
 Corresponding author: e.farrokh@aut.ac.ir (E. Farrokh). 
 

Shahrood 
University of 
Technology 

Iranian Society 
of Mining 

Engineering 
(IRSME) 

 
 
Journal of Mining and Environment (JME) 

 
journal homepage: 

www.jme.shahroodut.ac.ir  
 

Vol. 11, No. 2, 2020, 539-554. 
DOI: 10.22044/jme.2020.9041.1792 

 
TBM Tunneling Construction Time with Respect to Learning Phase Period 

and Normal Phase Period 
 

E. Farrokh* 

Department of Mining and Metallurgy Engineering, Amirkabir University of technology, Tehran, Iran 
 

Received 22 October 2019; received in revised form 6 March 2020; accepted 6 March 2020  
 

Keywords 

Tunnel boring machine 

Advance rate 

Learning phase 

Normal phase 

Time evaluation 

Abstract 
In every tunnel boring machine (TBM) tunneling project, there is an initial low production 
phase so-called the Learning Phase Period (LPP), in which low utilization is experienced 
and the operational parameters are adjusted to match the working conditions. LPP can be 
crucial in scheduling and evaluating the final project time and cost, especially for short 
tunnels for which it may constitute a major percentage of the total project completion 
time. The contractors are required to have a better understanding of the initial phase of a 
project to provide better estimates in the bidding documents. While evaluating and 
shortening of this phase of low production is important for increasing the productivity and 
daily advance rate of the machine, there has been limited a direct study and assessment of 
this period. In this work, we discuss the parameters impacting LPP, and introduce a new 
methodology for its evaluation. In this regard, an algorithm is introduced for estimation 
of the approximate extent of LPP based on some TBM tunneling case histories. On the 
basis of many statistical analyses conducted on the actual data and application of two 
different shapes of linear and polynomial for the description of LPP, a linear function is 
proposed for estimation of the learning phase parameters. The major parameters of this 
function are the learning conditions’ rating and the proportion of LPP to tunnel diameter 
(X1/D). Analysis of the correlation between these two parameters show a very good 
coefficient of determination (R2 = 92%). This function can be used for the evaluation of 
TBM advance rates in LPP and for adjusting the TBM utilization factor in the initial stages 
of a TBM tunneling project. The learning phase can affect the overall utilization rate and 
completion time of the tunnels, especially when their lengths are around a couple of 
kilometers. A true understanding of the LPP characteristics can help the contractors to 
come up with a more accurate bidding time and cost evaluation, and may also benefit the 
clients to arrange a better schedule for the final project delivery to the public. 

1. Introduction 
Identification of the tunnel boring machine (TBM) 
performance parameters and their influential 
factors has been the primary focus of several 
research works in the recent years. For example, 
the works presented by [1-11] are among the major 
efforts performed to predict the TBM penetration 
rate. The studies conducted by [14-17] are among 
the few efforts to evaluate the TBM advance rates.  
In this regard, improvement of the available 
prediction tools or introduction of the new models 
for the estimation of the TBM advance rates in 

various ground conditions have been the primary 
goals of these studies. The daily advance rate (AR) 
of TBM is defined as the length of the tunnel 
excavated during each working day, and is 
expressed in m/day. AR is the key component of 
the estimation of a tunnel project schedule and cost, 
and it is a function of the TBM penetration rate 
(PR) as well as the machine utilization. Obviously, 
while the rock conditions could be the same 
throughout the tunnel, the daily AR is typically 
lower at the earlier stages of the operation due to 
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the lower utilization. Generally, the daily AR of a 
TBM starts at a low value and increases gradually 
to reach a steady state normal rate as the operators 
learn about the machine and its capabilities as well 
as the machine-ground interaction. During this 
early stage, the tunnel crew fine-tune the auxiliary 
operations to achieve a consistent level of the 

production as they streamline the activities and 
gradually increase the machine productivity. 
Figure 1 shows a diagram of AR versus elapsed 
time or Cumulative Advance Rate (CAR) versus 
elapsed time. The LPP diagram is generally curved, 
while the Normal Phase Period (NPP) portion of 
the diagram is a straight line (Figure 1) 

 
Figure 1. A schematic sketch of LPP and NPP for two common TBM progress diagrams.  

As noted by [18-24], the major factors influencing 
the learning phase (or start-up) can be divided into 
the following four groups: 

 Man/Personnel 
 Qualification and motivation 
 Construction site organization 
 Communication on the construction site 
 Access to skilled labor 
 Crew absenteeism and/or unrest  

 Machine and support system 
 Machine type (e.g. gripper TBM or shielded 

TBM) 
 Support requirements 
 Condition of TBM (i.e. whether it is new or 

used) 
 Condition of the back-up system (i.e. 

whether it is new or used) 
 Ground support type (e.g. segmental lining) 

 Geology 
 Rock mass condition 
 Presence of extreme mining areas and their 

types, as explained by [25] 
 Water inflow quantity 
 Alternation of the soft and hard layers 

 General conditions 
 Degree of difficulty (e.g. available space for 

the tunnel portal, etc.) 
 Intensity of work preparation 

 Populated or unpopulated areas 
 Local conditions (e.g. cold weather, etc.) 

Some researchers such as Brockway [26], and 
Wais and Wachter [23] have presented some 
examples of the effect of learning on the ring 
erection time and the cycle time for some EPB 
shield TBMs (Figures. 2 and 3). A simple 
observation is that as the number of installed ring 
(horizontal axis) increases, the required time for 
the ring installation (vertical axis) decreases. 
According to Brockway [26], in the operation of 
M-30 road tunnel in Madrid, the time of ring 
installation is reduced from over 400 minutes (in 
the beginning of the tunnel excavation) to less than 
100 minutes (after installation of 1000 rings or 2 
km of tunnel excavation). This means that as the 
tunnel excavation continues, the efficiency of the 
crew in performing their related tasks improves, 
and in overall, one can conclude (and it is evident) 
that the utilization increases.  Meanwhile, the 
question is how fast an operation can reach a 
consistent production and how to account for this 
phase in the calculation of the TBM production, 
advance rate, and overall tunnel completion time, 
especially for shorter tunnels, where the learning 
phase could be a substantial part of the entire tunnel 
excavation time. 
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Figure 2. Ring building and cycle times according to the Herrenknecht control system for a tunnel diameter of 5 

m excavated by an EPB TBM [23]. 

 
Figure 3. Ring building and cycle times according to Brockway [26] for M-30 road tunnel of 15.2 m diameter, 

excavated by an EPB TBM. 

2. Modeling the LPP Effect 
A rule of thumb in the TBM tunneling industry for 
the evaluation of LPP is to consider the first month 
period as LPP and the remaining as NPP. Laughton 
[17] has shown an analysis of the 48 TBM datasets 

using this method by showing the "start-up 
efficiency", which is the percentage of the first 
month AR to the Average Advance Rate (AAR) of 
the remaining months (Figure 4). This method is a 
rough estimate and cannot reflect the effects of 
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different conditions on LPP. As reported by Wais 
(2002), and Wais and Wachter [23], among the 
different functions, the exponential function is one 
of the common formulas used for the estimation of 
the effect of LPP (Gehring and Wachter methods, 
Equations. 1 and 2 for methods 1 and 2). This is 
similar in other industries for the production rate 

evaluation, as explained by [27-31].  In the method 
proposed by Gehring and Wachter, a 
familiarization factor is calculated, which reflects 
the speed of adaptation of the procedures for 
different tunneling activities to achieve the highest 
possible (normal) production rate. 

 
Figure 4. Histogram of start-up efficiency for gripper TBMs according to Laughton [17]. 

f୤ୟ୫୧୪ = 1− eି଴.଺ହୢ (Method 1) (1) 

where f୤ୟ୫୧୪  = percentage of the maximum rate of 
advance (familiarization factor) 

d = duration of tunneling (in months)   

L(t) = a ∙ (1− eିୡ୲) ∙ fଵ     (fଵ = ୍ొ
୍ా

) (Method 2) (2) 

where t = duration of tunneling in working days 
[wd] 
L(t) = daily advance rate of day ‘t’[m/wd] 
c = learning curve parameter obtained from Table 
1 considering the total rating of LRH, which is the 
summation of the proposed ratings for human, 
machine, surrounding, and rock sub-factors in 
different work conditions of good, standard, and 
poor (Figure 5). 

 ૚ = parameter of the filter function for the܎
penetration rate, which is IN/IB. 
IN = net penetration rate [m/h] for a specific zone 
along the tunnel. 
IB = reference net penetration rate [m/h] (based on 
the presented examples by Waise and Wachter [1], IB 

is the average penetration rate over the entire tunnel 
length). 
a = learning curve parameter selected from IB 
((based on the presented examples by Waise and 
Wachter [23], 'a' is the average advance rate over the 
entire tunnel length) [m/wd]. 

In these methods, the formulas are used for the 
entire tunnel excavation period from the beginning 
to the end. The difference between the equations 
for LPP and NPP is that the familiarization 
function values in NPP are very close to 1. The 
component (1 − eିୡ୲) in Equation 2 (here called  
f୤) is similar to f୤ୟ୫୧୪ in Equation 1.  f୤ୟ୫୧୪ and f୤ 
are the percentages of the NPP advance rate 
determined at various times during the learning 
period. According to Waise [32] in Gehring 
methodology, f୤ = 95% can represent the end of 
LPP. In the next sections, using the actual data 
from various tunneling projects around the world, 
a data analysis is conducted to discuss about the 
range of specific parameters of the Waise and 
Wachter’s formulas through back-analysis. The 
next section is an introduction to the database 
compiled and used for this purpose

.  
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Figure 5. Learning curve parameter c for different TBM types [23]. 

Table 1. Learning conditions rating according to Waise and Wachter [23]. 
Group Factors Standard Good Poor Points 

H
um

an
 

Personal 
Permanent staff 40-50%, familiar with 
tunneling, enough auxiliary staff avail. 

flexible working hours, small fluctuation 

100% permanent staff, very flexible 
working hours, following an earlier site 

(from former sites) 

Low amount of permanent staff, labors 
from the third world countries, high 
fluctuation rigid working hours rules 

 

Organization Clear allocation of function and 
responsibility, to experienced staff 

Organization already in practice (from 
former sites) Unclear functions and responsibility  

Communication Good ability to communicate in one 
common language for the key positions 

Communication already in practice (from 
former sites) 

No or only minor ability to communicate in 
one language  

M
ac

hi
ne

 

Diameter Working space and power of the machine 
match with diameter 

Lower planned diameter (performance 
reserve) 

Diameter does not match with machine and 
trailer concept (too big, too small)  

TBM type and 
trailer system 

tested and familiarized to the key personal, 
suitable for soil conditions, suitable trailer, 

good logistics 

System already in practice (from former 
sites) 

System and its components do not fit 
together  

Condition TBM and trailer in a good refurbished 
condition, standard prone to break down New system, low prone to break down TBM and trailer used, high prone to break 

down  

Support Tested and familiarized to the key 
personal, suitable for TBM type 

System already in practice (from former 
sites) unaccustomed, unpractical support system  

Su
rr

ou
nd

in
g 

Infrastructure Good accessibility, sufficient area, electric 
power and water 

Good accessibil ity, sufficient area, electric 
power and water. Already developed site 

from former construction 

poor accessible, poor conditions of area 
insufficient water and electric power  

Supply Competitive suppliers, enough area for 
storage, suitable spare stock 

Already known suppliers from former 
sites, no time pressure 

New or unsuitable suppliers, lack of storage 
area, insufficient spare stock  

Starting situation 

Filling of key positions already known 
minor obstacles by temporary measures 
low weathered soil and water at the start, 
secured start position (Abutment Frame, 

Starting trestle, Start Ring) 

Complete personal available, no obstacles 
temporary measures, no weathered soil 

and no water at the starting position 
secured start position (Abutment Frame, 

Starting trestle, Start Ring) 

Insufficient staff available, many obstacles 
by temporary measures, insufficient start 
position, completely weathered soil with 

water during start, high time pressure 

 

R
oc

k 

Formation No gas, loose rocks, drilling possible low 
water inflow 

No gas, stable, good to very good drillable 
(not too hard), no water inflow 

Gas, unstable soil, Water inflow, many 
changes in soil conditions  

LRH:  
* Ratings: 1 for poor; 3 for standard; 5 for good. LRH is the total sum of all of the ratings. LRH ranges for poor, standard, and good 
conditions are 11-22, 23-43, and 44-55, respectively.  
** It should be noted that Waise and Wachter [23] did not provide any relationships between LRH and ‘c’. 
 
3. Database description 
For the purpose of the following data analysis, a 
detailed information of tunnel weekly advance 
rates of 31 tunnels from around the world is 
compiled in a database. It should be noted that this 
data is part of the comprehensive TBM 

performance prediction database explained by 
Farrokh et al. [2, 3 33] and compiled from the 
contractor’s reports and the literature. Table 2 
shows the range of the major parameters of this 
database. Figures. 6 and 7 show the boxplots and 
histograms of the major parameters of the database. 

Table 2.  Descriptive information of the database. 
TBM type Number of projects Length (m) Diameter (m) UCS (MPa) PR (m/h) AR (m/day) 

Open 17 1576-13400 3.4-11.8 30-176 1.2-8 9.9-49 
Single-shield 6 2073-5620 3.4-12.4 14-263 1.9-2.6 6.4-17.28 
Double-shield 8 5223-21300 3.6-8.1 30-190 2-3.5 6.55-29 

0 0.05 0.1 0.15 0.2 0.25

Open

Double Shield

Single Shield

Parameter c

Good

Standard

Poor
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Figure 6. Boxplots of the major parameters of the database. 

 

 
Figure 7. Histograms of the major parameters of the database. 

As seen in Table 2, and Figures 6 and 7, the wide 
range of these parameters indicate that the data 
cover various tunneling conditions that are 
required for the subsequent analyses. 

4. Back-analysis 
In this section, on the basis of the advance rate data 
from the database explained in the previous 

section, the range of specific parameters of the 
Waise and Wachter’s formulas are back-
calculated. Table 3 shows the back-calculated 
corresponding time for f୤ = 95% for various types 
of TBMs under standard conditions using the 
average value of c for three categories of learning 
condition. 
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Table 3. Corresponding ܎܎ values in standard condition. 

TBM Type Values of constant "c" in 
standard conditions 

Corresponding time of 
܎܎ = ૢ૞% (days) 

Corresponding time 
of ܎܎ = ૢ૞% (months) 

Double-Shield TBM 0.02 210 7 
Open TBM 0.05 60 2 

Single-Shield TBM 0.025 120 4 
 
According to Waise and Wachter [23], the 
corresponding LPP times for double-shield and 
single-shield TBM are rather high, while in 
common cases, they are around two months for 
these types of machines. Table 4 provides the two 
basic parameters of Equation 2 (‘a’ and ‘c’) 
through back-analysis on 31 tunnel weekly 
advance rate information assuming fଵ = 1.  

It should be noted that ‘a’ and ‘c’ were explained 
previously after Equation 2. Having values of 'a' 
from the real weekly data, it was possible to back-
calculate parameter 'c' using Equation 2. The 
condition in Table 4 refers to the categories of 
parameter ‘c’ shown in Figure 5. The last column 
represents the corresponding time of L(t) function 
(Equation 2) at which 95% of 'a' is obtained. 

Table 4. Back-analysis results of Equation 2 parameters for 31 tunnel cases. 
Excavated 

diameter (m) 
Excavated length 

(m) a c Condition Corresponding time of 
܎܎ = ૢ૞% (weeks) 

3.52 6130.3 158.9 0.1813 Good 3 
3.35 9520 176.6 0.055 Good 8 
3.56 6954 191.95 0.0155 Standard 27 
3.56 7350 151.81 0.0176 Standard 24 
4.8 5200 110.83 0.0295 Standard 15 
4.5 21300 145.56 0.0153 Standard 28 
4.5 15686 133.92 0.0139 Standard 30 

11.81 1576 104.29 0.0035 Standard >24 
6.73 5223 113.56 0.0344 Good 13 
3.84 5613.5 142.5 0.028 Standard 15 

7 7654 55.79 0.1154 Good 4 
7 9559 60.42 0.1525 Good 3 

3.6576 2540.2 109.55 0.0192 Standard 22 
3.4 13400 278.67 0.0944 Good 5 
3.43 2073 84.34 0.0994 Good 4 
3.5 10120 237.23 0.0748 Good 6 
4.88 13060 140.72 0.0854 Good 5 
8.07 7201.65 148.07 0.0346 Good 12 
3.7 15880 160.53 0.0562 Good 8 
11.8 3480 68.75 0.0244 Standard 17 

11.98 4326 109.12 0.0209 Standard 20 
12.35 5620 125.91 0.0161 Standard 26 

3.9 2960 117.65 0.0237 Standard 18 
6.5 10314.5 83.16 0.0227 Standard 19 
3.9 2890 80.86 0.0524 Good 0.5 
3.9 6558.5 118.33 0.5 Good 0.5 
3.62 2820.4 97.82 0.5 Good 0.5 
3.63 5930 146.51 0.072 Good 6 
3.9 4412 131.21 0.5 Good 0.5 
3.9 1919 163.55 0.051 Good 8 
6.5 6914 95.2 0.5 Good 0.5 

 
As it can be seen, the corresponding time of f୤ =
95% (that is the end of LPP) for the standard 
condition is between 15 and 30 weeks (or between 
4 and 7 months), which seems relatively high. The 

following list shows some of the reasons that might 
cause overestimation of the learning phase period, 
which can result in underestimation of the overall 
utilization and advance rate of the operation. 
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 Using one fit formula for both LPP and NPP 
may cause overestimation of LPP: the 
learning curve parameters can be affected by 
the TBM advance rate fluctuations of NPP, 
as shown in the Figure 8 example. 

 The best Fit function may not represent all 
shapes of learning phase: as shown in the 
Figure 9 example, the fit function does not 
represent the true shape of LPP. 

 Since there is one fitting function for the 
learning and normal phases, the transition 
point is unclear due to having a continuous 
line and, in some cases, the learning 
parameters can push the beginning point of 
normal phase fitted line out of a long period 
of time.   

 
Figure 8. Learning phase overestimation because of TBM advance rate fluctuations of normal weeks (using the 

Waise and Wachter fitting function). 

 
Figure 9. Learning phase overestimation because of unreal shape of learning curve function (using the Waise and 

Wachter fitting function). 

This paper is an attempt to provide a new 
methodology for assessing the LPP based on the 
previous case histories of field performance of 
several TBMs. The difference between this and the 
previously noted methods accounts for two 
separate functions for two portions of LPP and 
NPP. In the following sections, we discuss this 
methodology in more detail. 

5. New Methodology 
The practical application of this analysis and the 
proposed models is in the performance prediction 
of a TBM for a new project. In such applications, 
one normally develops an estimate of the 
penetration rate (PR) based on the available models 
(e.g. CSM [34-36] and NTNU [37, 38] models), 
with more details on the machine and ground 
conditions. Then an estimated Utilization rate (U) 
is used to calculate an AR. Alternatively, other 

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41

W
ee

kl
y 

A
dv

an
ce

 R
at

e 
(m

)

Week No.

95% of Normal Advance

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

W
ee

kl
y 

A
dv

an
ce

 R
at

e 
(m

)

Week No.

95% of Normal 
Advance



Farrokh./ Journal of Mining & Environment, Vol. 11, No. 2, 2020 

547 

models (e.g. QTBM [39] and RME [40-44] can be 
used to directly estimate AR from a certain set of 
input parameters. Nonetheless, in both cases, the 
estimated daily advance rate is based on what is 
called the normal operating conditions in a given 
reach or stretch of a tunnel, and does not reflect the 
learning period.  As such, given that the estimated 
AR reflects NPP, if a model could estimate the LPP 
and a function could show the progression of the 
estimated AR or U through this period, a more 
accurate estimate of both parameters could be 
achieved. 
The proposed method involves breaking the graph 
of AR of a specific time increment (i.e. week) into 
the two portions of Learning Phase Period (LPP) 
and Normal Production Period (NPP). For LPP, a 
linear function (Equation 3) was selected to 
represent the gradual increase in AR (or 

alternatively utilization).  For NPP, a horizontal 
line (Equation 4) is selected to represent the 
average advance rate of normal phase (Y1) based 
on the common performance prediction models. It 
should be noted that for LPP, other functions such 
as polynomial function might be more realistic 
since they can describe the shape of LPP curve 
better when it has a convex or concave shape. 
Figure 10 shows an example of using polynomial 
function to fit LPP AR. One issue for a non-linear 
equation is how to obtain the coefficients without 
incurring huge errors. The analyses for polynomial 
function coefficients turned out to be very 
susceptible to the variation in the other information 
(e.g. tunnel diameter) that was collected for several 
tunnel projects in a database. Hence, at the end, the 
simpler form of linear function was chosen for the 
LPP analyses.  

 
Figure 10. LPP fit function using a polynomial function 

Y = a ∙ X (for 0 < X < X1, where 0 < Y < Y1) (3) 

Y = Y1 (4) 

Figure 11 shows the elements of LPP function in 
the newmethod. X1 and Xn represent the ending 
time of LPP and the ending time of NPP, 
respectively.  
In order to find the unknown parameters of the LPP 
and NPP functions from the real advance rates, the 
steps of the following flowchart (Figure 12) are 
followed and applied to the data of 44 TBM 
tunneling projects. 
The main procedure in this flowchart is to make the 
area under the LPP fitting function (A1 in Figure 
13) equal to or as close as possible to the 
corresponding CAR of X1. Figure 14 shows two 

examples of the obtained fitted functions for the 
periods of LPP and NPP. 

 
Figure 11. A schematic representation of fitting 

functions’ elements. 
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Figure 12. Flowchart of finding the parameters of fitting functions.  

 
Figure 13. Areas under fitting functions. 
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Figure 14. Examples of obtained fitting functions. 

This procedure can be applied for different periodic 
times such as daily, weekly, and monthly periods. 
In highly variable rock mass conditions, it is 
possible to use the utilization factor instead of AR 
to compensate for the differences in the penetration 
rates (PR) within different geological zones. It 
should be noted that in this case, the utilization 
factor should represent LPP, meaning in 
calculating the utilization factor, the total time 
should be working time, which includes weekend 
maintenance. One problem with using the 
utilization factor instead of AR might be the unreal 
high values of utilization factors during LPP due to 
slow cautious penetration of TBM that can lead to 
an inaccurate outcome for the LPP parameters.   
Another point is that the best fitting functions are 
susceptible to the NPP parameters, meaning that 
having unproductive or low productive weeks can 
change the results of the calculations of the total 
area under the functions, and this causes a shift 
towards finding inaccurate values.  Unproductive 
or low production weeks, especially in "Adverse 
Ground Conditions”, has nothing to do with 
learning period and training of the staff or adjusting 
the TBM equipment to the job site. Therefore, if a 
period of time is certainly not related to LPP or 
NPP, it should be eliminated from the calculations.  

6. Evaluation of Proposed LPP Function’ 
Parameters 
As noted earlier, one important parameter that is 
necessary for LPP is the duration of LPP (X1). The 
Waise and Wachter’s methodology [23] has 
considered various parameters for evaluation of the 
learning time and the TBM AR. One issue with this 
methodology is that AR for both LPP and NPP is 
obtained from one formula, and there is no explicit 
definition for the end of LPP. Furthermore, the 
reduction effects of the learning phase is 
considered for the whole period of tunneling or a 
long portion of it (refer to Table 3). As discussed 
earlier, in the proposed methodology, two separate 
fitting functions are introduced to represent the 
common trends better. Furthermore, the common 
practice in AR prediction is to add AR of LPP 
separately to AR of NPP (e.g. see Abd Al-Jalil [14], 
Laughton [17]). Figure 15 shows the difference 
between the new fitting functions and the 
exponential function of Waise and Wachter. 
A series of analyses was conducted on the 
information of 44 tunneling projects (compiled by 
Farrokh et al. [2, 3, 33]) to estimate the parameters 
of the new LPP model (refer to the flowchart in 
Figure 12). Based on these analyses, the X1/D ratio 
(called the learning phase ratio) has turned out to 
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be one of the best parameters for LPP evaluation 
for different tunnel diameter sizes (D). In this ratio, 
X1 is week number and D is tunnel diameter in m. 
Figure 16 shows the histogram of the distribution 
of this ratio for these tunnels. 
As it can be seen in Figure 16, the distribution of 
the learning phase ratio is highly skewed, and 
therefore, the average value is not an appropriate 
parameter for this data. The median simply shows 
the most appropriate central value for this data. It 
means that if we do not consider other factors, on 
average, we need to consider 1 week/m of diameter 
for LPP. If we want to follow the most commonly 
practiced LPP, this ratio is 0.5 week/m of diameter. 
Overall, in lack of information, especially crew 
experience, which is very hard to judge, the ratio of 
0.5-1 is recommended for LPP calculations.  
Further analyses were performed to include other 
factors, and to have a better understanding of the 
learning phase ratio. The results of the final 
analysis are shown in Figure 17. In this graph, LR 
is the learning conditions rating, which can be 
roughly obtained from Table 5. This table is similar 
to what Waise and Watcher presented for obtaining 
the learning condition rating (Table 1). In this 
table, RMR is the rock mass rating and LRH is the 
learning condition rating according to Waise and 
Wachter. 

 
Figure 15. Comparison between the linear and 

exponential functions for LPP.  

 
Figure 16. Histogram of distribution of the learning 

phase ratio for 44 tunnels. 

Table 5. LR rating in different learning conditions. 
Good (LRH = 44 - 55) Standard (LRH = 23 - 43) Poor (LRH = 11 - 22) 
-High experienced crew 

- TBM and BU low prone to break 
down 

- Good logistics 

- Experienced crew 
- TBM and BU standard prone to 

break down 
- Regular logistics 

-No/low experience 
- TBM and BU high prone to break 

down 
- Bad logistics 

LR = 100 + RMR LR = 50 + RMR LR = RMR 
RMR: Rock Mass rating   

 

 
Figure 17. Analysis results for obtaining X1/D. 

Once the X1/D ratio is obtained, X1 and A1, which 
are the excavated lengths of tunnel during LPP, can 
be easily calculated.  Having A1 and X1, it is 

possible to calculate the Xn (total tunneling time), 
as shown in Equation 5. 

Xn = X1 + (A − A1)/Y1 (5) 

In this calculation, ‘A’, the area under the curve, is, 
in fact, the total length of the tunnel and ‘A1’ is the 
length of the tunnel excavated in the learning 
period. Having X1, Xn, and Y1, it is possible to 
obtain the tunnel advance for the learning phase. 
The following example shows different steps of 
obtaining the LPP parameters using the proposed 
methodology. 
7. Example 
In this section, an example of line fitting using the 
formulas introduced in the previous section is 
shown. The actual advance rate data is obtained 
from [45] for the Konjancham tunnel. This tunnel 
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is located in the Ilam Province in Iran and is under 
construction with a 5.56 m diameter double-shield 
TBM. The data analysis in this section is focused 
on the first 4.8 km length of this tunnel, which is 
excavated in 28 weeks. According to the actual 
data, the NPP advance rate is 191 m. The average 
RMR value of the rock mass is 45 (varying from 
42 to 47), and the learning condition is good. 
Hence, the learning conditions rating (LR) is 
calculated from Table 5 to be 145. Table 6 shows a 
summary of the required input parameters and the 
required formulas for the calculation of LPP and 
NPP advance rates. Figure 18 shows the LPP and 

NPP advance rate for this project. As it can be seen, 
the fitted lines for LPP and NPP match very well 
with the general trend of the actual data. X1 in this 
project is around 8, which means the first 8 weeks 
is in LPP. The percentage of X1 with respect to Xn 
is around 30%, indicating the importance of LPP 
even for a tunnel length of 5 km, which is relatively 
a long tunnel. This example in its own shows the 
major importance of the correct evaluation of LPP 
for the prediction of the project time, especially in 
the early phase of a project (e.g. in the phase of 
bidding) when the project schedule plays a major 
role for cost planning. 

Table 6. Summary of the formulas and the calculation results. 
Parameter Formula/Description Value Unit 

A Tunnel length/Area under fitting 
functions 4800 m 

LR Learning conditions’ rating 145  
D Tunnel diameter 5.56 m 

Y1 Average AR for NPP 191 m/week 
X1/D -0.0255LR+5.1 1.4 Week/m 

X1 (-0.0255LR+5.1)*D 8 Week 
A1 X1*Y1 *0.5 745 m 

a (slope value) Y1/X1 24.5  
Xn X1+(A-A1)/Y1 29 week 

Average AR for the 
entire tunnel A/Xn 165 m/week 

 
Figure 18. LPP and NPP for the example case. 

8. Conclusions 
Learning Phase Period (LPP) in the TBM 
excavation process is a low production phase, 
which can be distinguished easily from the Normal 
Phase Period (NPP) in almost all the TBM 
tunneling projects. LPP can play an important role 
in scheduling the tunnel excavation and assessing 
the tunnel project cost. This is especially true for 
shorter tunnels in hard rocks. There are a few 

approaches in the prediction of the learning curve 
time and its impact on the overall tunneling period. 
The prediction of LPP depends on several factors, 
and it is still a difficult and uncertain task. 
In this paper, a new methodology for the estimation 
of LPP was introduced, which included: 
 Breaking the graph of advance rate of a 

specific time increment (i.e. week) into two 
explicit portions of LPP and NPP. The 
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benefit of this method is that the end of LPP 
is clearly defined, and the effect of LPP is not 
continued for the whole length of the tunnel. 

 LPP is characterized with an inclined line 
starting from zero and ending with the 
normal advance rate obtained from the 
common performance prediction models. 

 NPP is characterized with a horizontal line 
representing the average advance rate of the 
normal phase. 

 A series of analyses on the information of 44 
tunneling projects showed that the X1/D 
ratio (called as the learning phase ratio) 
ranged between 0 and 4.5 with an average 
value of 1.5 and a median of 1. 

 Learning conditions’ rating (LR) (that is 
obtained from the crew experience, 
machines’ breakdown frequency, and RMR 
value) is found to be highly correlated with 
X1/D. The obtained formula from this 
correlation can be used to predict the slope 
value of the LPP line. 

 When the LPP function’ parameters are 
defined, it is possible to calculate the 
completion time of the project with both the 
LPP and NPP fitting functions drawn in a 
single graph.   

The benefits of the proposed method become more 
prudent during the bidding phase of a project when 
the accuracy in the evaluation of both construction 
time and cost (which are related) becomes so 
important.  
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  چکیده:

اطلاق می (LPP) يریادگی زمانیدوره به آن  اَاصطلاح کهکم وجود دارد  با نرخ پیشروي هیمرحله اول کی،  (TBM)با ماشین تونل زنی يدر هر پروژه تونل ساز
 یینها نهیهززمان و  یابیو ارز يزیردر برنامه. اهمیت این دوره زمانی شـوندیم میکار تنظ طیمطابقت با شـرا يبراماشـین  یاتیعمل يپارامترها این دوره، درشـود. 

 کوتاهو  یابیکه ارز ی. در حالبیشتر استدهد،  لیتشکزمان یادگیري از کل زمان اتمام پروژه را  ياکوتاه که ممکن است درصد عمده يهاتونل يبرا ژهیپروژه، به و
سرعت پ يوربهره شیافزا يمرحله برا نیشدن ا سیار اهمیت دارد،روزانه  ويشریو  شین حفاري ب ست ما شده ا سیار کمی در این زمینه انجام   نیا در .مطالعات ب
ستبحث  LPP مؤثر بر ي، در مورد پارامترها مطالعه ستآن  یابیارز يبرا دیروش جد کیو  شده ا شده ا ستا  نی. در اارائه   زمان نیتخم يبرا تمیالگور کی ازرا

 يهاداده يشده بر رو مانجا يآمار لیو تحل هی. بر اساس تجزاستفاده شده است TBMهاي حفر شده با اطلاعات واقعی تعداد زیادي تونلبر اساس  LPP یبیتقر
 نیارائه شــده اســت. مهمتر آن يپارامترها نیتخم يبرا یتابع خط کی،  LPP تابع فیتوصــ يبرا يو چند جمله ا یو اســتفاده از دو شــکل مختلف خط یواقع

ضریب  ،این دو پارامتر بیناست. تحلیل همبستگی  (X1 / D) به قطر تونل LPPزمان   و نسبت يریادگی طیشرا ازیامت تاثیرگذار در این زمینه شامل يپارامترها
دو  کمتر ازکه طول آنها  زمانی ا، خصـــوصـــبگذارد ریها تأثتونل مامو زمان ات یکل وريبهره زانیبر متواند یم يریادگی یدوره زمان. دهدتعیین خوبی را نشـــان می

صح لومتریک شد. درك  ص حیبا صو سبی از کمک کند تا مانکارانیتواند به پیم LPP اتیاز خ شند، ها نهیزمان و هز ارزیابی منا شته با  امکان نیهمچني پروژه دا
 .کندرا نیز فراهم می روژهپ یینها لیتحو يبرا ریزيبرنامه

  .زمان یابیارز ي،ریادگی ی، دوره زماننرخ پیشروي، تونل زنی ماشین کلمات کلیدي:
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