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In this paper, we investigate a probabilistic approach in order to predict how acid
mine drainage is generated within coal waste particles in NE Iran. For this, a database
is built based on the previous studies that have investigated the pyrite oxidation
process within the oldest abandoned pile during the last decade. According to the
available data, the remaining pyrite fraction is considered as the output data, while
the depth of the waste, concentration of bicarbonate, and oxygen fraction are the
input parameters. Then the best probability distribution functions are determined on
each one of the input parameters based on a Monte Carlo simulation. Also the best
relationships between the input data and the output data are presented regarding the
statistical regression analyses. Afterward, the best probability distribution functions
of the input parameters are inserted into the linear statistical relationships to find the
probability distribution function of the output data. The results obtained reveal that
the values of the remaining pyrite fraction are between 0.764% and 1.811% at a
probability level of 90%. Moreover, the sensitivity analysis carried out by applying
the tornado diagram shows that the pile depth has, by far, the most critical factors
affecting the pyrite remaining.

1. Introduction

The pyrite oxidation process commonly results

applying the geochemical and geophysical

from the coal, metal waste, and tailing particles.
Some of the critical factors such as O,, Fe** ions,
temperature, pH, Eh, and presence or absence of
bacteria, which can affect this process, have been
studied in the comprehensive studies for several
decades. It is due to their role in mining
environmental issues, especially acid mine
drainage (AMD). AMD is generated when the
pyrite or sulfidic minerals are exposed to
atmospheric weathering. This process is always
too complicated due to the substantial chemical,
biological, and physical parameters that can be
involved in it. As a result, the prediction and
investigation approaches of AMD are categorized
as a challenging topic, time-consuming, costly,
and they always differ in every case. In general,
monitoring the procedures are firstly conducted

= Corresponding author: b.jodeiri@hut.ac.ir (B. Jodeiri Shokri).

techniques including the laboratory and field tests.
Subsequently, the prediction procedures are
conducted by the analytical and numerical
methods with different solving techniques of the
numerical  models  that are  governed
mathematically in the oxidation process. Although
the numerical approaches are the deterministic
models, they only allow the researchers to
evaluate the oxidation process by considering the
deterministic parameters involving the pyrite
oxidation process in long-term periods (US. EPA
1994). Moreover, the critical problems in these
models, which are categorized as the traditional
methods, are related to the in-situ measurements
and intensive data. Hence, it always takes a lot of
budget and time to have an appropriate database
with a sufficient accuracy (Betrie et al., 2013).
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Over the last three decades, significant
investigations have been performed to study the
pyrite oxidation process, which results from
mining waste or tailings. For example, Cathles
and Apps (1975) have suggested a 1D non-steady-
state model for the leaching process in a copper
waste dump. They assumed that the dump was
composed of the rock particles containing the
pyrite and chalcopyrite particles. Their model was
based on oxygen, heat balance, and air
convection. Jaynes et al. (1984 a, b) have
presented the POLS model for simulation of the
pyrite oxidation and leaching process from the
reclaimed coal strip mines during a long-term
period. Both oxygen diffusion and ferric iron were
the pyrite oxidants in the model. Davis and
Ritchie (1986) have developed a numerical model
for pyrite oxidation within the White’s
overburden dump at the Rum Jungle, Australia.
Elberling et al. (1994) have supposed that oxygen
diffusion is the dominant mechanism in the pyrite
oxidation process, which results from tailings.
They also applied the laboratory tests to evaluate
the sulfide oxidation rate. Lefebvre and Gelinas
(1995) have simulated AMD generation with their
model, TOUGH AMD, within waste rocks. Some
of the essential processes including hydrology,
gas and heat transfer, geochemistry, and mass
transport were involved in this model. Wunderly
et al. (1996) have presented PYROX based on a
finite element method (FEM), which is a coupled
method of oxygen diffusion and sulfide mineral
oxidation to simulate pyrite oxidation in the
vadose zone of tailings in Nordic Main tailings
impoundment near the Elliot Lake, Ontario.
Mayer et al. (2001) have developed a 1D
numerical of the multi-component reactive
transport model (MIN3P) to simulate the
evolution of pore water, pore gas, and
mineralogical composition in mine waste. Fala et
al. (2003) have used a numerical model to
simulate the unsaturated flow within a waste pile
according to the internal structure of the pile and
grain size distribution of the waste particles.
Molson et al. (2008) have developed a
geochemical transport of AMD with a numerical
solution based on a finite element discretization
method called POLYMIN  within the
heterogeneous waste pile. Kleiv and Thornhil
(2008) have predicted AMD neutralization in
anoxic olivine drains. Their model was based on
the kinetic rate expression for olivine dissolution
and the sulfuric acid dissociation equilibrium. In
2008, Doulati Ardejani et al. detected AMD
pollution, which resulted from a coal waste dump
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with a coupled method of geophysical techniques
and a 1D FVM numerical method (Doulati
Ardejani et al., 2008). Nevertheless, the roles of
some of the most important parameters such as
the values for the diffused oxygen in the waste
particles and also the production values including
the sulfate, HCO*, H", and ferrous and ferric irons
werenot considered in the model. As a result,
Jodeiri Shokri et al. (2016a) have developed the
mathematical models of the pyrite oxidation
process, presenting a 2D numerical simulation
based on FVM. The mathematical models were
firstly developed by adding appropriate boundary
conditions, source and sink terms on non-linear
equations including oxygen transportation, pyrite
oxidation controlled by second-order kinetic rates,
transporting the products based on multi-
component advection-dispersion mechanism, and
pH buffering. Moreover, for a better
understanding of the pyrite oxidation process, in
this case, a 3D geo-electrical inversed model was
built by converting the results of the 2D resistivity
measurements within the pile surface. Eventually,
an innovative reclamation plan with supposing a
capping process on the pile surface was suggested
applying a 2D numerical modeling. Khosravi et
al. (2017a) have presented a probability mapping
of the distributions of some toxic elements
including arsenic and chromium throughout the
waste particles resulting from the Sarcheshemeh
copper dump. For this purpose, they used a
combination of the visible and near-infrared

reflectance (VNIR) spectroscopy and geo-
statistical analysis. In another research work in
this case study, they found that VNIR

spectroscopy could be applied for predicting the
As concentration in the surrounding contaminated
soils of the dump (Khosravi et al. b).

Despite the considerable research works in
investigating the pyrite oxidation process through
the waste and tailings, a literature review also
revealed that no research work had not yet been
presented to predict the process using a
probabilistic method. Indeed, all the researchers
have supposed that all the parameters involved in
the pyrite oxidation process are deterministic.
Hence, in this work, we evaluated the risk of the
pyrite oxidation generation within a coal waste
pile applying a probabilistic method.

2.1. Materials and Methods
2.1. Pile description

The Alborz Sharghi coal washing plant is
located in the Semnan Province, NE of Iran
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(Figure 1). The Alborz-Sharghi coal washing plant
was established approximately 35 years ago; it
produces 300,000 tons of washed coal annually.
The coal extracted from the state mines including
the Tazareh, Razi, and Tabas mines as well as
some local private mines is washed in the plant
(Jodeiri Shokri and Zare Naghadehi, 2018). There
are several waste piles and two tailing
impoundments nearby the plant. A previous
investigation has shown that one of these piles,
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which is the oldest abandoned pile, has had the
potential of AMD generation. The wastes had
been dumped without considering any
environmental concerns since 1999 (Jodeiri
Shokri et al., 2016b). The wastes dumped with the
pile are the result of the jig machine process in the
plant. The waste pile is approximately 20 m in
height, and covers an area of about 100 m x 150
m (Jodeiri Shokri et al., 2016a).

Figure 1. Geographical map of region and a view of pile

2.2. Methodology

As mentioned earlier, the AMD generation was
predicted by a probabilistic method based on a
Monte Carlo simulation. For this purpose, all the
experimental data was collected from the pile in
the previous studies such as Jodeiri Shokri et al.
(2014 (a, b, c); 2016¢c), which was gathered to
build a database. A brief database is presented in
Table 1. Afterward, the input and output data was
selected according to the available data. The depth
of the waste within the pile, the fraction of
diffused oxygen through the waste particles, and
the concentration of bicarbonate within the pile as
capability of AMD neutralization were considered
as the input data. Moreover, the remaining pyrite
fraction was selected as the output data. Then
comprehensive  statistical ~ analyses ~ were
performed to find the best relationships between
each output and all the inputs.

It should be mentioned that all the parameters
involved in the pyrite oxidation process are
supposed as uncertain. Therefore, it is necessary
to describe their inherent uncertainties based on
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the probability distributions. Indeed, the risk for
all parameters should be quantified by applying
the distributions. In this research work, the
@RISK software ver. 7 was employed for the
description of data uncertainties in Excel
worksheets. @RISK performs a risk analysis
using a Monte Carlo simulation to show many
possible  outcomes in  Microsoft  Excel
spreadsheet, and tells the user how likely they are
to occur. This means that the user can judge
which risks to take and which ones to avoid,
allowing for the best decision-making under
uncertainty (@Risk Manual, 2015).

It should be noted that several types of
distributions such as Chi-Sq. Kolmogorov-
Smirnov and Anderson-Darling are available in
this software. Each one of these forms defines a
series of possible values and the probability of
occurrences (@RISK Manual, 2015).

After finding the best distribution functions for
each input data with @RISK Ver. 7, a random
sampling from the functions was done by a Monte
Carlo simulation. Indeed, the risk analysis was
executed by the Monte Carlo simulation. Different
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models of results are possibly built by applying a
series of values, distribution functions, for those
parameters, which have an inherent uncertainty in
their nature. Then it repeats the calculation
applying a different range of values from the
functions that are taken randomly in each
iteration. The number of uncertainties and the

Journal of Mining & Environment, Vol. 12, No. 1, 2021

ranges specified can affect the simulation that
may recalculate thousands or tens of thousands of
times before the completion. The resulting outputs
eventually from the simulation as the distribution
functions (@RISK Manual, 2015). Finally, the
risk analyses would be finished by finding the
probability distributions functions of the outputs.

Table 1. Database of Alborz-Sharghi coal waste pile (Jodeiri Shokri ef al. (2014(a, b, c); 2016)).

Fraction of diffused

No. Depth (m)

Concentration of

Remaining pyrite pH

oxygen (%) bicarbonate (%) fraction (%)
1 0.00 0.21 4.00 0.52 4.80
2 0.10 0.19 3.80 0.57 4.75
3 0.20 0.17 3.60 0.63 4.70
4 0.30 0.16 3.45 0.70 4.62
5 0.40 0.14 3.20 0.79 4.55
6 0.50 0.13 3.00 0.86 4.50
7 0.60 0.11 2.80 0.97 4.42
8 0.70 0.10 2.63 1.06 4.30
9 0.80 0.09 2.45 1.17 4.25
10 0.90 0.07 2.40 1.25 4.20
11 1.00 0.05 2.50 1.33 4.15
12 1.10 0.04 2.90 1.38 4.30
13 1.20 0.03 3.50 1.44 4.45
14 1.30 0.02 4.15 1.47 4.65
15 1.40 0.014 4.80 1.54 4.80
16 1.50 0.005 5.50 1.58 5.00
17 1.60 0.002 5.85 1.60 5.10
18 1.70 0.00 5.86 1.62 5.20
19 1.80 0.00 6.45 1.63 5.25
208 1.80 0.00 4.40 1.82 4.02
209 1.90 0.00 4.45 1.91 4.00
210 2.00 0.00 4.50 1.84 4.00

3. Results and Discussion
3.1. Probability distributions functions

The probability distribution functions were
defined by applying @RISK, ver. 7, for each
input. The best fittings of the distributions for
each input including the pile depth, fraction of
diffused oxygen, and bicarbonate concentration

were obtained according to Akaike Information
Criterion, Bayesian Information Criterion, Chi-
Squared Statistics, Kolmogorov-Smirnov
Statistics, and Anderson-Darling Statistics (Table
2 and Figure 2). Then the Chi-Squared Statistics
was selected for further analyses.

Table 2. Best probability distributions for the input data.

Concentration of

Criterion Depth Fraction of diffused oxygen bicarbonate

. . ) Risk expon (0.069048) . . )
AIC Risk uniform (0.1;2.1) Risk shift (-0.003288) Risk uniform (3.36;5.78)

. . ) Risk expon (0.069048) . . )
BIC Risk uniform (0.1;2.1) Risk shift (-0.003288) Risk uniform (3.36;5.78)

. . . . Risk extreme value Min . . .
Chi-Sq. Risk uniform (0.1;2.1) (0.10494:0.070899) Risk uniform (3.36;5.78)
K-S Risk uniform (0.1;2.1) Risk logistic (0.062102;0.040455) Risk uniform (3.36;5.78)
A-D Risk uniform (-0.1;2.1) Risk logistic (0.062102;0.040455) Risk uniform (3.36;5.78)
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RiskUniform(-0.1:2.1)

Input

Uniform

RiskUniform(3.36:3.78)
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Figure 2. Best probability distributions for input data; a) depth of the pile; b) Fraction of the diffused oxygen; c)
Concentration of bicarbonate

3.2. Statistical analyses
3.2.1. Multiple linear regression

A regression model in which more than one
regression variable is used is referred to as a
multiple linear regression (MLR). In general, the
response variable (the remaining pyrite fraction)
may depend on the input data, i.e. the n variables
(x). Equation (1) expresses an MLR with n

regression variables (Shakeri et al. 2020):
C=Bo+PBxy+ -+ PnXy+¢ (D

where:

C is a dependent variable (target variable);
x; are the independent variables;

€ is the error of the model;

B=0,1,...,n, and B; is considered as the
regression coefficients.

The prediction process using this model
resembles a super-plane in the n-dimensional
space of the regression variables x;. On the other
hand, one may consider the prediction models of
more complex structures (non-linear) than those
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expressed by Equation (1), for instance, in the
following model:

2)

In order to simplify the analysis of the above
equation, which is non-linear, one can simply
substitute its variables with linear wvariables.
Accordingly, taking z; = x;, z, = X3, z3 = %3,
and z, = X1Xp, Equation (2) will take the
following form (Shakeri et al. 2020):

C=Bo+ Bz +Byzy + B3z3 + Bazy +¢

C=Bo+Bixy +Box3 +P3e™ + Buxyx, + £

©)

3.2.2. Relationships between remaining pyrite
fraction and all inputs

After describing the data, the best statistical
relationship between each input and each output
data including the remaining pyrite fraction has
been suggested using the Table curve, v. 5.01,
software, which is one of the most powerful
statistical software available for curve and surface
fitting the data. These relationships have been
selected based on their R-squared coefficients.
The best statistical relationships, 16, have been
presented for both input data in Table 3. Indeed,
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this analysis provides an opportunity to consider
the inter-relationship between the input and output
data in the further proposed relationship. Also it
should be noted that instead of the remaining

Journal of Mining & Environment, Vol. 12, No. 1, 2021

pyrite fraction, the values of the squared root of
the remaining pyrite (Sqrt (py)) have been
considered due to being positive values for the
remaining pyrite fraction.

Table 3. Relationships between the input variables and the remaining pyrite fraction.

Relationship between

Row the remaining pyrite and Parameters
the input data
1 x1 = Sqrt(d) Sqrt(Py) « f(d)
2 x, = e~¢ Sqrt(Py) « f(d)
3 X3 =e"° Sqrt(Py) « f(o0)
4 x, = 02 Sqrt(Py) « f(0)
5 x5 = Sqrt(o) Sqrt(Py) « f(0)
6 xg = bi3 Sqrt(Py) « f(bi)
7 x, = el Sqrt(Py) o« f(bi)
8 xg = bi2Lnbi Sqrt(Py) o« f(bi)
9 Xq =% Sqrt(Py) « f(d,0)
10 X190 = d X Sqrt(o) Sqrt(Py) « f(d,0)
11 Xy, =d X bi Sqrt(Py) « f(d, bi)
12 X1 =e %+ bi Sqrt(Py) « f(d, bi)
13 %13 = d X Ln(bi) Sqrt(Py) « f(d, bi)
14 X14 =bi X0 Sqrt(Py) « f(o, bi)
15 X15 = 0 + In(bi) Sqrt(Py) « f(o, bi)
16 X1 = dIn(0) Sqrt(Py) « f(o,d)

3.2.3. Suggesting a statistical relationship for
prediction of remaining pyrite fraction

After finding the best relationships between the
input and the output data, each one of the
relationships was considered as the independent
variables, while the output was the remaining
pyrite fraction. In order to find the best
relationship for prediction of the remaining pyrite
fraction, comprehensive statistical analyses were
conducted by applying the IBM SPSS statistics
software, ver. 25, based on the MLR method. For
this, the back-propagation method was used in
order to identify the best regression relationship
among the selected relationships. Four
relationships were taken after these analyses
(Table 4). In order to achieve the best
relationship, three statistical parameters were
chosen as the best criteria: (1) R-square, (2)
Adjusted R-square, and (3) Root mean squared
error (RMSE). The principal goal of this process
was to specify a statistical relationship exhibiting
the maximum values of R-square and adjusted R-
square, and the minimum value of RMSE. For
this, all relationships were compared (see Table
3). Comparison of the statistical parameters of the
relationships describe that relationship No. 4 is
the best statistical relationship for predicting the
remaining pyrite fraction. This relationship yields
values of 0.922, 0.919, and 3.61 for the statistical
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parameters of R-square, Adjusted R-Square, and
RMSE, respectively.

Table 4. Comparison of the statistical parameters of
the models obtained using MLR.

Model R Square A‘g““ed R RMsE
qllare
1 0.900 0.899 3.68
2 0.912 0.910 3.66
3 0.916 0.914 3.63
4 0.922 0.919 3.61
where:

Model 1: constant, x,
Model 2: constant, X5, Xq
Model 3: constant, X,, X7, Xq

Model 4: constant, X5, X4 , X7, Xg

Therefore, the best statistical relationship taken
from MLR can be expressed as follows (Equation
4):

Sqrt (Py) = Cy + Cx, + Cyx4 + C3x7 + CuXo 4)

where Cy to Cs; denote the constants of the
relationship with their values reported in Table 5.

Table 5. Values of the coefficients C, to C,.
Cy Cy C, C; Cy
1.37 -0.55 -3.915 0.001 0.005




Hadadi et al

Eventually, the best statistical relationship for
predicting the remaining pyrite fraction, which is
a function of the depth, diffused oxygen fraction,
and bicarbonate, can be expressed as follows
(Equation 5):

Py = (Sqrt (Py))? = (1.37 — 0.55e™9 — 3.91502

+0.001e” + 0.005 %)2 ()
where:
Py: Remaining pyrite fraction (%);
d: Pile depth (m);
o: Diffused oxygen (%);
Histogram
Dependent Variable: SQRT (Pyrite)

Frequency
N

[ T 1 T 1 T
3 2 A 0 1 2

-

Regression Standardized Residual

Figure 3. Histogram for the analysis of the modeling
error

3.4. Predicting remaining pyrite fraction by
applying probabilistic method

In the next step, the best probability distribution
function of each input should be inserted in
Equation (5) in order to estimate the remained
pyrite. The probabilistic prediction of the
remaining pyrite was simulated based on the
Monte Carlo method. The number of the
simulation iteration was 1000. Figure 5 and Table
6 show the meaningful occurrence probability of
the events of the output data. The statistical
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bi: Concentration of bicarbonate (%).

Figure 3 demonstrates a histogram for the
analysis of the modeling error. The modeling
error distribution function is a normal function,
confirming that the regression test has been done
correctly.

Also some data of the databases, 10%, were
chosen as the validation data. Figure 4 shows the
regression plot of the measured data and predicted
data. As it can be seen, R-Squared is about 0.92,
which shows that the MLR relationship can
predict the remaining pyrite fraction successfully.

2

18 g
& . .
g 16 o ®
o0 o
84| y=12108x-0.4084 %
= R2=0.9135 o.
.
= L ]
s 12 0
s 0.
51 e
£ o
3 038 °
& o . ®

0.6 Y

0.4

0.80 1.00 1.20 1.40 1.60 1.80 2,00

Measured data

Figure 4. Linear regression plot of the output for the

validation and measured data.

parameters for the measured data are presented in
Table 7.

As it could be seen in Tables 5 and 6, the results
obtained from the simulation also corresponded to
the field data very well. For instance, the
meaningful occurrence probability of the
simulation in 50% was 1.29, while the mean value
of the measured data was 1.28. Moreover, the
maximum value of the measured data was 2.08,
while the meaningful occurrence probability of
the simulation in 99% was 1.976, which revealed
a reliable simulation.

Table 6. Meaningful occurrence probability of events of the remaining pyrite fraction.

Meaningful occurrence

Values of the remaining pyrite fraction

probability (%) after simulation (%)
5 0.764
50 1.290
90 1.811
99 1.976
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Table 7. Statistical parameters of the field data for the remaining pyrite fraction (%).

Statistical parameters Values of the remaining pyrite fraction (%)
Mean 1.28
Median 1.34
Mode 1.63
Minimum 0.25
Maximum 2.08

Pyrite Remaining Fraction (%)

0.764 1811

90.0% |

10 1
|
Py rite

Remaining
Fraction (%)

3 v o o e
7 ! 8 8
s -

Figure 5. Meaningful occurrence probability of
predicting the remaining pyrite fraction.

Pyrite Remaining Fraction (%)

0.764 1811

Py rife
Remaining
Fraction (%)

50% 90.0% |
10 0.7

c . °
3 4 A © a 0.0

- I - w ea
= = =

The histogram and the graph of the cumulative
probability of the results are depicted in Figure 6.
The results obtained show that the values of the
remaining pyrite fraction are between 0.764% and
1.811% at a probability level of 90%. Also the
values of the remaining pyrite fraction will be
lower than 0.765 and 1.976 at the 5% and 99%
probability levels, respectively. Figure 7 shows
the best probability distribution function of the
output of the Monte Carlo simulation. As it could
be seen in this figure, the risk uniform function
values (0.522, 2.246), which are 0.522 and 2.246,
are the minimum and maximum values of the
remaining pyrite fraction (%), respectively.

RiskUniform(0.52226:2.2466)

Input

Unifomm

= — -t = e = iy} -
— —_ —_

—_ pur} i ~i =

Figure 6. Comulative graph probability of predicting Figure 7. The best probability distribution function of

the remaining pyrite fraction.

The tornado graphs show bars of each input,
which affect the pyrite oxidation process. As it
can be seen in Figure 8, the pile depth has the

the remaining pyrite fraction.

most important factor, which affects the pyrite
remaining, while bicarbonate has the least effect
on it.

Remaining Pyrite Fraction (%)

Depth (m)

Oxygen Fraction (%6) -0.36

HCO3(-) (mg/L) -0.08 .

- o = 2
cl D' (=1 =

i e " =
=] =] < -

Coefficient Value

Figure 8. Tornado graphs for the remaining pyrite fraction.
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4. Conclusions

In this research work, the pyrite oxidation
process was investigated within the waste tailings
based on the probabilistic method. For this, the
remaining pyrite fraction and pH were considered
as the output parameters, while the concentration
of bicarbonate, depth of the waste, and oxygen
fraction were the input data. The data was
gathered based on the field data collected by the
previous studies, which were done in the case
study. After building a database, the best
relationship between each output data and input
data was determined by the linear regression
method. The results obtained showed a high value
of R-squared of 0.919 for the suggested statistical
relationship. After finding the best relationship,
the probability distributions functions were
defined by applying @RISK, ver. 7, for the
inputs. Then the distributions were inserted in the
statistical relationships in order to find the
probability distribution of the remaining pyrite
fraction. The results obtained revealed that the
remaining pyrite fraction was lower than 1.976%
at a probability levelof 99%. Also the tornado
diagram showed that the pile depth had the most
critical effect on the remaining pyrite fraction,
while the concentration of bicarbonate had the
least effect on it.
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