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 Traditionally, the earthmoving operations have been developed based on the 
minimum cost per production criterion. Nowadays, due to the negative impacts of the 
emissions on the environment, there is an increasing public awareness to reduce the 
emissions from the earthmoving operations. Different management strategies can be 
employed to reduce emissions, amongst other things, which can also result in a 
reduction in the operational costs. This paper aims to examine the cost and emissions 
related to the earthmoving equipment from an operational standpoint. The queue 
theory is used in order to demonstrate that the optimum cost per production fleet size 
and the optimum emissions per production coincide. The linear and non-linear server 
utilization functions are employed to present a general optimization proof independent 
from any specific case study. The findings of this research work provide a better 
understanding of the relationship between the emissions and cost and how the under-
trucking and over-trucking conditions affect the productivity and environmental affairs 
in the earthmoving operations.  
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1. Introduction  
The earthmoving operations generally include 

the off-road equipment working in a load and dump 
point and a fleet of trucks cycling between these 
points. A fleet of equipment is generally required 
to transport the materials from the extracted site to 
the dumping site. The amount of material produced 
in a unit time is directly dependent on the number 
of equipment employed in the earthmoving system. 
Employing less than the optimal fleet size results in 
the underutilization of the haulage system. It is 
noteworthy that the material handling can 
contribute to about 50% of the production costs in 
the open-pit mines [1]. Therefore, the size of fleet 
equipment can significantly affect the earthmoving 
productivity. In order to reach the minimum 
production cost and maximum productivity, it is of 
great importance to determine the optimal fleet size 
in each operation [2].  

Since 1960s, much effort has been made to 
develop the operational research techniques in 

order to determine the optimal fleet size. O’Shea et 
al. [3] and Griffis [4] were amongst the first who 
determined the optimal number of fleet size using 
the mathematical models and the queuing theory. 
Since then, several techniques have been employed 
to determine the optimal fleet size in specific 
operations. The queuing theory, which has been 
widely used in the previous studies, divides the 
cycle queue into different phases of equipment 
loading, loaded travel, dumping, and empty travel. 
The average time in each phase is estimated by 
calculation of the utilization of the expected time 
and the number of trucks at each phase. Then the 
production and unit cost are calculated followed by 
variation in the haulage units to determine the 
optimal cost and productivity [5, 6]. More details 
regarding the queuing theory are provided in the 
following section. This technique has also been 
employed on the other urban applications such as 
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determining the optimal fleet size of electric car 
sharing systems based on the total revenue [7].  

The queueing theory can be employed in 
conjunction with the algorithms such as linear 
programming, where after defining different 
phases, the estimated queue length, and waiting 
time and utilization, the problem is discretised to 
the linear programming optimization problems 
having dual or several functions such as the 
reducing cost, maximizing production, and 
equipment utilization [7-9]. 

Dynamic programming is another fleet size 
optimization approach in which the changes in the 
system and policies can be incorporated, unlike 
most implicit approaches. These changes can 
include the equipment and labour costs as well as 
the extracted material price and demand. The 
application of this approach based on the 
regeneration sequence and non-linear 
programming can be seen in the previous studies 
[10, 11].  

Discrete event simulation (DES) is a computer-
based technique that provides modelling, 
simulation, and analysis of systems in a sequence 
of discrete events based on what if analysis. In this 
approach, the state variables are changed at the 
discrete time standpoint in which certain events 
occur [12]. The analyst is guided by the conceptual 
frameworks to select an appropriate framework 
based on the system characteristics and specified 
model objectives. SIMAN, GPSS, and SLAM are 
the most common programs used for the DES 
analysis [2]. The DES approach has the advantage 
of stochastic optimization, where the traditional 
deterministic approaches are not able to guarantee 
an optimal solution in these cases [1]. The DES 
approaches are usually able to iterate on a family 
of solutions, employing the current state not the 
past solutions as well as imitating non-linear 
programming. Some efforts have been made to use 
DES to enhance the system productivity as well as 
reducing the environmental impact of the haulage 
system [13]. Ahn et al. [14] have used a DES 
algorithm in order to estimate the different 
components of the cycle times in a case study 
operation.    

In addition to the above-mentioned methods, 
other methods such as the genetic algorithms [15-
17], inventory theory [18], demand Pivot method 
[19], knowledge-based expert systems [20, 21], 
multi-criteria decision-making techniques [22], 
neural networks [23, 24], element build up with 
modifying factors [25], multiple regression [26, 27], 
match factor [28], analytical hierarchy process [29], 
mixed integer programming [30], and machine 

repair modelling [31] have been employed in the 
previous studies in order to determine the optimal 
fleet size.    

A review of the previous studies shows that the 
computer simulations based on the DES approach 
are the most common approach to predict the cycle 
times in the earthmoving operations. Terrazas 
Prado et al. [32] have developed a custom-made 
truck cycle and delay automated data collection 
system (TCD-ADCS) in a surface coal mining. 
However, there are questions about the accuracy of 
the simulation methods (for example, [33, 34]). 
Moreover, it has been shown that the computer 
programs such as the truck and loader productivity 
and cost (TALPAC) underestimate the cycle times 
for shorter haul routes and overestimate them for 
the longer haul routes [27]. Chanda and Gardiner 
[27] by comparing the actual cycle times from a 
mining operation with the estimated times from the 
three different methods of neural networks, 
multiple regression, and TALPAC simulations 
have demonstrated that the cycle times from neural 
networks and multiple regression methods are 
more reliable than the TALPAC simulations. 
Despite the advantages of different fleet size 
optimization methods, most of these approaches 
are numerically-based. Only the queuing theory 
permits a general analytical proof, and it provides 
an analytical tractability where the operational 
analysis is constructed based on the finite source 
queuing theory. 

Despite the well-established methods to obtain 
the optimum equipment fleet size based on the 
minimum production cost [35], a limited number of 
studies have been carried out considering the 
emission of earthmoving operations. One 
environmental aspects of the earthmoving 
operations is related to the exhaust emissions from 
vehicles and equipment including carbon dioxide, 
carbon monoxide, hydrocarbons, nitrogen oxides, 
and particulate matter [36].  

The off-road vehicles are a significant source of 
air pollution, and produce a large amount of 
emissions compared to the on-road vehicles such as 
automobiles. For example, the amount of 
particulate matter for a bulldozer with a 175 hp 
engine is nearly 500 times more than that of a new 
automobile [37]. Reducing this pollution will 
contribute to a healthier lifestyle and decreases the 
environmental problems. As the public awareness 
on this issue has been raised, efforts are being 
directed to minimize the level of pollutants 
produced by the earthmoving vehicles and 
equipment. Government regulations, fuel 
specifications, engine modifications, and vehicle 
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fleet management are some of the approaches 
adopted to decrease pollution [37]. 

The United States Environmental Protection 
Agency [38] and California Environmental 
Protection Agency Air Resources Board [39] have 
provided models for determining emissions from 
the off-road equipment. These models can be used 
in the overall design and planning of earthmoving 
operations, and in particular, in the selection of the 
appropriate combination of loading and hauling 
units. However, these models are not precise 
enough for specific work cycles as they typically 
give emissions per year. Such models, due to the 
use of the average load factors that are not based on 
the job specific conditions, provide a very general 
estimation of the emissions. 

Emissions from the off-road vehicles presented 
in the regulations and standards are usually 
quantified based on the steady-state engine 
dynamometer tests [40], and hence, may not be 
representative of the actual emissions in the field. 
Furthermore, the undertaken research works show 
that the exhaust emissions are dependent on the 
equipment type and the tasks that they are 
performing [41, 42]. This points to the need for 
further data-based research works on the actual 
vehicle activities to consider the operational field 
conditions. 

Few studies have been undertaken to investigate 
the effects of the operating parameters on 
emissions based on field measurements. Frey et al. 
[40] have carried out field measurements and 
compared the emissions of fuel type B20 versus 
petroleum diesel. Their study provides a good 
insight about the effect of fuel type and engine tier 
on the emission rates; however, the measurements 
were made for periods of several hours, which may 
be different from the annual averages. Hansen [43] 
has assessed the performance of fuel biodiesel 
blends in the off-road vehicles on the front-end 
loader performance. He has found that on one hand, 
the biodiesel decreases the emission rate of some 
pollutants but on the other hand, it increases the 
NOx rate. Therefore, the type of fuel influences the 
emitted pollutants, and consequently, evaluation of 
alternative fuels is necessary before using in 
engines. As mentioned earlier, the EPA emission 
values are based on the steady state engine 
dynamometer tests and so they can differ from the 
actual equipment emissions in the field. Field 
emissions of the diesel-powered off-road vehicles 
have been measured and evaluated by Gautum [44] 
in a study performed for the California Air 
Resources Board and the California Environmental 
Protection Agency. It was found that exhaust 

emissions were dependent on the vehicle type. 
Thus, in order to have a proper emission data for 
modelling purposes, a range of vehicle types and 
models should be tested. The off-road vehicles 
used by Gautum were a street sweeper, a rubber-
tired loader, an excavator, and a bulldozer. 
Therefore, there is a need for supplementary 
studies to cover the earthmoving activities in a 
more comprehensive way. 

Lewis [41] has presented a new approach for 
determination of emissions for specific work cycles 
of the construction equipment. A portable emission 
monitoring system (PEMS) was used to collect the 
fuel consumption and emission data of seven types 
of equipment while they were working. The data 
obtained was collected from 8 backhoes, 6 
bulldozers, 3 excavators, 6 motor graders, 3 off-
road trucks, 3 track loaders, and 5-wheel loaders. 
Lewis divided the engine load into 10 different 
modes and used the average fuel consumption 
(modal fuel use) and emissions (modal emissions) 
in each mode to determine the emissions of 
different work cycles. Based on these 
measurements, the equations were presented to 
estimate the fuel consumption in different engine 
modes. Using these equations and the fraction of 
time equipment spent in different engine modes, 
the emission values can be calculated for a variety 
of engine powers and engine tiers. 

The Lewis’s emission model, however, is not 
capable of determining the idling and non-idling 
emissions of the equipment. Therefore, Carmichael 
et al. [45] have developed a model in order to 
estimate the idling and non-idling emissions of the 
loaders and trucks. They evaluated the accuracy of 
this model by comparing the results obtained with 
the ones from the model presented by Lewis et al. 
[46]. The emissions model developed by 
Carmichael et al. [45, 47] was used in this work to 
estimate the idling and non-idling emissions of the 
equipment. 

With the main focus on the conventional loader-
truck earthmoving operations, in this work, we 
examined different equipment configurations in 
terms of emissions and costs in order to understand 
their interrelationship. First, the earthmoving 
operation was optimized based on the minimum 
emissions per production (EPP) and minimum cost 
per production (CPP) criteria. The queuing analysis 
was used to estimate the change in emissions and 
cost from the altering fleet sizes due to its analytical 
tractability. The linear η functions were then used 
in the under-trucked and over-trucked scenarios in 
the server utilization in order to demonstrate that 
the truck fleet size increment in the under-trucked 
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scenario decreased the unit emissions and cost, 
while it increased the unit cost and emissions in an 
over-trucked scenario. This means that there is an 
optimal truck fleet size based on the unit emissions 
and the unit cost in the transition between an 
operation being under-trucked and over-trucked. 
Finally, the non-linear η functions were presented 
in the transition parts to prove that the optimum 
fleet size in terms of unit cost coincided with that 
for the unit emissions, independent from any 
specific case study numbers. 

2. Case Study and analytical background 
In order to examine the optimum fleet size in 

terms of the unit cost and unit emissions, a real-
world operation must be studied. The existing 
operation in this work is a coal mining operation in 
Australia including a loader (Komatsu WA470) 
and a fleet of trucks (Komatsu HD325) that 
transport the overburden removal from the loading 
area to a dump in order to get to the minerals. The 
average results for the same operation (same grade, 
payload, and haul distance) were used for this 
analysis, and the average truck cycle component 
times were measured in a period of approximately 
4 hours, which are summarized as follow: 

Manoeuvre at loader = 0.36 min 
Load = 3 min 
Loaded travel = 10.3 min 
Manoeuvre at crusher = 0.17 min 
Dump = 0.22 min 
Empty travel = 10.77 min 

As noted earlier, the finite source queuing theory 
was used in this work in order to calculate the 
different components of the truck cycle times. In 
order to analyse the operation, the service time 
(denoted as /1 ), the back-cycle time (denoted as  
1/), the number of loaders (c), and the number of 
trucks (K) were required, which can be measured 
in site. The service time is defined as the sum of the 
truck manoeuvre time and load time, while the 
back-cycle time is defined as the loaded haul time 
plus the dump time and the return time. The 
average waiting time in queue for different truck 
fleet sizes is: 










11KWq  (1) 

                                                
* The notation (a/b/c)/f describes the different finite source 
queuing cases, where a is the customer arrival time distribution; 
b is the service time distribution; c is the number of parallel 

where η is the server utilization, and shows the 
proportion of time that the server is busy. The 
server utilization (η) can be determined based on 
the service factor, defined as  / . According to 
Carmichael [48], the average of the finite source 
(D/D/c)/K* and (M/M/c)/K server utilizations can 
be used in earthmoving, quarrying, and mining 
operations. The exponential probability 
distribution is applied for describing the back-cycle 
and service times in the (M/M/c)/K model, whereas 
a constant probability distribution is used in the 
(D/D/c)/K model. Production can then be obtained 
as follows: 

CAPToduction Pr  (2) 

where CAP is the capacity of a truck ( m3), and T 
is the time period when production is being 
measured. 

The issue considered in this section is to 
determine and compare the optimal truck fleet size 
for the given parameters of the case study in terms 
of the unit cost and unit emissions. The objective 
functions are then cost per production (CPP) and 
emissions per production (EPP). 

2.1. Cost per production (CPP) 

The queue theory was used to calculate the 
different components of the cycle times. The 
following assumptions were made to facilitate the 
analysis:  

- Loader is the server and loader utilisation 
corresponds to the server utilization. This 
means that the loader starts working when 
the truck starts manoeuvring at the server. 

- For trucks, non-idling is assumed to be 
equal to the back-cycle time excluding the 
waiting time in dump because the waiting 
time in the dump is negligible. 

For an operation with a loader and a fleet of 
trucks, 21 KCCCost    

where 1C  is the hourly operating cost of a loader, 
and 2C  is the hourly operating cost of a truck [48, 
49]. Therefore, CPP is calculated as: 

Cost/production =CPP = 
େభା୏େమ
ஜ஗େ୅୔

 (3) 

For the current case study, 1C  = $110/h, 2C = 
$160/h, c = 1, and CAP = 36.5 3m . 

servers; and f is the calling population or input source. M refers 
to the exponential case; D the constant case; and K the finite 
source size of customers. 
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2.2. Emissions per production (EPP) 
Lewis [41] has presented an emission model in 

order to determine the exhaust emissions of the off-
road equipment. Using this model, the fuel use 
rates can be estimated in different engine modes. 
These rates can then be multiplied by the 
proportion of time equipment spent in different 
engine modes in order to determine the modal 
weighted fuel use. Summing these values gives the 
total fuel consumption rate for the activities such as 
moving soil and loading a truck. Multiplying this 
value (gal/h) by the weighted average emission rate 
leads to the weighted average emissions rate (g/h) 
for a specific activity. The notations used for the 
equipment emission values are as follow: 

LN : Loader non-idling emissions 

LI : Loader idling emissions 

TN : Truck non-idling emissions 

TI : Truck idling emissions 

The cycle time can be defined as Cycle time =

qW

11

 = 

K

 

Proportion of the loader non-idling time = 




timeCycle
K

 
/

 

Proportion of the loader idling time = 1  

Total loader emissions = LN ( ) + LI ( 1 ) 

Proportion of the truck non-idling time = 



KtimeCycle


 

/1
 

Proportion of the truck idling time = 



K

1  

Total truck emissions (K trucks) = TN K
K












 + 

TI K
K







 


1  

Therefore, EPP of the operation is: 

Emissions/production = EPP = 
୒ై஗ା୍ై(ଵି஗)ା୒౐(ஜ஗/୏஛)୏ା୍౐(ଵିஜ஗/୏஛)୏

ஜ஗େ୅୔
 

 

EPP = ୒ైି୍ైା୒౐/஡ି୍౐/஡
ஜେ୅୔

+ ୍ైା୏୍౐
ஜ஗େ୅୔

 (4) 

 
where  η୘ and (1 - η୘) are the proportion of time 

that the trucks spend travelling and idle (waiting 
and loading). These values can be observed in the 
field or estimated via the methods such as the 
simulation and queuing theory. The idling and non-
idling emissions of loader and truck ( LI  and LN ) 
and ( TI  and TN ) can be estimated by emissions 
model in Carmichael et al. [45].  

Analysing different truck fleet sizes, CO2 per 
production, and CPP values are plotted versus the 
fleet size in Figure 1. The trend of EPP diagram for 
CO2 is similar to that for the other emissions such 
as nitrogen oxides (NOx), hydrocarbons (HC), 
carbon monoxide (CO), and particulate matter 
(PM). Comparing the CO2/production (upper plot) 
with the CPP plot (lower plot) shows the optimum 
fleet size in terms of the unit emissions coinciding 
with that for the unit cost.  

 
Figure 1. 2CO  EPP and CPP versus fleet size. 

The case study only discusses a single operation, 
and hence, is not representative of all operations. 
Therefore, it is important to evaluate the effects of 
altering the design parameters such as the back-
cycle time and service time on the results. To this 
end, a sensitivity analysis was performed for 
changing the back-cycle time and service time of 
this operation. The analyses show that the results 
obtained remain similar for doubling the service 
time and back-cycle time, as shown in Figures 2 
and 3. 
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Figure 2. 2CO  EPP and CPP versus fleet size for 

doubling the service time of the case study. 
Figure 3. 2CO  EPP and CPP versus fleet for doubling 

the back-cycle time of the case study. 

As illustrated, the trend of the EPP and CPP diagrams remains similar when changing the design parameters; 
this means that the optimum fleet size in terms of the unit cost is the same as that for unit emissions. The queue 
analysing was conducted in order to evaluate whether the two minima still coincided for a range of C1/C2, and 
a range of IL/IT. To this end, 636 cases with different values of cost and emissions were analysed, as shown in 
Table 1.  As it can be seen, the optimal fleet size may change for different values of C1/C2 and IL/IT; however, 
the minimum CPP configuration coincides with the minimum EPP configuration. Regarding this information, 
Figure 4 can be used to determine the optimum K (K*) regions based on the servicing factor (ρ) and the ratio 
of the loader and truck’s idling emissions (IL/IT).  For example, the shaded region shows the area with an 
optimum truck’s number of 5. Thus, the truck fleet size for the minimum CPP can be chosen using Figure 4. 

 
Figure 4. Optimum K based on the servicing factor and the ratio of the loader and truck’s idling emissions. 
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Table 1. Optimum fleet size (K*) for different ratios of C1/C2 and IL/IT. 

Cost and 
emission 

ratio 

Service factor (ρ) 

0.
66

4 
0.

49
7 

0.
33

3 

0.
24

8 

0.
19

8 
0.

16
5 

0.
14

2 
0.

12
4 

0.
11

0 

0.
09

9 
0.

09
0 

0.
08

3 
0.

07
6 

0.
07

1 

0.
06

6 

0.
06

2 
0.

06
0 

0.
05

8 

0.
05

7 

0.
05

5 

0.
05

4 
0.

05
2 

0.
05

1 

0.
04

9 

0.
04

0 

0.
03

3 

C1/C2 = 4 3 3 4 5 6 7 8 9 10 11 12 12 13 15 15 15 17 17 17 17 17 18 18 N N N 
IT/IL = 4 3 3 4 5 6 7 8 9 10 11 12 12 13 15 15 15 17 17 17 17 17 18 18 N N N 

                           
C1/C2 = 3.5 3 3 4 5 6 7 8 9 10 11 12 12 13 14 15 15 17 17 17 17 17 18 19 N N N 
IT/IL = 3.5 3 3 4 5 6 7 8 9 10 11 12 12 13 14 15 15 17 17 17 17 17 18 19 N N N 

                           
C1/C2 = 3 3 3 4 5 6 7 8 9 10 11 12 12 13 14 15 15 16 17 17 17 17 17 18 N N N 
IT/IL = 3 3 3 4 5 6 7 8 9 10 11 12 12 13 14 15 15 17 17 17 17 17 17 18 N N N 

                           
C1/C2 = 2.5 3 3 4 5 6 7 8 8 10 11 11 12 13 13 14 15 16 16 16 17 17 17 17 N N N 
IT/IL = 2.5 3 3 4 5 6 7 8 9 10 11 12 12 13 14 15 15 16 16 17 17 17 17 17 N N N 

                           
C1/C2 = 2 3 3 4 5 6 7 8 8 9 10 11 12 12 13 14 14 15 15 15 16 16 17 17 N N N 
IT/IL = 2 3 3 4 5 6 7 8 8 10 11 11 12 13 13 14 15 15 16 16 16 17 17 17 N N N 

                           
C1/C2 = 1.5 2 3 4 5 6 6 7 8 9 9 10 11 11 12 13 13 14 14 14 15 15 16 16 N N N 
IT/IL = 1.5 2 3 4 5 6 7 7 8 9 10 10 11 12 12 13 14 14 14 15 15 15 16 16 N N N 

                           
C1/C2 = 1 2 3 4 5 5 6 7 7 8 8 9 10 10 11 12 12 13 13 13 13 14 14 14 N N N 
IT/IL = 1 2 3 4 5 6 6 7 7 8 9 9 10 11 11 12 12 13 13 13 13 14 14 14 N N N 

                           
C1/C2 = 1.5 2 3 3 4 5 5 6 6 7 8 8 9 9 10 10 11 11 11 12 12 12 13 13 13 16 18 
IT/IL = 1.5 2 3 3 4 5 5 6 7 7 8 8 9 9 10 11 11 11 12 12 12 12 13 13 13 16 18 

                           
C1/C2 = 2 2 2 3 4 4 5 5 6 6 7 7 8 8 9 10 10 10 11 11 11 11 12 12 12 15 17 
IT/IL = 2 2 3 3 4 4 5 5 6 7 7 8 8 9 9 10 10 11 11 11 11 11 12 12 12 15 17 

                           
C1/C2 = 2.5 2 2 3 3 4 5 5 5 6 6 7 7 8 8 9 9 10 10 10 10 11 11 11 11 14 16 
IT/IL = 2.5 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 10 10 10 11 11 11 11 14 16 

                           
C1/C2 = 3 2 2 3 3 4 4 5 5 6 6 7 7 8 8 8 9 9 9 10 10 10 10 10 11 13 15 
IT/IL = 3 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 9 9 10 10 10 10 10 11 13 15 

                           
C1/C2 = 3.5 2 2 3 3 4 4 5 5 5 6 6 7 7 8 8 8 9 9 9 9 9 10 10 10 12 14 
IT/IL = 3.5 2 2 3 3 4 4 5 5 5 6 6 7 7 8 8 9 9 9 9 9 10 10 10 10 12 14 

                           
C1/C2 = 4 2 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 8 9 9 9 9 9 10 10 12 13 
IT/IL = 4 2 2 3 3 3 4 4 5 5 6 6 6 7 7 8 8 8 9 9 9 9 9 10 10 12 13 

 
Figure 5 demonstrates the optimum truck fleet 

size regions based on the servicing factor (ρ) and 
the ratio of the loader and truck’s cost (C1/C2). As 
it can be seen, the optimum regions based on the 
minimum CPP is similar to that for the minimum 
EPP. However, there are some inconsistencies that 
are mostly due to the drawing assumptions (a 
polynomial function of degree 3 trendline was 

fitted to the points in the border of area with similar 
optimum fleet size to define the K* regions). 

The analyses show that the optima fleet size 
based on the minimum unit emissions and unit cost 
criteria coincides for all the earthmoving, 
quarrying, and open-cut mining operations. 
However, a general proof can be provided to 
confirm it mathematically. 
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Figure 5. Optimum K based on the servicing factor and the ratio of the loader and truck’s costs. 

3. General Proof 

A general optimisation proof, independent from 
any specific case study numbers, can be given by 
using a general η function. The linear and non-
linear η functions were used in this work to prove 
the hypothesis. 

3.1. Linear η function 
Consider a typical plot of the server utilization 

(equivalent production) versus the fleet size, as 
shown in Figure 6. The truck queue times in the 
initial part of the plot (under-trucked) are small or 
negligible and the loader is underutilized. When the 
plot reaches a plateau (over-trucked), the truck 
queue lengths grow as more trucks are added to the 
operation and the loader works nearly all the time. 

As it can be seen in Figure 6, the analysis can be 
broken into two scenarios corresponding to the two 
main parts of the server utilization plot. For each 
scenario, a linear approximation is made to the 
utilization plot such that for small fleet sizes (small 
K), η = α1 + β1K, and for the larger fleet sizes (large 
K), η = α2 + β2K, where β1 and β2 are constants. In 
order to decrease the number of independent 
parameters and to facilitate the calculations, it is 
assumed that 1  is negligible. The values for 1  
and 2  are also substituted with α and β, 
respectively. Therefore, the linear approximation 
to the utilization plot for small fleet sizes (small K) 
is K  , and for larger fleet sizes (large K), it 

is )( Ss KKK   , where sK  is the value 
of K at the point of intersection of these two parts. 
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Figure 6. Example plot of server utilization (production) versus fleet size. 

Different analyses were conducted to find the α 
and β values, which resulted in the occurrence of 

sK  near the optimum fleet size. In order to have a 

more accurate sK , the area under linear η functions 
in under-trucked and transition parts should be 
equal to the area under the actual server utilization 
graph in this area. Moreover, α should be a function 
of the servicing factor ρ, as follows: 

013.0813.0391.0 2   (5) 

Using the linear η functions, the additional CPP 
and additional EPP were calculated from 
increasing the fleet size for the under-trucked and 
over-trucked scenarios. A summary of the results is 
highlighted in the following sections. 

3.1.1. Additional cost per production 
The slope of the CPP curve or additional CPP,

P
C̂ , for increasing the fleet size for the under-

trucked and over-trucked scenarios is as follows: 

N෡ୡ
୮ = ൬

Cost
Production

൰
୏ାଵ

− ൬
Cost

Production
൰
୏

 

(6) 

=
Cଵ + (K + 1)Cଶ
μη୩ାଵCAP

−
Cଵ + KCଶ
μη୩CAP

 

Therefore,  

N෡ୡ
୮ =

η୩(Cଵ + (K + 1)Cଶ) − η୩ାଵ(Cଵ + KCଶ)
μη୩ାଵη୩CAP  (7) 

Consider the under-trucked and over-trucked 
cases in turn; 

For sKK  (under-trucked): 

N෡ୡ
୮ =

K(Cଵ + (K + 1)Cଶ) − (K + 1)(Cଵ + KCଶ)
μαK(K + 1)CAP

 

(8) 
N෡ୡ
୮ =

−Cଵ
μαK(K + 1)CAP

 

The numerator in Equation (8) is negative, while 
its denominator is always positive; therefore, the 

value for P
CN̂  is positive in the over-trucked 

scenario (β is smaller than α and αKS), while it is 
negative in the under-trucked scenario. This means 
that increasing the fleet size, and accordingly 
increasing the production, for the under-trucked 
case, leads to a reduction in CPP in the operations. 

For sKK  (over-trucked): 
 

 
 

N෡ୡ
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൫αKS + β(K-KS൯(Cଵ + (K + 1)Cଶ) − (αKS + β(K + 1-KS)(Cଵ + KCଶ)
μη୩ାଵη୩CAP

 

(9) 
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The value for β is small compared to α and αKS; 

therefore P
CN̂  is positive. Thus larger fleet sizes 

result in more CPP in the over-trucked case. 

The value for P
CN̂  is positive in the over-trucked 

scenario, while it is negative in the under-trucked 
scenario. Thus the greater fleet sizes result in a 
reduced CPP in the under-trucked scenario and an 
increased CPP in the over-trucked scenario. 

3.1.2. Additional Emissions per production 
The slope of the EPP curve or the additional EPP, 

̂ , for increasing the fleet size for under-trucked 

and over-trucked scenarios is as follows: 

KK















 Production
Emissions

Production
EmissionsN̂

1

P
E

 (10) 

Consider the under-trucked and over-trucked 
cases in turn; 

For sKK  (under-trucked): 

N෡ୡ
୮ = ቆ

IL+ (K+1) IT
μα(K + 1)CAP

ቇ − ൬
IL+ K IT

μαKCAP
൰ 

(11) 

=
−IL

K(K + 1)μαCAP
 

Equation (11) is always negative, which means 
that increasing the fleet size, and accordingly 
increasing the production, for the under-trucked 
case, leads to a reduction in EPP in the operations. 

For sKK  (over-trucked): 
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The value for β is small compared to α and αKS; 

therefore, P
EN̂  is positive. Thus larger fleet sizes 

lead to a more EPP. 

Similar to the additional CPP, P
EN̂  is negative in 

the under-trucked scenario, while it is positive in 
the over-trucked scenario. Thus the greater fleet 
sizes lead to fewer EPP in the under-trucked 
scenario and more EPP in the over-trucked 
scenario. 

Therefore, additional cost and EPP from 
increasing the truck fleet size are negative in the 
under-trucked part of the server utilisation, while 
they are positive in the over-trucked part. It means 
that the minimum EPP and the minimum CPP take 
place approximately in the intersection of the two 
linear η functions, namely Ks. However, Ks is not 
placed on the η curve, and it can be a source of error 
in the estimations. 

3.2. Non-linear η function 

Taking a derivative of CPP and EPP with respect 
to K and setting to zero can show the coincidence 
of the K values for a minimum CPP and minimum 

EPP. A η function in terms of K is required, which 
is applicable for a range of η in either sides of the 
optimum point. Due to the variation and different 
trends of the η curves, as shown in Figure 7, it is 
impossible to have a certain η function that fits all 
η values. Therefore, breaking η and ρ is necessary 
to get more accurate equations for different areas.  

 
Figure 7. Different η functions versus fleet size. 

A piecewise η function can be used to obtain 
more accurate values. However, the optima mostly 
take place in the transition part from operation 
being under-trucked to over-trucked. Developing η 
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functions for other regions is of secondary 
importance and are is discussed in this paper. 

A piecewise non-linear η function for (i) small η, 
(ii) transition part, and (iii) large η can be used to 
overcome the shortcomings of the linear η function. 
The function needs to be a good fit near the region 
where the optima lie; elsewhere, the fit is not as 
important, and the goodness of fit can be sacrificed. 
Therefore, the η functions for the crucial region 
near the optima are discussed in this section. 

The finite source queue server utilisation was 
used in order to find the best fit mathematical 

function to the η curves. The function gives η in 
terms of the truck fleet size (K) and servicing factor 
(ρ), η = f (K, ρ), where ρ is defined as  / . The 
servicing factor takes place at specific values for 
different earthmoving configurations. The best fit 
η functions are derived into the four different 
regions of the servicing factor (0.03 ≤ ρ ≤ 0.06, 
0.06 < ρ ≤ 0.13, 0.13 < ρ ≤ 0.25, 0.25 < ρ ≤ 0.72) 
to get more accurate results. 

 
For 0.03 ≤ ρ ≤ 0.06,  

η = (2.5ρ 2 - 0.333ρ + 0.0047)K2 + (-120ρ 2  + 11.676ρ - 0.016)K + (54.509ρ - 4.863)  

For 0.06 < ρ ≤ 0.13: 

η = (-0.89ρ2 + 0.031ρ - 0.0054)K2 + (11.398ρ2 - 0.936ρ + 0.273) K + (-138.7ρ2 + 36.111ρ - 3.186) 

For 0.13 < ρ ≤ 0.25: 

η = (-0.25ρ2 + 0.032ρ - 0.015)K2 + (2.99ρ2 - 1.028ρ + 0.397)K + (-6.93ρ2 + 6.558ρ - 1.373) 

For 0.25 < ρ ≤ 0.72: 

η = (0.203ρ2 - 0.281ρ + 0.039)K2 + (-1.2ρ2 + 1.536ρ)K + (0.38ρ - 0.273) 

(13) 

 
η curves from these functions are compared with 

those from the queue theory for ρ = 0.09, 0.15 and 
0.30 in Figure 8. The results of these two 
approaches provide similar results, which show 
that the best fit η functions can be employed for 
calculating the productivity of operations, 
especially in the critical parts. 

Table 2 compares several η values from these 
functions with those from the queue theory. As it 
can be seen, the differences between the results 
from these two methods are less than 3%. This 
comparison shows the accuracy of the best fit 
functions; hence, they can be used in 
correspondence with the queue theory for the 
analysis. 

 

 
Figure 8. η curves from functions and queue theory. 
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Table 2. η values from functions and queue theory. 

ρ K Η 
Best fit functions Queue analysis 

0.05 18 0.8360 0.8179 
0.10 10 0.8519 0.8441 
0.20 7 0.9270 0.9397 
0.30 5 0.9292 0.9304 
0.50 4 0.9770 0.9524 

 
Substituting the best fit η functions into the CPP 

expression and setting the first derivative of this 
expression with respect to K equal to zero gives the 
stationary value ( K̂ ), which is the minima, as the 
second derivative of the expression is always 
positive. The nearest integer number to this value 
is the optimum number of trucks in terms of the 
unit cost. The same procedure can be applied for 
EPP, which gives the minimum EPP fleet size. 
Comparing the results obtained shows that the 
optimum number of trucks in terms of the unit cost 
coincides with that for the unit emissions. 

3.2.1. Cost per production 
For any given operation, ρ and µ are constants. 

The CPP numerator is a linear function of K, and 
its denominator is a function of η. As discussed, the 

η functions from the queue theory can be converted 
to quadratic functions of K as follows: 

η = A K2+ B K + C (14) 

where A, B, and C are the functions of ρ that take 
different values for the nominated boundaries of ρ. 
These parameters were used instead of the actual 
functions to facilitate the estimations. 

In order to find the minimum CPP fleet size, the 
derivative of CPP with respect to K is set to zero as 
follow: 

d(CPP)
dK

=
AC2K2 + 2AC1K + (BC1  -  CC2)

µCAP(AK2+ BK + C)2 = 0 (15) 

Therefore, 

AC2K2 + 2AC1K + (BC1 - CC2) = 0 

The values for K̂  satisfying this equation are the 
stationary values for CPP. 

2

2
212

2
11

C -
)C ( (C/A)+)C )(C (B/A)(-)(C±C

  =K̂
 

(16) 

The sign of the second derivative is required to 
be examined to establish whether such values are 
minima, maxima or points of inflection. 

32
2112112

2
1

23
2

2

2

C) +BK  +µCAP(AK
))CC - B(BC  CAC -))K CC - 2A(BC - ABC + C(AC -  KC3A  K2(AC- =

dK
(CPP)d 

 
(17) 

 

Substituting different components including A, B, 
C, C1, C2, and K̂  in this equation shows that the 
sign of the second derivative of CPP is always 
positive, and hence, the K̂ values are the minima. 
As these values are real numbers, using the nearest 
integer number in them leads to the optimum 
number of trucks (K*) in terms of the unit cost. 

3.2.2. Emissions per production 
In order to find the K values for the minimum 

EPP (Eq. 4), the derivative of this expression with 
respect to K is set to zero as follows: 

0 =
 C) +BK  +µCAP(AK

)CI  -  (BI +K 2AI + KAI
=

dK
d(EPP)

22
TLL

2
T

 
(18) 

Therefore, 

AITK2 + 2AILK + (BIL - CIT) = 0  

T

2
TLT

2
LL

I -
)I ( (C/A)+)I )(I (B/A)(-)(I±I

  =K̂

 
(19

) 

This equation is similar to that for CPP, except 
that C1 and C2 are replaced with IL and IT, 
respectively. As discussed in Section 4.2.1., the 
stationary values for K̂  are the minima; thus by 
substituting A, B, and C in this equation, the K̂  
values for the minimum EPP can be calculated for 
different operations.   

Table 3 compares the K̂  values for the 
minimum EPP with those from minimum CPP for 
ρ values equal to 0.055, 0.09, 0.15, 0.26, and 0.5. 
The optimum numbers of trucks for the minimum 
CPP and minimum EPP are also compared in Table 
3.  
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Table 3. Optimum number of trucks for the minimum CPP and EPP. 

Region ρ K̂  K* 
CPP EPP CPP EPP 

  ≤ 0.06 0.055 17.71 17.69 18 18 
0.06 <   ≤ 0.11 0.09 10.63 10.59 11 11 
0.11 <   ≤ 0.25 0.15 6.27 6.22 6 6 
0.25 <   ≤ 0.72 0.26 3.76 3.66 4 4 
0.25 <   ≤ 0.72 0.5 2.22 2.13 2 2 

K̂ = Stationary points                  K*= Optimum K  
 

According to Table 3, the optimum numbers of 
trucks for CPP and EPP are the same. However, 
there are some contradictions. For example, 
assume an earthmoving operation with ρ = 0.21 
(1/λ = 203, 1/µ = 960), and CT= $150; other 
characteristics are the same as the case study. 
Using the relevant η equation, the K̂  values for 
the minimum CPP and EPP are 4.56 and 4.46, 
respectively. There is a small difference between 
these values but the nearest integer number to the 
former is 5, while it is 4 for the latter.   

Table 4 presents the values for CPP and 
CO2/production for a variety of fleet sizes in this 
example. As it can be seen, the difference between 
EPP for the 4 and 5 trucks is too small, while it is 
more significant for the 3 and 6 trucks. Similar 
results exist for EPP. Therefore, both values of K 
can be accepted as the optimum number of trucks. 

It may be interesting to find the values of the 
minimum CPP fleet size and minimum EPP fleet 
size based on the assumptions of this work.  
According to these assumptions, the minimum EPP 
fleet size can be estimated irrespective of the values 
of NL and NT, which may affect the optimum 
number of trucks in terms of emissions. Figure 9 
compares the minimum CPP fleet size with that for 
the minimum EPP fleet size using the best fit η 
function. 

 

Table 4. CO2 per production and CPP for different 
fleet sizes. 

K CO2/production (g/m3) CPP 
1 908.63 2.304 
2 856.66 1.844 
3 842.04 1.711 

4* 837.41 1.666 
5* 837.45 1.663 
6 846.21 1.723 
7 872.82 1.897 
8 908.63 2.087 

 
As illustrated, the K̂  values in terms of cost and 

emission match in the most regions of 0.03 ≤ ρ ≤ 
0.72.  It can be said that the minimum CPP fleet 
size coincides with that for the minimum EPP. 
However, the real values are compared in Figure 9, 
while the natural numbers should be used for the 
truck fleet size (for example, using the best fit η 
function method in an earthmoving operation with 
ρ = 0.4 (the other parameters are kept the same as 
the case study), the optima are about 3 and 2 trucks 
in terms of cost and emissions, respectively, while 
the queue theory gives the optimum of 3 for both 
of them). Therefore, the optima might be different 
for the minimum unit emissions and minimum unit 
cost, as shown in Figure 10. The CPP and EPP 
values are too close for different optima. 
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Figure 9. Comparing K̂  values in terms of unit cost and 

unit emissions. 
Figure 10. Comparing K* values in terms of unit cost and 

unit emissions. 

Table 5 compares the optimal fleet sizes (K* 
values) for the minimum CPP and minimum EPP. 
The ρ values are selected from four different 
regions of ρ. As it can be seen, the optima are the 
same for CPP and EPP.   

This paper addresses the operational costs and 
emissions for the existing equipment and 
earthmoving set-up.  However, the parameters such 
as the introduction of new technology or modifying 
existing equipment to bring about lower 
emissions,  equipment age, operator ability, 
reconfiguring operations to get absolute minimum 
emissions (such as the super-elevating haul road 
bends) were not studied in this research work. 
However, based on the analysis given in this thesis, 

the coincident unit cost and unit emission solutions 
will be reached irrespective of the equipment age, 
operator ability, reconfigurations or any equipment 
technology modifications; all such practices do is 
to increase/decrease the absolute emissions but do 
not alter the coincident result; they can be 
confirmed in the future studies. The operator skill 
and engine performance will affect the fuel use, 
and hence, emissions.  If the purpose of the study 
is to focus on emissions, it is suggested that, rather 
than measuring the fuel use as done in this paper 
and estimating the emissions based on that, 
portable emission measurement systems (PEMS) 
could be equipped to the trucks to measure the 
actual emissions. 

Table 5. Optimum number of trucks for CPP and EPP. 

ρ K̂  K* 
CPP EPP CPP EPP 

0.06 16.10 16.07 16 16 
0.11 8.64 8.60 9 9 
0.22 4.27 4.19 4 4 
0.33 2.97 2.88 3 3 
0.66 1.90 1.79 2 2 

K̂ : Value of K satisfying the first derivative of CPP and EPP equal to zero (stationary value) 
K*= Optimum K  

4. Conclusions 
In this paper, we discussed the optimum cost and 

emissions units in the earthmoving operations 
using the linear and non-linear η functions in order 
to determine whether the optimum fleet size based 
on emissions coincides with that for cost. The finite 
source queuing theory was used for this analysis, 
and a model was developed to estimate the idle and 
non-idle emissions. A case study of the 
earthmoving operations was evaluated for the 
effects of varying truck fleet sizes on the cost and 
EPP. The sensitivity analysis was undertaken by 

doubling the loading and back-cycle times to 
demonstrate that the optimum fleet size in terms of 
the minimum unit cost coincides with that for the 
minimum unit emissions irrespective of the design 
parameters. 

The undertaken linear server utilisations analyses 
for the under-trucked and over-trucked scenarios 
show that increasing the fleet size decreases the 
cost and EPP in the under-trucked case and 
increases the cost and EPP in the over-trucked case. 
It means that there is an optimal truck fleet size 
based on the unit emissions and the unit cost in the 
transition between an operation being under-
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trucked and over-trucked. The optima take place 
approximately in the intersection of the two linear 
η functions. Finally, the undertaken analytical 
analysis using the non-linear η functions showed 
that the optimum number of trucks in terms of 
emission coincided with that in terms of cost, 
independent of any specific case study numbers. 
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  چکیده:

صورت می ساس حداقل هزینه  شی از انفجار و خاك بر ا شت مواد معدنی نا ها بر پذیرد. امروزه، با در نظر گرفتن تاثیرات مخرب آلایندهغالباً طراحی تجهیزات بردا
وان در نظر تهاي مدیریتی مختلفی براي کاهش میزان آلودگی میباشد. استراتژيها میگونه فعالیتکاهش میزان آلودگی ناشی اینمحیط زیست، تلاش عمومی بر 

ــی که باعث کاهش میزان هزینه ــود، در الویت قرار میگرفت، اما در این میان روش ــی هزینه و آلایندگی مربوط هاي عملیاتی نیز ش ه بگیرد. هدف این مقاله بررس
شت مواد معدنی با دیدگاه عملیاتی می شد. در این تحقیق از تئوري تجهیزات بردا شین آلات از نظر هزینه  صفبا شان دادن همزمانی میزان تعداد بهینه ما براي ن

ن داده شود بهره گرفته شده است تا نشاتوزیع خطی و غیر خطی بهینه بر تولید و همچنین آلایندگی بهینه بر تولید بهره گرفته شده است. در این تحقیق از توابع 
هد که دو هزینه شده و همچنین نشان میآلایندگی باشد. نتایج این تحقیق باعث ایجاد درك بهتري از روابط بین حالت بهینه مستقل از شرایط اجرایی خاص می

سائل م شتر از میزان بهینه، چگونه بر روي م ست در فعالیتشرایط کاري با تعداد کامیون کمتر و یا بی شت مواد معدیزان تولید و آلودگی محیط زی نی و هاي بردا
  گذارد.برداري تاثیر میخاك

  کامیون، معدنکاري سطحی، تعداد بهینه کامیون، آلایندگی، هزینه. -برداشت مواد معدنی، عملیات لودر  کلمات کلیدي:
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