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Abstract 
It is significant to discover a global optimization in the problems dealing with large 
dimensional scales to increase the quality of decision-making in the mining operation. It 
has been broadly confirmed that the long-term production scheduling (LTPS) problem 
performs a main role in mining projects to develop the performance regarding the 
obtainability of constraints, while maximizing the whole profits of the project in a specific 
period. There is a requirement for improving the scheduling methodologies to get a good 
solution since the production scheduling problems are non-deterministic polynomial-time 
hard. The current paper introduces the hybrid models so as to solve the LTPS problem 
under the condition of grade uncertainty with the contribution of Lagrangian relaxation 
(LR), particle swarm optimization (PSO), firefly algorithm (FA), and bat algorithm (BA). 
In fact, the LTPS problem is solved under the condition of grade uncertainty. It is proposed 
to use the LR technique on the LTPS problem and develop its performance, speeding up 
the convergence. Furthermore, PSO, FA, and BA are projected to bring up-to-date the 
Lagrangian multipliers. The consequences of the case study specifies that the LR method 
is more influential than the traditional linearization method to clarify the large-scale 
problem and make an acceptable solution. The results obtained point out that a better 
presentation is gained by LR–FA in comparison with LR-PSO, LR-BA, LR-Genetic 
Algorithm (GA), and traditional methods in terms of the summation net present value. 
Moreover, the CPU time by the LR-FA method is approximately 16.2% upper than the 
other methods. 

1. Introduction 
One of the main steps in mine planning is a long-
term production scheduling optimization process. Its 
main purpose is to make the most of the net present 
value of the entire profits from the production 
process, while filling all the operational constraints 
include ore production, grade blending, mining 
capacity, mining slope, etc. during each scheduling 
period with a pre-arranged high degree of 
probability. Optimization and mathematical 
formulation have been used so as to solve the long-
term production scheduling problems since the 
1960s. The deterministic and uncertainty-based 
approaches are the two main mathematical 
optimization ones practiced to solve these kinds of 

problems. Nevertheless, the supposition of input 
certainty is not always accurate. The truth is that 
certain limits affect the verification of some e data 
including ore grades, future product demand, future 
product price, and production costs. Thus decisions 
on production plan have to be made before knowing 
the exact values of those data. Any deterministic 
method is incapable of coping with uncertainty in a 
quantitative manner. This will affect the producing 
infeasible plans regarding the production necessities.  
figThe major methods applied to solve the long-term 
production scheduling (LTPS) problem are 
heuristics, dynamic programming, and integer 
programming. A common heuristic method is based 
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on the Lerchs-Grossmann algorithm [1], which is a 
precise approach to determine the ultimate pit. For 
the sake of computing time, the floating-cone 
methods have been used as heuristic and precise 
alternatives to the Lerchs-Grossman algorithm. 
Various heuristics have also been expanded for this 
problem. Pana [2] has presented a heuristic as a 
moving cone or dynamic cone. This heuristic has 
been enhanced by Korobov [3, 4], and then amended 
by Dowd and Onur [5, 6]. A dynamic programming 
approach to the LTPS problem has been 
demonstrated by Onur and Dowd [7]. They have 

mentioned that a solely dynamic programming 
approach is improbable to be able to solve the large-
scale problem cases. Laurich and Kennedy [8] have 
also examined the application of a constructive 
heuristic called incremental pit expansion. These 
algorithms have not yielded an optimal solution yet 
[9] as the researchers have come to great 
accomplishments in this regard. As presented in 
Table 1, the direction of production planning and the 
provision of optimal algorithms have been greatly 
deliberated within the last few decades. 

Table 1. Review of the presented models since 1969. 
Year Authors Model D1 U2 HMM3 Ref. 
1969 Johnson Linear Programming *   [10] 

1974 Williams 
Dynamic Programming, Integer 

Programming, Network Flow, Parametric 
Programming 

*   [11] 

1983 Gershon Linear Programming , Mixed Integer 
Programming *   [12] 

1986 Dagdelen and Johnson Lagrangian Relaxation Method *   [13] 
1992 Ravenscroft Conditional Simulation  *  [14] 
1994 Dowd Geostatistical simulation  *  [15] 

1995 Elevli Operation Research, Artificial 
Intelligence *   [16] 

1995 Denby and Schofield Genetic Algorithm  * * [17] 
1998 Tolwinski Dynamic Programming *   [18] 
1999 Akaike and Dagdelen 4D Network Relaxation *   [19] 
2000 Whittle Milawa *   [20] 
2002 Johnson et al. Mixed Integer Programming *  * [21] 

2002 Dimitrakopoulos et al. Generalized Sequential Gaussian 
Simulation, Direct Block Simulation  *  [22] 

2004 Godoy and 
Dimitrakopoulos Simulated Annealing Algorithm  * * [23] 

2004 Dimitrakopoulos and 
Ramazan Linear Programming *   [24] 

2004 Ramazan and 
Dimitrakopoulos Mixed Integer Programming *   [25] 

2004 Ramazan and 
Dimitrakopoulos Mixed Integer Programming  *  [26] 

2006 Gholamnejad et al. Chance Constrained Programming  *  [27] 

2007 Gholamnejad and 
Osanloo 

Chance Constrained Integer 
Programming  *  [28] 

2007 Ramazan and 
Dimitrakopoulos Stochastic Integer Programming *   [29] 

2009 Boland et al. Mixed Integer Programming *   [30] 
2010 Bley et al. Integer Programming *   [31] 
2010 Kumral Robust stochastic optimization  *  [32] 

2012 Lamghari and 
Dimitrakopoulos Tabu Search  * * [33] 

2012 Gholamnejad and 
Moosavi Binary Integer Programming  *  [34] 

2013 Latorre Nanjari and 
Golosinski Dynamic Programming, Mining Heuristic    [35] 

2013 Sattarvand and 
Niemann-Delius Ant Colony Optimization *  * [36] 
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Table 1. (Continued). 
Year Authors Model D1 U2 HMM3 Ref. 

2013 Goodfellow and 
Dimitrakopoulos Simulated Annealing Algorithm  * * [37] 

2013 Dimitrakopoulos and 
Jewbali Stochastic integer programming *   [38] 

2014 Leite and 
Dimitrakopoulos Stochastic Integer Programming  *  [39] 

2014 Moosavi et al. Lagrangian Relaxation Method, Genetic 
Algorithm *  * [40] 

2014 Moosavi et al. Augmented Lagrangian Relaxation 
Method, Genetic Algorithm *  * [41] 

2014 Koushavand et al. Mixed Integer Linear Programming  *  [42] 

2014 Asad et al. Stochastic Network Flow, Lagrangian 
Relaxation Method  * * [43] 

2014 Lamghari et al. Variable Neighbourhood Descent 
Algorithm  * * [44] 

2015 Shishvan and Sattarvand Ant Colony Optimization *  * [45] 

2016 Mokhtarian and 
Sattarvand Imperialist Competitive Algorithm *  * [46] 

2016 Mokhtarian and 
Sattarvand 

Commodity Price Distribution function, 
Median Latin Hypercube sampling 

method, Integer Programming 
*   [47] 

2016 Goodfellow and 
Dimitrakopoulos 

Simulated Annealing Algorithm, Particle 
Swarm Optimization, Differential 

Evolution 
 * * [48] 

2016 Lamghari and 
Dimitrakopoulos 

Rockafellar and Wets Progressive 
Hedging Algorithm  *  [49] 

2016 Lamghari and 
Dimitrakopoulos 

Tabu Search Heuristic Incorporating a 
Diversification Strategy, Variable 

Neighborhood Descent Heuristic, Very 
Large Neighborhood Search Heuristic, 
Network Flow Techniques, Diversified 

Local Search 

 * * [50] 

2017 Bakhtavar et al. Stochastic Chance-Constrained 
Programming  *  [51] 

2018 Khan Particle Swarm Optimization, Bat 
Algorithm  * * [52] 

2018 Rahimi et al. Logical mathematical algorithm *  * [53] 
2018 Tahernejad et al. Information Gap Decision Theory  *  [54] 

2018 Jelvez et al. Expected Time Incremental Heuristic 
Algorithm *  * [55] 

2018 Khan and Asad Mixed Integer Linear Programming *   [56] 

2018 Alipour et al. Robust counterpart linear optimization, 
Genetic Algorithm  * * [57] 

2019 Chatterjee and 
Dimitrakopoulos 

Lagrangian Relaxation Method, 
Sub-Gradient Method, 

Branch and Cut Algorithm 
 * * [58] 

2019 Dimitrakopoulos and 
Senécal Multi-Neighborhood Tabu Search  * * [59] 

1 Deterministic, 2 Uncertainty, 3 Heuristic, and Meta-heuristic Methods. 
 
The present paper dissects the application of meta-
heuristic algorithms to solve the problems of long-
term scheduling of open-pit mining with 
consideration of uncertainty. The authors presented 
hybrid models by Lagrangian relaxation (LR), 
particle swarm optimization algorithm (PSO), firefly 

algorithm (FA), and bat algorithm (BA) to elucidate 
the LTPS problem under the condition of grade 
uncertainty. To develop its performance, speeding 
up the convergence, the present study suggests 
practicing the LR methods on the LTPS problem. 
Additionally, PSO, FA, and BA are applied to bring 
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up-to-date the Lagrangian multipliers. A case study 
with its limitations was evaluated to inspect the 
efficacy of the proposed methods. While many limits 
reveal a useful system, it is distinguished that the 
whole generation price can be lessened. In 
comparison with the first method, the results 
obtained demonstrate that the complete version has 
taken significant progress. The consequences are 
very close to the best results achieved in the 
literature. 
The subsequent parts of this paper are scheduled as 
below. Section 2 indicates the objective functions 
and their associated limitations. Sections 3 and 4 
indicate a summary of the methodology and hybrid 
models, and the proposed models will be developed. 
Section 5 includes an evaluation of the outcomes. 
Above and beyond, the data collection and 
preparation are defined in this section. Validation of 
the established models is done. Finally, Section 6 
shows the deduction. 

2. LTPS Problem Formulation 
The long-term production scheduling model is put 
into practice to estimate the production purposes and 
ore material current within several years. Totally, it 
takes a basic image of the production and voices it 
as a linear problem. 

2.1. Objective Function 
The simplest method is to illustrate a full space 
optimization model, each period of the planning 
horizon, to consider the decision-making fortitudes. 
Remarkably, the obtainability of restraints is bonded 
into the model. Henceforth, the LTPS problem is 
indicated in the subsequent parts. 

ܼ    ݁ݖ݅݉݅ݔܽܯ = ෍෍
ܰ ௡ܸ

௧

(1 + ௧(ݎ
× ܺ௡௧

்

௧

ே

௡ୀଵ

 (1) 

In the constructed model, the following indications 
were accepted. n is the block identification number; 
n = 1, 2,…, N; N is the total number of blocks to be 
scheduled; t is the scheduling period index, t =1, 
2,…, T; T is the total number of scheduling periods; 
ܰ ௡ܸ 

௧  is the net value to be generated by mining block 
n in period t; r is the discount rate in each period; and 
ܺ௡ 
௧  is the binary variable. 

2.2. Constraints in model 
2.2.1. Grade Blending Constraints 
One of the most important hitches in production 
scheduling is the ore grade that has to be set aside 
steady while leading to the processing plant. For this 
reason, the grade of ore that is being steered to the 
mill should be well-defined between two limits. 

2.2.1.1. Upper Bound Constraints. 
It is significant that the average grade of the material 
directed to the mill should be a lesser quantity or 
equal to the certain grade value, Gmax for each period, 
t: 

෍(݃௡ (௠௔௫ܩ−  × ܺ௡௧ ≤ 0
ே

௡ୀଵ

 (2) 

where gn is the average grade of block n and On is 
the ore tonnage in block n. 

2.2.1.2. Lower Bound Constraints.  
Extraordinarily, the average grade of the material 
conducted to the mill has to be more or alike the 
definite value Gmin for each period, t: 

෍(݃௡ (௠௜௡ܩ−  ×  ܺ௡௧ ≥ 0    
ே

௡ୀଵ

 (3) 

2.2.2. Reserve Constraints 
Reserve restrictions made for each block specify that 
all measured blocks in the model should be mined on 
one occasion. 

෍ܺ௡௧ = 1      ,∀݊ = 1,2,3, … ,ܰ
்

௧ୀଵ

 (4) 

2.2.3. Processing Capacity Constraint 
Total tons of the treated ore should not surpass the 
processing capacity (PCmax) in every period, t: 

෍( ௡ܱ × ܺ௡௧ ) ≤ ௠௔௫ܥܲ

ே

௡ୀଵ

 (5) 

2.2.4. Mining Capacity Constraint 
The entire quantity of material (waste and ore) to be 
mined cannot be more than the whole accessible 
mining capacity (MCmax) for each period (t): 

෍( ௡ܱ + ௡ܹ) × ܺ௡௧ ≤ ௠௔௫ܥܯ

ே

௡ୀଵ

 (6) 

where Wn is the tonnage of waste material within 
block n. 

2.2.5. Wall slope Constraints  
These restraints ratify that it is indispensable to mine 
all blocks limited directly through the mining of 
block k, a target block before the extraction of block 
k is begun. There are two methods for these 
constraints: 
Using one constraint for each block per each period: 
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ܺ௞௧ −෍ ܺ௬௥ ≤ 0   ,∀݇ = 1,2, … ݐ∀,      ܰ,
௧

௥ୀଵ
= 1,2, … ,ܶ 

(7) 

where k is the index of a block considered as 
extraction at period t and Y is the total number of 
blocks followed by block k. 
Using Y-constraints for each block at each period: 

ܻ ௞ܺ
௧ − ∑ ∑ ܺ௬௥௧

௥ୀଵ
௟
௬ୀଵ ≤ ݕ∀,           0 =

1,2, … , ݈     ,∀݇ =  1,2, … ݐ∀,     ܰ, =
1,2, … ,ܶ     

(8) 

2.3. LTPS model considering grade uncertainty 
Fundamentally, mining space is denoted as a 
possible space based on the uncertainty that leads to 
this space. In mining engineering procedures, the 
uncertainty makes a decision built on uncertain 
results. Dimitrakopoulos (1998) [60] held the 
arrangement of uncertainties in mining projects 
because of the importance of this subject. 

 The uncertainty in the ore deposit model is 
connected to the uncertainty in tonnage and grade. 

 Technical uncertainty like extraction structures: 
slope constraints, drilling capacity, etc. 

 Economic uncertainties, capital costs, comprising 
product prices, operating costs. 

Amongst the uncertainties, grade uncertainty leads 
to a large portion of probabilities caused by grade 
uncertainty. 

An integer programming-based model is provided in 
this section to inspect the grade uncertainty. In this 
method, a possibility is apportioned to each block 
(PIn), which indicates the probability made from n 
for each block in the block model. Now, it is time to 
organize our objective function in such a way that 
earlier production periods are given to mine the 
blocks with higher certainty. When additional 
information usually becomes obtainable, the 
uncertain blocks are gone for later periods. 
Subsequently, one more objective function is 
presented to the objective function of the traditional 
model in the subsequent form of: 

ଶܼ    ݁ݖ݅݉݅ݔܽܯ =  ෍෍
ܰ ௡ܸ

௧

(1 + ௧(ݎ × ௡ܫܲ × ௡ܺ
௧

்

௧

ே

௡ୀଵ

 (9) 

This objective function brings about the constraints 
(2) to (8). 

3. LR Function for LTPS Problem 
The Lagrangian relaxation (LR) method is 
recognized as one of the mathematical means of a 
mixed-integer programming problem. In the 

presentation [61-65] of this technique in LTPS, 
Lagrangian multipliers relax the system limitations 
and introduce them to the objective function. Next, 
the relaxed problem intensified into a more 
controllable sub-problem for separate units and 
solved through dynamic programming. Next, the 
relaxed problem is intensified into a more 
controllable sub-problem for separate units and 
solved through dynamic programming. The 
convergence standard is satisfied in case the 
convergence standard is achieved. 
Basically, LR is based on the viewpoint to relax the 
system restrictions as a result of Lagrangian 
multipliers. For the next step, the relaxed problem is 
split into some smaller sub-problems [66]. The 
constant Lagrangian function can be made by dint of 
assigning non-negative Lagrangian multipliers λt, μt, 
and ηt in terms of processing type at period t to the 
constraints (3), (5), and (6), respectively. 

,ܺ)ܮ    ݔܽܯ ,ߤ,ߣ (ߟ  = ܼଶ(ܺ) 
 

−෍ ௧ߣ ൬෍ (݃௡ − (௠௜௡ܩ  × ௡ܱ  ×  ௡ܺ
௧

ே

௡ୀଵ
൰

்

௧ୀଵ
 

(10) 
+෍ߤ௧ ൬ܲܥ௠௔௫ −෍ ( ௡ܱ × ܺ௡௧)

ே

௡ୀଵ
൰

்

௧ୀଵ

 

+෍ ௧ߟ ൬ܥܯ௠௔௫ −෍ ( ௡ܱ + ௡ܹ) × ܺ௡௧
ே

௡ୀଵ
൰

்

௧ୀଵ
  

LTPS is elucidated via the Lagrangian relaxation 
method by relaxing or momentarily ignoring the 
preventing constraints and solving the problem as if 
they have never been. While maximizing due to the 
control variable ܺ௡௧  in LTPS, this is done over the 
dual optimization process, which strives to affect the 
constrained optimum by lessening the Lagrangian 
function L due to the Lagrangian multipliers λt, μt, 
and ηt. 

j*= Min j(λ, µ, η) 
λ, µ, η 
Where 
j(λ, µ, η) = Max L(X, λ, µ, η) 
X 

Subjected to the constraint (4), assume that λ, μ, and 
η are fixed, we maximize the Lagrangian function L 
as follows. From Eq. (10), we have: 
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,ܺ) ܮ    ݔܽܯ ,ߤ,ߣ (ߟ =  ෍ ෍
ܰ ௡ܸ

௧

(1 + ௧(ݎ
× ௡ܫܲ  × ܺ௡௧

்  

௧

ே

௡ୀଵ  

  

−෍ ௧ߣ   ൬෍  (݃௡ − (௠௜௡ܩ × ௡ܱ × ܺ௡௧
ே

௡ୀଵ
൰ 

்

௧ୀଵ
 

(11) 
+෍ߤ௧ ൬ܲܥ௠௔௫ −෍ ( ௡ܱ × ܺ௡௧)

ே

௡ୀଵ
൰

்

௧ୀଵ

 

+ ෍ ௧ߟ ൬ܥܯ௠௔௫ −෍ ( ௡ܱ + ௡ܹ) × ௡ܺ
௧

ே

௡ୀଵ
൰

்

௧ୀଵ
  

According to the Lagrangian multipliers, the 
amendment of Lagrangian multipliers should be 
rationally done to make the best use of the 
Lagrangian function. To regulate the Lagrangian 
multipliers, most references practice a combination 
of the sub-gradient method and several heuristics 
achieve a fast solution. In the current work, PSO, 
FA, and BA are applied to amend the Lagrangian 
multipliers and improve the performance of the 
Lagrangian relaxation technique.  

4. Construction of initial solution 
The meta-heuristic algorithms are measured as 
possible methods for making out the estimated 
problem. In this research work, PSO, FA, and BA 
were used to improve the Lagrangian multipliers. 

4.1. PSO Algorithm 
In 1995, Eberhart and Kennedy [67, 68] presented 
the first PSO methodology as an optimization 
method due to the possible directions. The 
researchers have observed the social behavior of the 
bird or fish groups during a food search to guide the 
population to a promising area for space search. 
Certain normal processes are practiced for the 
manners of the creatures of the ruling body. Birds are 
just searching for their food by changing their 
physical movements by escaping missions. Hence, 
every one of the group members supposedly uses the 
previous experiences and other detections from the 
members in order to find food. This kind of 

corporation is considered as a positive improvement 
within a competitive search for food. PSO is 
grounded on the idea of sharing information among 
the group members. In PSO, a particle is denoted to 
each answer to a problem that is the situation of a 
bird in the search space. All particles include a 
degree of the ability in which the quality of action 
optimizes it. Furthermore, each particle embraces a 
factor called velocity that identifies it in the search 
range [69-71]. 
PSO starts with a group of inadvertent replies. Next, 
it searches for the location and velocity of each 
particle so as to determine the best answer in the 
problem space. The two most remarkable values 
indicate that each particle is identified at each step of 
the population movement. As a result, the first step 
is recognized as the finest answer in terms of 
suitability ever obtained for each particle. This is 
actually the personal best and is termed pbest. The 
global best, identified as gbest, is another best value 
ever attained by means of PSO. In order to search for 
new solutions, swarms of particles are randomly 
initialized over the search space, and they move 
through a D-dimensional space. Authorized ݔ௞௜  and 
௞௜ݒ , respectively, are the position and velocity of the 
i-th particle in the search space at the k-th iteration, 
and then the velocity and position of this particle at 
the (k+1)th iteration are updated using the following 
equations [72]: 

௞ାଵ௜ݒ = .ݓ ௞௜ݒ + ܿଵ. ଵݎ . ൫݌௞௜ − ௞௜ݔ ൯
+ ܿଶ. .ଶݎ ൫݌௞

௚ − ௞௜ݔ ൯ 
(12) 

௞ାଵ௜ݔ = ௞௜ݔ + ௞ାଵ௜ݒ  (13) 

where r1 and r2 demonstrate accidental numbers 
between 0 and 1, c1 and c2 are constants, ݌௞௜  
demonstrate the best position of the i-th particle, and 
௞݌
௚ correlates with the global best position in the 

swarm up to the kth iteration. The PSO algorithm 
pseudo-code can be summarized as follows: 

 
Figure 1. Pseudo-code of the PSO algorithm. 
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4.2. Firefly Algorithm 
Yang [73-75] has developed the firefly algorithm 
based on the perfect behavior of the flashing 
specifications of fireflies. For more clarification, we 
can overemphasize these flashing features as the 
following three rules: 

 All fireflies are unisex to attract other 
fireflies notwithstanding of their sex; 

 Attractiveness is comparative to their 
illumination, and hence, for any two 
flashing fireflies, the less bright one will 
move toward the brighter one. The 
attractiveness is proportional to the 
brightness, and they both decline as their 
distance surges. In case no one is brighter 
than a specific firefly, it moves arbitrarily; 

 The brightness or light strength of a firefly 
is influenced or specified through the 
landscape of the objective function to be 
improved. 

For the maximization problem, the brightness can 
merely be relative to the objective function. Extra 
forms of brightness can be expressed in a 
comparable way to the fitness function in genetic 
algorithms or the bacterial foraging algorithm (BFA) 
[76]. 
The variation in light intensity and formulation of 
attractiveness are the two significant issues in FA. 
For easiness, we can always suppose that the 
attractiveness of a firefly is specified by its 
brightness or light intensity, which, in turn, is related 
to the prearranged objective function. Nevertheless, 
the attractiveness is comparative; it should be 
realized in the eyes of the beholder or projected by 
the other fireflies. Though the attractiveness is 
comparative, it should be realized in the eyes of the 
beholder or protected by other fireflies as light 
intensity is reduced with the distance from its source, 
and light is also attracted to the media. Thus we 
should permit the attractiveness to diverge with the 
degree of absorption. 
In the simplest form, the light intensity I(r) varies 
with the distance r monotonically and exponentially. 
That is: 

ܫ =  ଴݁ିఊ௥ (14)ܫ

where I0 is the original light intensity and is the light 
absorption coefficient. As a firefly’s attractiveness is 
proportional to the light intensity seen by adjacent 
fireflies, we can now define the attractiveness β of a 
firefly by: 

ߚ = ଴݁ିఊ௥ߚ
మ  (15) 

where β0 is the attractiveness at r = 0. It is worth 
pointing out that the exponent r can be replaced by 
other functions such as rm when m > 0. 
Schematically, the Firefly Algorithm (FA) can be 
summarized as the pseudo-code. The FA algorithm 
pseudo-code can be summarized as follows: 

 
Figure 2. Pseudo-code of the firefly algorithm. 

The distance between any two fireflies i and j at xi 
and xj can be the Cartesian distance ri j = ||xi−xj|| or 
the l2-norm. For other applications such as 
scheduling, the distance can be time delay or any 
suitable forms, not necessarily the Cartesian 
distance. 
The movement of a firefly i attracted to another 
more attractive (brighter) firefly j is determined by: 

௜ݔ = ௜ݔ + ଴݁ିఊ௥೔ೕߚ
మ
൫ݔ௝ − ௜൯ݔ +  ௜ (16)߳ߙ

where the second term is due to the attraction, 
while the third term is randomization with the 
vector of random variables i being drawn from a 
Gaussian distribution. 

4.3. Bat Algorithm 
One of the strongest optimization procedures is 
collective intelligence based on the group behaviour. 
In 2010, Yang [77] introduced an algorithm affected 
by the collective behaviour of bats in a natural 
environment based on the use of sound reflection by 
bats. Bats are able to navigate the precise trail and 
site of their bait via sending sound waves and 
receiving their reflections. The bird is able to draw a 
sound image of the obstacles connecting its sites and 
recognize them well when the sound waves turn 
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back to the bat wave transmitter. This system makes 
it possible for the bats to identify the moving objects 
such as insects and trees. The micro-bats send short-
duration loud sound beats with constant happening 
in the area of 25 kHz to 150 kHz and listen for the 
echo rebounding from the immediate objects to catch 
the food or escape the obstacles. Bats naturally issue 
10 to 20 such sound pulses per second and are able 
to increase the pulse release rate to about 200 pulses 
per second as they approach their victim. Yang has 
presented the succeeding directions in order to 
convey these special properties of bats into an 
optimization algorithm: 

 All bats practice their echolocation abilities so as 
to detect their distance from a definite object and 
distinguish between food/prey and background 
obstacle in some way. The fact is that all bats use 
their echolocation skills. 

 Since bats are able to change the wavelength λ 
and loudness A0 of their released sound pulses to 
discover the food, they are capable of flying 
inadvertently with velocity vi at position xi with 
a frequency fmin. Likewise, bats can modify the 
rate and wavelength or frequency of their emitted 
pulse according to their distance from the prey. 

 The loudness varies from a large positive value 
A0 to the least persistent value Amin. 

Each bat’s current position is regarded as a possible 
solution to the optimization problem [78-80]. 
 According to the rules, the position ݔ௜௧  and the 
velocity ݒ௜௧  for each i-th virtual bat in the t repetition 
and also the frequency fi  are calculated as follow: 

௜݂ =  ௠݂௜௡ + ( ௠݂௔௫ −  ௠݂௜௡)(17) ߚ 

௜௧ݒ = ௜௧ିଵݒ  + ൫ݔ௜௧ −  ൯ (18)∗ݔ

௜ݔ
௧ = ௜ݔ 

௧ିଵ +  ʋ௜
௧  (19) 

where ݔ௜
௧  and  ݔ௜

௧ିଵ are the current and previous 
positions of particle i, ݒ௜௧  and ݒ௜௧ିଵ are the current 
and previous velocities of particle i, ߚ ∈ [0 , 1] is a 
random vector with uniform distribution, and ݔ∗ is 
the best current position that is selected in each 
replication after comparison with the position of the 
virtual bats. Usually, consider the frequency f with 
fmin = 0 and fmax = 100. In each replication, in the local 
search, one of the answers is selected as the best 
answer, and the new position of each bat is updated 
locally with the random step as follows: 

௡௘௪ݔ = ௢௟ௗݔ  +  ௧തതത (20)ܣ߳ 

where ߳ ∈ [−1 , 1] is a random number and ܣ௧തതത is the 
average loudness of the bats in the t repetition. Also 
the loudness of the Ai loudness and the pulse rate r 
sent each time, it is updated as follows: 

௜௧ାଵܣ = ௜௧ܣߙ  (21) 

௜௧ାଵݎ = ௜଴[1ݎ −  (22) [(ݐߛ−)݌ݔ݁

where α and γ are constant values and for 0 < α < 1 
and ݎ > 0. When ݐ → ∞, we have: ݎ௜௧ାଵ →  ௜଴ andݎ
௜௧ାଵܣ → 0. The Bat algorithm pseudo-codes is as 
follows: 

 
Figure 3. Pseudo-code of the Bat algorithm. 
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4.4. Framework of proposed models 
In the present research work, two steps are required 
for hybrid methods. The first one states the 
Lagrangian function, which brings up-to-date the 
Lagrange multipliers. The second step is the precise 

global extension of the stated LR function, in which 
PSO, FA, BA, and GA are utilized to find out a new 
stochastic method close to the ideal maximum. 
Figure 4 shows a flowchart of the suggested 
approach. 

 
Figure 4. Flowchart of the suggested models. 

5. Numerical results and discussion  
All the developed formulations were confirmed by 
the numerical experiments on the artificial dataset 
including 150 blocks. In conclusion, the enactment 
by LR-FA is actually better than the other methods 
from the view of the duality gap (Table 2). An iron 
ore push-back data of the central Iranian Iron 
orebody was chosen as the case study to compare the 
proposed mathematical model for LTPS. 
The presented model was implemented in the 
Chadormalu mine. Also its deposit was recognized 
as the major iron ore one in the central part of Iran. 
Chadormalu is located at the epicenter of Persia 
(Iran) Desert at the north of gray Chah-Mohammad 
Mountains. Figure 5 divulges that the Chadormalu 
deposit embraces some 400 million tons of resource 

and 320 million tons of reserves that are divided 
between the northern and southern ore bodies by 
average Fe- and P-contents of 55.2% and 0.9%, 
respectively.  
Four push-backs were scheduled for the Chadormalu 
mine. The mathematical model presented in this 
paper was practiced in the second push-back. The 3D 
view of the second push-back is illustrated in Figure 
6. This push-back includes 6854 blocks, 2754 of 
which are ore blocks and 4100 are waste blocks. The 
tonnage of ore and waste presented in the 
aforementioned push-back is 103.8 and 110.2 
million tons, respectively. The push-back in this 
research work is located on part of low grade with an 
average grade of 52.6%. Table 3 shows the technical 
parameters of the Chadormalu mine. 
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Table 2. Numerical results for the synthetic dataset containing 150 blocks. 
Iteration Method Duality gap 

1 

LR–FA 0.076 
LR–BA 0.082 
LR-PSO 0.092 
LR-GA 0.098 
LR-SG 1.16 

2 

LR-FA 0.065 
LR–BA 0.076 
LR-PSO 0.081 
LR-GA 0.088 
LR-SG 0.924 

3 

LR-FA 0.028 
LR–BA 0.032 
LR-PSO 0.044 
LR-GA 0.057 
LR-SG 0.491 

 
Figure 5. Geographical position of the Chadormalu deposit. 

 
Figure 6. A 3D view of the second push-back in the 

Chadormalu mine [34]. 

Table 3. Technical parameters. 
Mill cut-off grade (%) 47 

Mining capacity (Mtone/year) 25 
Processing capacity (Mtone/year) 8.1 

Mining recovery (%) 90 
Processing recovery (%) 74 

Mine life (year) 12 
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Table 4 shows the numerical results of the proposed 
model for an iron ore push-back data set including 
more than twelve planning periods. As disclosed in 
Table 4, the summation annual net value using the 
LR–FA method is 41.669 M$ and the summation 
annual net value through the LR-BA, LR-PSO, LR-
GA, and LR–SG method are 40.906 M$, 40.523 M$, 
39.903 M$, and 39.523 M$.  

Additionally, a comparison of the average grade of 
the ore for Chadormalu mine is displayed in Table 5. 
The average grade of ore in twelve years using the 
LR–FA method is 55.12%, and for the LR-BA, LR-
PSO, LR-GA, and LR–SG methods are 54.89%, 
54.64%, 54.46%, and 54.31%. Table 6 shows the 
annual ore and waste tonnage of the Chadormalu 
mine. 

Table 4. Comparison of NV for Chadormalu mine among LR–FA, LR–BA, LR–PSO, LR-GA, and LR-SG. 

Years Net Value (NV), M$ 
LR-FA LR–BA LR–PSO LR–GA LR–SG 

1 3.876 3.824 3.814 3.646 3.574 
2 3.866 3.792 3.765 3.623 3.492 
3 3.704 3.611 3.592 3.485 3.463 
4 3.647 3.582 3.407 3.361 3.295 
5 3.507 3.321 3.317 3.284 3.277 
6 3.467 3.307 3.311 3.273 3.265 
7 3.326 3.292 3.281 3.268 3.242 
8 3.309 3.287 3.273 3.253 3.239 
9 3.276 3.243 3.212 3.184 3.182 
10 3.241 3.237 3.194 3.185 3.176 
11 3.235 3.226 3.183 3.172 3.161 
12 3.215 3.184 3.174 3.169 3.157 

Table 5. Comparison of average grade of ore for Chadormalu mine among LR–FA, LR–BA, LR–PSO, LR-GA, 
and LR-SG. 

Years Average grade of ore (Fe), % 
LR-FA LR–BA LR–PSO LR–GA LR–SG 

1 58.47 58.33 58.28 58.21 58.19 
2 58.26 58.18 58.15 58.07 58.02 
3 58.11 57.84 57.82 57.55 57.52 
4 57.62 56.84 56.27 56.04 55.87 
5 57.19 56.65 56.21 55.79 55.68 
6 56.55 56.29 55.18 55.21 55.16 
7 55.63 55.34 55.32 55.04 54.78 
8 54.81 54.75 54.69 54.55 54.27 
9 53.56 53.44 53.38 53.29 53.04 

10 52.23 52.18 52.08 52.05 51.84 
11 50.76 50.66 50.41 49.83 49.75 
12 48.27 48.14 47.92 47.88 47.63 

 
In this section, we developed, implemented, and 
tested the proposed model in MATLAB R2019a 
environment. The test was performed on an Intel 
Quad-Core, 3.5 GHz PC with 32 GB of RAM. The 
computational time of each method is shown in 
Table 7. It was assessed that the CPU time was 
nearly 16.2% higher than that for the other methods 
by means of the LR-FA hybrid method suggested in 
the present study. The computational times are 
considerably less with the presented methods 
compared to the traditional methods, especially 
when the problem size increases. The results 

obtained demonstrate that the presented methods 
significantly diminish the computational time, while 
retaining a small gap duality. The suggested method 
appears to be a feasible option for solving the mine 
production scheduling problem, where the number 
of integer variables is huge. Also the small gap 
duality demonstrates the effectuality of the 
suggested approach. In other words, the results 
obtained show that the LR method is effective in 
minimizing the model, and thus reducing the 
computational time. 
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Table 6. Annual ore and waste tonnage. 

 
Years 

Annual ore and waste tonnage (Mton) 
LR-FA LR–BA LR–PSO LR–GA LR–SG 

Ore Waste Ore Waste Ore Waste Ore Waste Ore Waste 
1 9.12 1.74 9.03 2.11 9.25 2.38 8.95 2.19 8.91 2.37 
2 8.85 1.92 8.82 2.24 8.79 2.25 9.34 2.27 8.86 2.34 
3 8.78 2.21 8.74 2.37 8.72 2.32 8.56 2.35 8.87 2.23 
4 8.91 6.21 8.87 6.71 8.85 6.91 8.83 6.84 8.82 7.16 
5 8.82 6.28 8.85 6.86 8.87 6.87 8.79 6.83 8.81 7.02 
6 8.68 6.32 8.76 6.73 8.79 6.84 8.76 6.86 8.78 6.88 
7 8.76 8.59 8.72 8.64 8.32 8.91 8.59 8.89 8.39 9.05 
8 8.71 8.68 8.69 8.92 8.77 8.83 8.67 8.83 8.41 8.87 
9 8.47 8.75 8.66 9.07 8.69 8.71 8.45 8.71 8.35 8.77 

10 8.84 9.94 8.38 10.07 8.01 10.26 8.47 10.18 8.42 10.14 
11 8.73 10.12 8.48 10.16 8.52 10.09 8.51 10.04 8.51 9.97 
12 8.75 8.57 8.29 9.19 8.81 9.93 8.31 9.92 8.74 9.62 

Table 7. General information about the solution found by MATLAB for the proposed models. 
Methods Number of blocks (N) Number of periods (T) Computational time in minutes 
LR-FA 6854 12 23.15 
LR-BA 6854 12 26.9 
LR-PSO 6854 12 31.72 
LR-GA 6854 12 38.32 
LR-SG 6854 12 43.86 

6. Conclusions 
The aim of this research work was to present a 
mathematical model for a long-term production 
planning and achieve the highest revenue in the 
grade uncertainty situation. In order to make the 
long-term production planning, grade uncertainty 
was applied as an input feature to the mathematical 
model of production planning. A long-term 
production development optimization model grade 
uncertainty was employed as the binary integer 
programming. Principally, the possibility index for 
each ore block was determined to point out the grade 
uncertainty. For the next step, getting the best out of 
the net present value with physical and operational 
constraints was practiced to model the objective 
function. The optimization intends to select parts of 
high-grade possibility reserves in the early years and 
parts of low-grade likelihood reserves in the 
subsequent years of mine life for extraction. The 
development of the proposed model displays the 
influence of grade uncertainty on the block 
extraction sequence. The present paper suggests the 
hybrid methods of Lagrangian relaxation with meta-
heuristic methods in order to solve the long-term 
production problem in open-pit mines as it is hard to 
solve the production planning models in open-pit 
mines in large-scale and such problems. This 
research work also presents a new approach due to 
the optimization of Lagrange coefficients and 
comparing its performance with the traditional 
conventional method.  

The results of the case study proved that the 
Lagrangian relaxation method could carry out a 
suitable solution to the main problem. The hybrid 
strategies could produce a more effective solution to 
the extent of the near-optimal solution in comparison 
with the traditional approximation method. 
Moreover, it was specified that the stable 
convergence property and prevention of early 
convergence could be identified as the chief 
advantages of the method suggested in this research 
work. In fact, the sub-gradient method could be 
considered as a compatible version of the gradient 
method. Although this method represents good 
convergence characteristics, it has been tested only 
for small-scale problems. The authors use the sub-
gradient method that is commonly utilized to 
determine the multiplier values based on the past 
calculation results. Clearly, the sub-gradient method 
may converge very slowly on large problems due to 
the zigzag phenomenon and small steps. In other 
words, the sub-gradient directions often cause the 
multipliers to zigzag across sharp ridges. However, 
for the LR–Meta-heuristics method, since the 
direction is obtained by a weighted combination of 
the gradients of adjacent facets, zigzagging is 
significantly reduced. Within a definite period, the 
net present value by the LR-FA hybrid method was 
1.87%, 2.83%, 4.43%, and 5.43% higher than the 
LR-BA, LR-PSO, LR-BA, and LR-SG process.  
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  چکیده:

صمیمیافتن یک بهینه سائل بزرگ مقیاس براي افزایش کیفیت ت سئله برنامهگیري در عملیات سازي جهانی در م ست. م ریزي تولید بلند معدنکاري، حائز اهمیت ا
کند و در عین حال ســود کل پروژه را در یک دوره ها ایفا میهاي معدنکاري جهت افزایش عملکرد مرتبط با دســتیابی به محدودیتمدت نقش کلیدي را در پروژه

ریزي هاي برنامهریزي تولید، بزرگ مقیاس و پیچیده هســتند، روشاینکه مســائل برنامه حل مناســب، به ســببرســاند. براي بدســت آوردن راهمی حداکثرمعین به 
ــازي نیازمند بهبود هســتند. در این مقاله، مدل ترکیبی جهت حل مســئله برنامه ریزي تولید بلند مدت تحت شــرایط عدم قطعیت عیار با اســتفاده از روش آزادس

شبسازي ازدحام ذرات، الگورلاگرانژي، بهینه سریع تاب و الگوریتم خفاش ارائه مییتم کرم  سعه عملکرد و ت سازي لاگرانژي جهت تو ستفاده از روش آزاد گردد. ا
ست. علاوه بر این، الگوریتمهمگرایی مسئله برنامه ستفاده قرار گرفتههاي فراابتکاري جهت بهریزي تولید پیشنهاد شده ا اند. نتایج روزرسانی ضرایب لاگرانژ مورد ا

شان می سائل بزرگ مقیاس دارد و یک راهمطالعه موردي ن سنتی، براي حل م سبت به روش  حل قابل قبول ارائه دهد که روش ترکیبی پیشنهادي کارآیی بهتري ن
ها نتایج نزدیک به روش تاب از لحاظ مجموع ارزش خالص فعلی نسبت به سایردهد. نتایج بدست آمده از روش ترکیبی آزادسازي لاگرانژي و الگوریتم کرم شبمی

 ها است.تر از دیگر روشسریع 2/16کند. همچنین، زمان محاسباتی مدل پیشنهادي تقریباً % بهینه را تولید می

  هاي فراابتکاري.روش ،يلاگرانژ يآزادساز ار،یع تیبلند مدت، عدم قطع دیتول يزیرمعادن روباز، برنامه کلمات کلیدي:
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