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Abstract 
The tensile strength (σt) of a rock plays an important role in the reliable construction of 
several civil structures such as dam foundations and types of tunnels and excavations. 
Determination of σt in the laboratory can be expensive, difficult, and time-consuming for 
certain projects. Due to the difficulties associated with the experimental procedure, it is 
usually preferred that the σt is evaluated in an indirect way. For these reasons, in this 
work, the adaptive network-based fuzzy inference system (ANFIS) is used to build a 
prediction model for the indirect prediction of σt of sandstone rock samples from their 
physical properties. Two ANFIS models are implemented, i.e. ANFIS-subtractive 
clustering method (SCM) and ANFIS-fuzzy c-means clustering method (FCM). The 
ANFIS models are applied to the data available in the open source literature. In these 
models, the porosity, specific gravity, dry unit weight, and saturated unit weight are 
utilized as the input parameters, while the measured σt is the output parameter. The 
performance of the proposed predictive models is examined according to two performance 
indices, i.e. mean square error (MSE) and coefficient of determination (R2). The results 
obtained from this work indicate that ANFIS-SCM is a reliable method to predict σt with 
a high degree of accuracy. 

1. Introduction 
The tensile strength (σt) of rocks is an important 
parameter involved in the design of a variety of 
engineering structures. There are basically two 
approaches used for determining σt, one of which 
is to collect and test the rock specimens in the 
laboratory (direct methods), and the other one is to 
use the empirical equations and/or statistical 
methods (indirect methods) [1]. The direct standard 
method (assesment of σt in the laboratory) is time-
consuming and expensive, especially with highly 
fractured and inhomogeneous rocks [2]. The 
difficulties associated with performing a direct 
uniaxial tensile test on a rock specimen have led to 
a number of indirect methods for assessing σt. 
Several pertinent studies have previously been 
undertaken in order to develop the empirical 
correlations to predict the σt values in terms of the 
physical/mechanical properties of rocks. The 

estimator variables used for predicting σt are the 
mineralogical composition and the intrinsic rock 
properties such as the electrical resistivity [3], 
grain size, aspect ratio, form factor [4], strength 
ratio, unconfined compressive strength (UCS), 
tensile crack initiation stress [5], total porosity [6], 
angle between the planes of rock anisotropy and 
the loading direction, diameter of the central hole, 
contact condition of loading [7] point load strength 
[6, 8], Shore hardness, sound velocity, Schmidt 
hardness, porosity, and point load index [9]. 
Although previous efforts are valuable, in many 
cases, the aforesaid empirical approaches are not 
capable of distinguishing the sophisticated 
structures involved in the dataset. These reasons 
have been the main causes of interest to better find 
out the interaction between the physical properties 
for the indirect prediction of σt of rocks. For this 
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purpose, recently, the adaptive network-based 
fuzzy inference system (ANFIS) [10-12] has been 
found to be a computational intelligence method 
that integrates the fuzzy inference system (FIS) 
concept into the artificial neural network (ANN), 
and has been widely used in the field of civil and 
mining engineering [13-15]. 
In a conventional FIS, the number of rules is 
decided by an expert who is familiar with the target 
system to be modeled. In an ANFIS simulation, 
however, no expert is available, and the number of 
membership functions (MFs) assigned to each 
input variable is chosen empirically, i.e. by plotting 
the datasets and examining them visually or simply 
by trial-and-error. For the datasets with more than 
three inputs and two outputs, the visualization 
techniques are not very effective, and most of the 
time, trial-and-error must be relied on. Generally, 
it is very difficult to describe the rules manually in 
order to reach the precision required with the 
minimized number of MFs when the number of 
rules is larger than 3. The better performance of 
ANFIS than the other intelligent methods is due to 
the FL and ANN combination. The path that an 
input would cover is like that of the input fuzzy 
inference system convey coordinates of sample to 
the input MFs, and then it passes through MF and 

changes; after that, its results go to the rules that 
according to available rules the category would be 
determined. One of the most important steps in the 
hybrid neuro–fuzzy modeling is the fuzzy 
membership value definition 
In this research work, the ANFIS-subtractive 
clustering  method  (ANFIS-SCM)  and the  
ANFIS-fuzzy c–means clustering method (ANFIS-
FCM) are suggested for the indirect estimation of 
σt. In these models,  porosity, specific gravity, dry 
unit weight, and saturated unit weight  are utilized 
as the input  parameters,  while  σt is  the  output  
parameter. The goodness of each hybrid model was 
evaluated using the data available in the literature. 
Finally, a statistical error analysis was performed 
on the modeling results in order to investigate the 
effectiveness of the proposed method. 

2. Material and Methods 
2.1. Adaptive network-based fuzzy inference 
system (ANFIS)  
The ANFIS approach [16] is a combination of the 
neural learning and the Sugeno fuzzy to capture the 
input–output relationship. The structure of an 
ANFIS approach for two-input is presented in 
Figure 1. 

 
Figure 1. Structure of an ANFIS approach for two-input (after [16]). 
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where wi is the “firing strength” of the ith rule, 
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which is computed in Layer 2.  
Layer 4 is as follows [17]: 

4 ( )i i i i i i iQ W f W p x q y r    , (4) 
where 

iW  is the output of Layer 3.  
Layer 5 is the output layer:  

5  i i
i i i

i

w f
Q Overall Output W f

w
   

 (5) 

Using different identification methods, and for a 
given dataset, different ANFIS models can be built. 
In this work, in order to identify the antecedent 
MFs, SCM, and FCM, two methods were used. 

2.2 Subtractive Clustering Method 
The mountain clustering method is simple and 
effective. However, its computation grows 
exponentially with the dimension of the problem. 
An alternative approach is the subtractive 
clustering method, introduced by Chiu [18], in 
which the data points are considered as the 
candidates for the center of clusters. The algorithm 
continues as follow: 
Step 1: Consider a collection of n data points 
 1 2 3, , ,..., nX X X X  in an M–dimensional space. 
Since each data point is a candidate for the cluster 
center, a density measure at data point iX  is 
defined as shown in Eguation (6): 
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where ar  is a positive constant. Therefore, a data 
point will have a high density value if it has many 
neighboring data points. The radius ar  defines a 
neighborhood; the data points outside this radius 
contribute only slightly to the density measure. 
Step 2: After the density measure of each data point 
is calculated, the data point with the highest density 
measure is selected as the first cluster center. Let

1,cX  be the point selected and 1cD  be its density 
measure. Next, the density measure for each data 
point ix is revised as Eguation (7): 
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where br  is a positive constant.  
Step 3: After the density calculation for each data 

point is revised, the next cluster center 2cX  is 
selected and all the density calculations for the data 
points are revised again. This process is repeated 
until a sufficient number of cluster centers are 
generated. 

2.3. Fuzzy C–Means Clustering Method (FCM) 
FCM is a data clustering algorithm in which each 
data point belongs to a cluster to a degree specified 
by a membership grade; Bezdek introduced this 
algorithm in 1973 [19]. FCM partitions a collection 
of n vector , 1, 2,...,iX i n , into c fuzzy groups and 
finds a cluster center in each group such that a cost 
function of dissimilarity measure is minimized. 
The steps of the FCM algorithm are, therefore, first 
described in brief. 
Step 1: Chose the cluster centers , 1, 2,..., ,ic i c  
randomly from the n points 1 2 3, , ,..., nX X X X .  
Step 2: Compute the membership matrix U using 
Eguation (8): 
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where ,ij i jd c x   is the Euclidean distance 
between the ith cluster center and the jth data point, 
and m is the fuzziness index. 
Step 3: Compute the cost function according to 
Eguation (9). Stop the process if it is below a 
certain threshold. 
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Step 4: Compute the new c fuzzy cluster centers 
, 1, 2,..., ,ic i c using Eguation (10). 
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Go to step 2. 

3. Experimental Database 
The main scope of this work was to implement 
the above methodology in the problem of σt 
prediction. The dataset applied in this work for 
determining the relationship among the set of 
input and output variables was gathered from the 
open source literature [20]. A database 
composed of the measured σt values and physical 
properties was established using the data 
collected from a formation around the 
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Khouzestan Province (Iran). The  29 specimens  
of fresh  sandstone  blocks  were  cored  in the 
laboratory. Each dataset contained the parameter 
porosity (%), specific gravity (Gs), dry unit 
weight (KN/m3), saturated unit weight (KN/m3), 
and measured σt (MPa). The σt values for the 

rock samples were determined using the 
Brazilian tensile strength tests. A detailed 
description of the database could be found in the 
refered resource [20]. Table 1 shows the 
statistical description of the datasets used in this 
work.  

Table 1. Statistical description of the dataset utilized for construction of ANFIS models. 
Parameter Min. Max. Average 

Porosity (%) 4.19 25.27 11.50 
Specific gravity (Gs) 22.76 26.68 24.71 

Dry unit weight (kN/m3) 16.97 24.62 21.90 
Saturated unit weight (kN/m3) 19.42 25.11 23.04 

Tensile strength (MPa) 0.19 13.23 5.90 
 
4. Pre–Processing of Data and Performance 
Criterion 
In order to start the training, the input and output 
data should be normalized to increase the 
efficiency of the networks in recognition of the 
relationships between the inputs and output data. 
Normalization is also really helpful in increasing 
the accuracy of the prediction and scaling the data 
to minimize the biasing of the networks. Data 
normalization can also reduce the time consumed 
for training. It is especially useful for modeling 
those applications where the input data is in 
different scales [21, 22]. There are many 
normalization techniques conventionally used to 
scale up the data including Z–Score normalization, 
Min–Max normalization, sigmoid normalization, 
statistical column normalization, etc. However, for 
the purpose of this work, the Min–Max 
normalization method was used. This was due to 
the capability of the Min–Max normalization in 
maintaining the variation in each feature after 
normalization. Beside, this normalization method 
can preserve all the relationships in the data [22]. 
The Min–Max normalization equation can be 
expressed as follows: 

min

max min

2 1M
x xx

x x
 

   
 (11) 

where x is the original value of the dataset, xM is the 
mapped value, and xmax (xmin) denotes the maximum 
(minimum) raw input values, respectively . 
In addition to normalization, the mean square error 
(MSE) and coefficient of determination (R2) are 
two conventional criteria considered to assess the 

efficiency of the networks. MSE can be calculated 
using the following equation: 
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where tk is the actual value, k̂t is the predicted 
value of the kth observation, and n is the number of 
samples used for training or testing the network. 
MSE is routinely used as a criterion to show the 
discrepancy between the measured and estimated 
values of the network [23-26]. The coefficient of 
determination, R2, can also be calculated as 
follows: 
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R2 is widely used as a representation of the initial 
uncertainty of the model. The best network model, 
which is unlikely to build, would have MSE = 0 
and R2 = 1. 

5. Results  
The training and testing procedures of the two 
ANFIS models (ANFIS-SCM and ANFIS-FCM) 
were conducted from scratch for the five 
mentioned datasets. The MSE and R2 values 
obtained for the training datasets indicate the 
capability of learning the structure of data samples, 
whereas the results of the testing dataset reveal the 
generalization potential and the robustness of the 
system modeling methods. The characterizations 
of the ANFIS models are revealed in Table 2. 
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Table 2. Characterizations of the ANFIS models. 
ANFIS parameter ANFIS–SCM ANFIS–FCM 

MF type Gaussian Gaussian 
Output MF Linear Linear 

Number of nodes 207 157 
Number of linear parameters 100 75 

Number of non-linear parameters 160 120 
Total number of parameters 260 195 

Number of training data pairs 20 20 
Number of testing data pairs 9 9 

Number of fuzzy rules 20 15 
 

The number of rules obtained for the ANFIS-SCM 
and ANFIS-FCM models are 20 and 15, 

respectively. MFs of the input parameters for 
different models are shown in Figures. 2 and 3. 
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Figure 2. MFs obtained by the ANFIS–SCM model. 
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Figure 3. MFs obtained by the ANFIS–FCM model. 

A comparison between the results of three 
models for  the training and testing datasets is 
shown in Table 3. As it can be observed in this 
table, the ANFIS–SCM model with MSE = 0.016 
and R2 = 0.9887 for the testing datasets performs 
better than the ANFIS–FCM model for the 
indirect estimation of σt. Furthermore, 
correlations between the measured and predicted 

values of σt for the testing and training phases 
are shown in Figures. 4 and 5.  

Table 3. A comparison between the results of the 
ANFIS models. 

ANFIS model Training Testing 
MSE R2 MSE R2 

ANFIS–SCM 0.005 0.9800 0.016 0.9887 
ANFIS–FCM 0.006 0.9667 0.017 0.9671 
 

  
(a) (b) 

Figure 4. Correlation between the measured and predicted values of σt by ANFIS–SCM model a) training 
data, b) testing data. 

  
(a) (b) 

Figure 5. Correlation between the measured and predicted values of σt by ANFIS–FCM model a) training 
data, b) testing data. 
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A comparison between the predicted values of σt 
by the ANFIS models and the measured values for 
the datasets at the testing phases is shown in Figure 
6. As shown in this figure, the results of the 

ANFIS–SCM model in comparison with the actual 
data show a good precision of the ANFIS–SCM 
model. 

 
Figure 6. Comparison between the measured and predicted σt by the ANFIS models for the testing datasets. 

6. Conclusions 
In this work, the indirect estimation of σt was 
investigated using two ANFIS models (ANFIS-
SCM and ANFIS-FCM), and the following 
conclusions could be drawn: 

 Porosity, specific gravity, dry unit weight, and 
saturated unit weight were incorporated for the 
indirect estimation of σt of rocks.  
 A comparison was made between two ANFIS 
models (ANFIS-SCM and ANFIS-FCM) using 29 
data samples and based upon the performance 
indices MSE and R2. ANFIS–SCM with MSE = 
0.016 and R2 = 0.9887 was selected as the best 
predictive model. 
 The generalized Gaussian MFs were used in the 
present models. MFs were tested. It is important to 
mention that the rules used are generally based on 
the model and variables that are dependent on the 
user’s experience and the trial-and-error method. 
Furthermore, the shape of MFs depends on the 
parameters involved, and changing these parameters 
will change the shape of MF. 
 Consequently, one may conclude that ANFIS–
SCM is a reliable system modeling technique for 
predicting σt of rocks with a highly acceptable degree 
of accuracy and robustness. 
 This work shows that the ANFIS approach can 
be applied as a powerful tool for modeling some of 
the problems involved in mining and civil 
engineering. 
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  چکیده:

هاي خاص تعیین پروژهها دارد. از طرفی براي ها و حفاريسد، انواع تونل هاي مختلف عمرانی مانند پیکششی یک سنگ نقش مهمی در ساخت ایمن سازهمقاومت 
ي آزمایشگاهی معمولاً مقاومت کششی به صورت غیرمستقیم تواند پرهزینه، مشکل و زمانبر باشد. بعلت مسائل بیان شده، در پروسهمقاومت کششی در آزمایشگاه می

هاي سنگی بینی غیرمستقیم مقاومت کششی نمونهفازي (انفیس) براي ساخت مدل جهت پیش-شود. در این تحقیق از سیستم استنتاج تطبیقی نروارزیابی می
سی مینز فازي ساخته -بندي کاهشی و انفیسخوشه-سنداستون به کمک خواص فیزیکی استفاده شده است. در این تحقیق دو مدل انفیس به نام هاي انفیس

ها، تخلخل، وزن مخصوص، وزن مخصوص خشک و ند. در این مدلهاي موجود از منابع قابل در دسترس بکارگرفته شدهاي انفیس مذکور بر روي دادهشدند. مدل
ها از دو شاخص میانگین خطاي مربعات وزن مخصوص اشباع به عنوان ورودي و مقاومت کششی بعنوان خروجی مورد استفاده قرار گرفت. براي ارزیابی عملکرد مدل

بندي کاهشی یک روش قابل اعتماد و با درجه دقت بالا براي پیشخوشه-هد که انفیسدو ضریب تعیین استفاده شد. نتایج بدست آمده از این تحقیق نشان می
  .استبینی مقاومت کششی 

 .بندي کاهشی، روش سی مینز فازي، روش خوشه يفاز-نرو یقیاستنتاج تطب ستمیسخواص فیزیکی،  کششی،مقاومت  کلمات کلیدي:
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