of the probability value of 

connectivity reproduction. For one point, the 

probability value is equal to the proportion of the 

target function. The selected direction for 

calculation of probability of connection is 135°, 

which is parallel to the trend of the dykes. The 

probability value of connectivity reproduction 

obtained from the five realizations (as 

representatives) and TI are plotted in Figure 10. 

Considering the probability value of connectivity 

reproduction of TI, quantitative comparison of the 

probability value of connectivity reproduction of 

the SNESIM realizations is calculated by: 

𝐻 = ∑ 𝜑𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑖
− 𝜑𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐼𝑚𝑎𝑔𝑒 𝑖

16

𝑖=1

 (21) 

where 𝑖 denotes the number of points. A lower 

value of H corresponds to a more suitable 

realization. 

 
Figure 10. Probability value of connectivity reproduction of the SNESIM realizations and TI. 

Cumulants were firstly introduced by 

Dimitrakopoulos et al. (2010) [60] for modeling of 

geological phenomena. De Iaco and Maggio (2011) 

[61] did a comparison between the sequential 

indicator simulation (SIS) realizations and the 

SNESIM realizations by higher order Cumulants. 
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Let us assume that (Ω, ℑ, 𝑃) and (𝑅𝑛, 𝛽(𝑅𝑛)) are a 

probability space and measurable space (in the 

probability space), respectively. Also assume that 

𝑍(𝑥) as a random field satisfies the stationarity 

conditions, and its mean is equal to zero in the 𝑅𝑛 

space. The 𝑟-order momentum of 𝑍𝑖 = 𝑍(𝑥𝑖) is 

calculated by the following equation [60]: 

𝑀𝑜𝑚[𝑍𝑖
𝑟]Δ𝐸{𝑍𝑖

𝑟} =
1

𝑗𝑟

𝑑𝑟

𝑑𝑤𝑟
[𝜙(𝜔)]𝜔 = 0 (22) 

where 𝐸{. } represents the expectation operation 

and 𝑗2 is equal to -1. 𝜙(𝜔) denotes the first 

characteristic function. The characteristic function 

can be written as [60]: 

𝜙(𝜔) = 𝐸[𝑒𝑗𝜔𝑍] = ∫ 𝑒𝑗𝜔𝑢
+∞

−∞

𝑑𝐹𝑍(𝑢) (23) 

The 𝑟-order Cumulants can be calculated through 

the  𝑟-order differential of the second characteristic 

function, which is equal to 𝜓(𝜔) = ln(𝜙(𝜔)). 

Thus it can be [60]: 

𝐶𝑢𝑚[𝑍𝑖 , … , 𝑍𝑖] =
1

𝑗𝑟

𝑑𝑟

𝑑𝑤𝑟
[𝜓(𝜔)]𝜔 = 0 (24) 

Let us assume that 𝐸𝑗1,…,𝑗𝑛
= 𝐸(𝑋1, … , 𝑋𝑛) and 

𝐶𝑗1,…,𝑗𝑛
= 𝐶𝑢𝑚(𝑋1, … , 𝑋𝑛)  are a 𝑛-order 

momentum and 𝑛-order Cumulant, respectively. 

Equation (25) represents a relationship between 

momentum and Cumulant [60]. 

𝑚𝑖1,…,𝑖𝑛

= ∑ …

𝑖1

𝑗1=0

∑ ∑ (
𝑖1

𝑗1
) …

𝑖𝑛−1

𝑗𝑛=0

𝑖𝑛−1

𝑗𝑛−1=0

(
𝑖𝑛−1

𝑗𝑛−1
) (

𝑖𝑛−1

𝑗𝑛
)

× 𝐶𝑖1−𝑗1,…,𝑖𝑛−1−𝑗𝑛−1,𝑖𝑛−𝑗𝑛
𝑚𝑗1,…,𝑗𝑛

 

(25) 

Also [55]; 

𝐶𝑖1,…,𝑖𝑛

= ∑ …

𝑖1

𝑗1=0

∑ ∑ (
𝑖1

𝑗1
) …

𝑖𝑛−1

𝑗𝑛=0

𝑖𝑛−1

𝑗𝑛−1=0

(
𝑖𝑛−1

𝑗𝑛−1
) (

𝑖𝑛−1

𝑗𝑛
)

× 𝑚𝑖1−𝑗1,…,𝑖𝑛−1−𝑗𝑛−1,𝑖𝑛−𝑗𝑛
𝐶𝑗1,…,𝑗𝑛

 

(26) 

Now, assume that 𝑍𝑥 is a variable with zero mean. 

The 𝑟-order momentum can be calculated as [60]: 

𝑀𝑜𝑚[𝑍(𝑥), 𝑍(𝑥 + ℎ1), … , 𝑍(𝑥 + ℎ𝑟−1)]
= 𝐸[𝑍(𝑥)𝑍(𝑥 + ℎ1) … 𝑍(𝑥
+ ℎ𝑟−1)] 

(27) 

In this space, the momentum value is associated 

with the distance vectors (ℎ1, ℎ2, ℎ3). Therefore, 

the 𝑟-order Cumulant can also be calculated as 

[60]: 

𝐶𝑟
𝑍[ℎ1, ℎ2, … , ℎ𝑟−1]

= 𝐶𝑢𝑚[𝑍(𝑥)𝑍(𝑥
+ ℎ1) … 𝑍(𝑥 + ℎ𝑟−1)] 

(28) 

In order to calculate the Cumulant value, the 

distance vectors must be determined. Therefore, 

each spatial template can be defined using the 

following equation as [60]: 

𝑇𝑛+1
ℎ1,ℎ2,…,ℎ𝑛(ℎ1, ℎ2, … ℎ𝑛 , 𝑎1, 𝑎2 … 𝑎𝑛)

= {𝑥, 𝑥 + ℎ1, 𝑥 + ℎ2, … , 𝑥
+ ℎ𝑛} 

(29) 

Finally, the 3-order Cumulant is computed [60]: 

𝐶𝑇3
ℎ1,ℎ2

=
1

𝑁ℎ1,ℎ2

∑ 𝑍(𝑥𝑘)𝑍(𝑥𝑘+ℎ1
)𝑍(𝑥𝑘+ℎ2

), 𝑥𝑘:

𝑁ℎ1,ℎ2

𝑘=1

𝑥𝑘+ℎ1
: 𝑥𝑘+ℎ2

𝜖𝑇3
ℎ1,ℎ2  (30) 

Similarly, 4-order Cumulant is inferred as [60, 61]: 

𝐶𝑇4
ℎ1,ℎ2,ℎ3

=
1

𝑁ℎ1,ℎ2,ℎ3

∑ 𝑍(𝑥𝑘)𝑍(𝑥𝑘+ℎ1
)𝑍(𝑥𝑘+ℎ2

)𝑍(𝑥𝑘+ℎ3
)

𝑁ℎ1,ℎ2,ℎ3

𝑘=1

−
1

(𝑁ℎ1,ℎ2,ℎ3
)

2 [( ∑ 𝑍(𝑥𝑘)𝑍(𝑥𝑘+ℎ1
)

𝑁ℎ1,ℎ2,ℎ3

𝑘=1

) ( ∑ 𝑍(𝑥𝑘+ℎ2
)𝑍(𝑥𝑘+ℎ3

)

𝑁ℎ1,ℎ2,ℎ3

𝑘=1

)]

−
1

(𝑁ℎ1,ℎ2,ℎ3
)

2 [( ∑ 𝑍(𝑥𝑘)𝑍(𝑥𝑘+ℎ2
)

𝑁ℎ1,ℎ2,ℎ3

𝑘=1

) ( ∑ 𝑍(𝑥𝑘+ℎ1
)𝑍(𝑥𝑘+ℎ3

)

𝑁ℎ1,ℎ2,ℎ3

𝑘=1

)]

−
1

(𝑁ℎ1,ℎ2,ℎ3
)

2 [( ∑ 𝑍(𝑥𝑘)𝑍(𝑥𝑘+ℎ3
)

𝑁ℎ1,ℎ2,ℎ3

𝑘=1

) ( ∑ 𝑍(𝑥𝑘+ℎ1
)𝑍(𝑥𝑘+ℎ2

)

𝑁ℎ1,ℎ2,ℎ3

𝑘=1

)] 

(31) 
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In this work, Cumulants were used as a criterion to 

select the best realization. According to the spatial 

structure of the dykes (Figure 11 and Table 3), the 

calculation of Cumulants is divided into two 

groups (Figure 12): 

1. The 3-order Cumulant in the three directions: 

{315, 45}, {135, 135}, and {315, 135}. 

2. The 4-order Cumulant in the two directions: {315, 

135, 45}, and {135, 135, 135}. 

We compared two Cumulants comprising the 

former from TI (as a criterion) and the later from 

each realization. For a quantitative comparison of 

the Cumulants of TI and the SNESIM realizations, 

the mean squared error (MSE) and correlation 

methods were used for each realization (Table 4).  

 
Figure 11. Experimental variogram of hard data in 3D. 

Table 3. Characteristics of experimental variogram of hard data in 3D. 

 Azimuth  Dip Range (m) 

1 315 67.5 180 

2 135 22.5 78 

3 45 0 54 

Nugget effect 0.04 Sill 0.13 

 

 
Figure 12. The considered patterns for calculation of Cumulants based on the spatial structure of the dykes. 
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Table 4. MSE and correlation results of Cumulants using considered patterns (for part of the realizations). 

Considered pattern Realization number Mean squared error Correlation 

{315, 45} 

30 127×10-7 0.884 

33 122×10-7 0.892 

4 174×10-7 0.812 

15 191×10-7 0.798 

12 184×10-7 0.807 

{135, 135} 

30 101×10-7 0.905 

33 124×10-7 0.871 

4 201×10-7 0.852 

15 182×10-7 0.861 

12 214×10-7 0.804 

{315, 135} 

30 175×10-7 0.854 

33 192×10-7 0.814 

4 214×10-7 0.801 

15 222×10-7 0.794 

12 241×10-7 0.781 

{315, 135, 45} 

30 99×10-8 0.942 

33 117×10-7 0.898 

4 104×10-7 0.903 

15 127×10-7 0.891 

12 131×10-7 0.884 

{135, 135, 135} 

30 109×10-7 0.912 

33 116×10-7 0.901 

4 193×10-7 0.802 

15 142×10-7 0.821 

12 125×10-7 0.867 

 

After checking the important criteria for the 

selection of the best realization, the BWM method 

was used to assign the criteria weight. The 

hierarchy structure of the main criteria and sub-

criteria was designed in a decision tree shown in 

Figure 13. Based on the experts’ judgment, the best 

and worst criteria were first determined, and then 

steps of the BWM method were followed. Finally, 

solving a linear model (Equation 10) through the 

GAMS software, the 𝜉∗ value and criteria weight at 

each part of hierarchy structure were calculated 

(Table 5). According to the consistency ratio, we 

concluded that the implemented linear model 

produced a consistent result. 

 
Figure 13. Hierarchy structure of the effective criteria for the selection of the best SNESIM realization. 
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Table 5. The optimal weight of each effective criterion from the BWM method. 

Criteria 𝒘𝒋 Sub-criteria 𝒘𝒋
′ Sub-criteria 𝒘𝒋

′′ Final weight 

Single-point statistics 
 

0.094 

Proportion 0.500 
 

0.047 

Variance 0.500 0.047 

Two-point statistics 
 

0.210 
 

0.210 

Multiple-point statistics 0.216 0.216 

Connectivity 0.228 0.228 

Cumulants 0.252 

Third order 0.453 

{315, 45} 0.294 0.034 

{135, 135} 0.412 0.047 

{315, 135} 0.294 0.034 

Fourth order 0.547 
{315, 135, 45} 0.500 0.0685 

{135, 135, 135} 0.500 0.0685 

𝜉∗ 0.134 

𝐶. 𝑅. 0.027 

 

To rank 35 realizations obtained from the SNESIM 

algorithm, a decision matrix must be constructed 

for 35 alternatives and 16 criteria. The main 

purpose of this process is to select the best 

realization as a TI for simulation of dykes in the 

deeper region (procedure shown in Figure 1). After 

making the decision matrix, this matrix must be 

normalized. In order to produce the homogeneous 

criteria (by positive nature), the linear 

normalization method must be used as [62, 63], 

𝑛𝑖𝑗 =
𝑎𝑖𝑗

𝑚𝑎𝑥𝑖{𝑎𝑖𝑗}
; 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛 if it is a benefit mode problem 

(32) 

𝑛𝑖𝑗 =

1
𝑎𝑖𝑗

𝑀𝑎𝑥𝑖 {
1

𝑎𝑖𝑗
}

=

1
𝑎𝑖𝑗

1

𝑀𝑖𝑛𝑖 {
1

𝑎𝑖𝑗
}

=

𝑀𝑖𝑛𝑖 {
1

𝑎𝑖𝑗
}

1
𝑎𝑖𝑗

 
if it is a cost mode problem 

where 𝑎𝑖𝑗 represents the element value of 

alternative 𝑖 in criterion 𝑗. Based on the steps of the 

VIKOR method, the values of normal matrix for 

each criterion are multiplied by criterion weight in 

order to calculate the weighted normal matrix. 

According to the application of the linear 

normalization method, the ideal solution of each 

criterion is equal to the maximum value in its 

column. Finally, the 𝑆, 𝑅, and 𝑄 values were 

calculated, and the best realization was selected 

based on the calculated values. The part of results 

obtained by the VIKOR method is shown in Table 

6, while realization #30 was selected as the best one 

(Figure 14). Therefore, this realization was used as 

TI in the simulation of deeper portions in the 

Sungun porphyry-Cu deposit. 

 
Figure 14. A 3D view of the best realization #30 by implementing the SNESIM algorithm in the shallow portions 

of the Sungun porphyry-Cu deposit. 
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Table 6. The final results obtained by the VIKOR method for shallow portions of the Sungun deposit. 

Realization number 𝑺 𝑹 𝑸 Rating 

30 0.088 0.418 0.293 1 

33 0.033 0.541 0.299 2 
4 0.073 0.506 0.322 3 

15 0.299 0.172 0.388 4 
8 0.384 0.086 0.432 5 

5 0.006 0.893 0.450 6 

11 0.389 0.143 0.467 7 
1 0.089 0.811 0.496 8 

10 0.488 0.016 0.505 9 

2 0.060 0.933 0.528 10 
26 0.330 0.463 0.570 11 

25 0.270 0.597 0.575 12 

7 0.314 0.540 0.592 13 

6 0.379 0.729 0.758 14 

19 0.312 0.957 0.804 15 
28 0.321 0.950 0.810 16 

13 0.740 0.111 0.819 17 

21 0.710 0.208 0.837 18 
34 0.381 0.982 0.889 19 

23 0.828 0.080 0.894 20 

14 0.746 0.295 0.920 21 
17 0.666 0.478 0.929 22 

18 0.527 0.764 0.931 23 

12 0.524 0.774 0.932 24 
22 0.430 0.989 0.944 25 

24 0.597 0.652 0.947 26 

29 0.634 0.599 0.957 27 
3 0.669 0.949 1.175 28 

16 0.847 0.609 1.186 29 

35 0.742 0.857 1.203 30 
32 0.815 0.730 1.215 31 

9 0.960 0.446 1.221 32 

27 0.766 0.911 1.256 33 

20 0.838 0.936 1.345 34 

31 0.910 0.867 1.385 35 

 
4.2. Deep region simulation 

According to the defined parameters for the 

simulation of the dykes in the shallow region (first 

step, Figure 1), the SNESIM realizations of the 

deeper region were conducted based on the 

optimum realization (TI) of the shallow region. 

Similar to the previous section, the criteria 

evaluation for selection of the best realization were 

investigated as well. They were generated for 

single-point statistics (Figures. 15a and 15b), two-

point statistics (Figures. 15c and 15d), multiple-

point statistics (Figure 15e), connectivity 

reproduction (Figure 15f), and high order 

covariance reproduction (Table 7). 

Similar to the previous section, the realizations 

obtained from the SNESIM algorithm in the deep 

region were sorted based on Table 4 and decision 

matrix. The results obtained by the VIKOR method 

is shown in Table 8, where realization #22 is 

selected as the best one (Figure 16). The 

connectivity of dykes is reproduced using this 

hybrid method. Based on the result obtained by this 

method, the dykes of the Sungun system are 

generally located along the stretch of NW-SE trend 

parallel to the UDMA structural zone in Iran. The 

DK1 map of the area under study proves that the 

general trend of dykes has happened in the NW-SE 

direction (Figure 3).  

When applying the proposed approach and 

simulating the dyke structures, there is an interest 

to know about the accuracy and quality of the best 

simulation model. To this end, the single-point and 

two-point statistics of dyke in the best realization 

#22 are compared with those in the hard data. Table 

9 shows that the proportion and variance of 

realization #22 are similar to those obtained with 

the hard data. Since variogram is a tool for 

checking the two-point statistics, the variogram 

models of the best realization #22 in the major, 

minor, vertical, and omni directions are compared 

with those in the hard data (Figure 17). It can be 

seen that the variogram parameters of realization 

#22 are close to hard data. 

Table 9. Statistical parameters of TI and hard data. 

 Proportion Variance 

Realization #22 0.339 0.225 

Hard data 0.321 0.221 
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Figure 15. Graphical comparison of the single-point statistics parameters of the TI and SNESIM realizations, (a) 

proportion, (b) variance. Omni-directional variogram of five realizations and TI for deep region (c), Gamma-

Gamma plot of the realization #22 than TI (d), frequency chart of reproduced patterns on the realization #22 

and TI (e), and probability value of connectivity reproduction of the SNESIM realizations and TI (f). 

Table 7. MSE and correlation results of Cumulants using the considered patterns (for part of the realizations). 

Considered pattern Realization number Mean squared error Correlation 

{315, 45} 

22 145×10-7 0.901 

32 162×10-7 0.854 

6 193×10-7 0.794 

3 177×10-7 0.824 

11 201×10-7 0.781 

{135, 135} 

22 112×10-7 0.937 

32 125×10-7 0.921 

6 137×10-7 0.915 

3 142×10-7 0.894 

11 164×10-7 0.842 

{315, 135} 

22 157×10-7 0.854 

32 191×10-7 0.789 

6 172×10-7 0.801 

3 207×10-7 0.741 

11 224×10-7 0.724 

{315, 135, 45} 

22 201×10-6 0.872 

32 217×10-6 0.856 

6 231×10-6 0.839 

3 234×10-6 0.834 

11 300×10-6 0.712 

{135, 135, 135} 

22 146×10-6 0.894 

32 174×10-6 0.841 

6 197×10-6 0.812 

3 212×10-6 0.794 

11 315×10-6 0.723 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 8. Final results obtained by the VIKOR method for deeper portions of the Sungun deposit. 

Realization 

number 
𝑺 𝑹 𝑸 Rating 

22 0.018 0.138 0.059 1 

32 0.077 0.147 0.124 2 

6 0.065 0.247 0.165 3 

3 0.048 0.373 0.214 4 

11 0.096 0.293 0.221 5 

21 0.082 0.327 0.225 6 

18 0.245 0.243 0.346 7 

13 0.091 0.681 0.422 8 

14 0.461 0.056 0.467 9 

2 0.337 0.301 0.471 10 

16 0.409 0.208 0.494 11 

26 0.386 0.253 0.495 12 

25 0.120 0.881 0.557 13 

33 0.537 0.111 0.574 14 

27 0.536 0.184 0.612 15 

1 0.142 0.949 0.616 16 

4 0.328 0.595 0.618 17 

30 0.390 0.494 0.627 18 

35 0.364 0.688 0.703 19 

34 0.508 0.522 0.762 20 

7 0.799 0.051 0.809 21 

15 0.879 0.066 0.898 22 

28 0.425 0.969 0.915 23 

5 0.579 0.707 0.933 24 

17 0.800 0.386 0.987 25 

8 0.991 0.027 0.992 26 

12 0.666 0.657 0.995 27 

20 0.651 0.750 1.029 28 

10 0.763 0.556 1.040 29 

31 0.690 0.802 1.096 30 

29 0.760 0.835 1.185 31 

19 0.722 0.946 1.205 32 

23 0.985 0.622 1.301 33 

24 0.865 0.953 1.355 34 

9 0.999 0.720 1.368 35 

 

 
Figure 16. A 3D view of the best realization #22 through running the SNESIM method at the deeper portions of 

the Sungun deposit. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 17. Variogram models of the best realization #22 and hard data, (a) Omni-directional, (b) Azimuth 

315 and dip 67.5, (c) Azimuth 135 and dip 22.5, and (d) Azimuth 45 and dip 0. 

5. Conclusions  

This work was an attempt to model dyke structures 

of Sungun using a multi-step SNESIM algorithm. 

To this end, the MCDM and MPS approaches were 

used in a combined form. In the first step, a training 

image was constructed from the surface geological 

map to simulate an upper portion of the Sungun 

porphyry-Cu deposit. After simulation of shallow 

depth, several statistical criteria of realizations and 

TI were compared as well to select a new TI. 

Various statistical criteria such as single-point 

statistics, two-point statistics, multiple-point 

statistics, connectivity reproduction, and high order 

covariance reproduction (Cumulants) were 

incorporated in a MCDM problem to choose the 

best realization of simulation. Then the weight of 

statistical criteria was incorporated through a novel 

AHP-BMW approach to differentiate their 

importance in the final decision-making. In the 

next step, the VIKOR method was used to select 

the best realization of shallow depth results. The 

best realization was used as TI to generalize dyke 

simulation in the deeper portion of the studied 

region. Finally, Similar to the previous section, the 

realizations obtained from SNESIM algorithm in 

the deep region were sorted based on the several 

statistical criteria and AHP-BMW results. 
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 چکیده:

آماری، از طریق تعریف سازی زمینشناسی پیچیده تأثیر قابل توجهی در طراحی یک طرح استخراج معدن دارد. رویکردهای شبیهسازی دقیق واحدهای زمینمدل

شناسی مختلف را بازتولید پراکنده از حفاری، واحدهای زمینتوانند هنگام در دسترس بودن یک الگوی (، میTIیک مدل واریوگرام یا تفسیر یک تصویر آموزشی )

ه، برد. در حالی کشناسی پیچیده و غیرخطی رنج میای( معمولاً از بازتولید واحدهای زمینآمارهای دونقطههای مبتنی بر واریوگرام )حاصل از زمینکنند. تکنیک

کند. این مطالعه به بررسی ساختارهای دایک شناسی قبلی حل میآموزشی حاصل از اطلاعات زمین ( این مشکل را با تفسیر تصویرMPSای )نقطهآمار چند زمین

پردازد. به منظور انجام یک ( میSNESIMای )سازی معادله نرمال منفرد چند مرحلهغربی ایران، با استفاده از الگوریتم شبیهسیستم مس پورفیری در شمال

ویر شوند. برای این منظور، دو تصگیری چند معیاره به صورت ترکیبی استفاده میای و تصمیمآماری چند نقطهرویکردهای زمینای، الگوریتم اسنسیم چند مرحله

سازی ساختارهای دایک در عمق زیاد، در نظر گرفته شده است. در مرحله اول، سازی ساختارهای دایک در عمق کم و دیگری برای شبیهآموزشی، یکی برای شبیه

تحقق برای عمق  93شود. پس از تولید تصویر آموزشی، شناسی استخراج شده در طی عملیات اکتشافی قبلی تولید میتصویر آموزشی با استفاده از نقشه زمینیک 

ر آماری ه بعد(، چندین معیاسازی )به عنوان یک تصویر آموزشی برای مرحلشود. برای انتخاب بهترین تحقق از نتایج شبیهسازی میکم کانسار مورد مطالعه شبیه

گیری چند معیاره هیبریدی براساس گروهی از معیارهای آماری طراحی شد. استفاده و نتایج به دست آمده با هم مقایسه شدند. برای این هدف، یک روش تصمیم

 دند.سازی شدر مرحله بعد، ساختارهای دایک در عمق زیاد با استفاده از تصویر آموزشی جدید همچنین شبیه

 گیری چند معیاره، کانسار مس پورفیری سونگون.شناسی پیچیده، تصویر آموزشی، الگوریتم اسنسیم، تصمیمواحدهای زمین کلمات کلیدی:

 

 

 

 


