
Journal of Mining and Environment (JME), Vol. 11, No. 4, 2020, 1173-1190 

 Corresponding author: bashir.shokouh@gmail.com (B. Shokouh Saljoughi).

Shahrood 
University of 
Technology

Iranian Society 
of Mining 

Engineering 
(IRSME) 

Journal of Mining and Environment (JME) 

journal homepage: www.jme.shahroodut.ac.ir 

Delineation of Alteration Zones Based on Wavelet Neural Network (WNN) 
and Concentration–Volume (C-V) Fractal Methods in the Hypogene Zone 
of Porphyry Copper Deposit, Shahr-e-Babak District, SE Iran 

Bashir Shokouh Saljoughi* and Ardeshir Hezarkhani

Department of Mining and Metallurgy Engineering, Amirkabir University of technology, Tehran, Iran

Article Info Abstract 

Received 18 September 2020 
Received in Revised form 8 
October 2020 
Accepted 10 October 2020 
Published online 8 November 
2020 

DOI:10.22044/jme.2020.10079.1944 

In this paper, we aim to achieve two specific objectives. The first one is to examine 
the applicability of wavelet neural network (WNN) technique in ore grade estimation, 
which is based on integration between wavelet theory and Artificial Neural Network 
(ANN). Different wavelets are applied as activation functions to estimate Cu grade of 
borehole data in the hypogene zone of porphyry ore deposit, Shahr-e-Babak district, 
SE Iran. WNN parameters such as dilation and translation are fixed and only the 
weights of the network are optimized during its learning process. The efficacy of this 
type of network in function learning and estimation is compared with Ordinary Kriging 
(OK). Secondly, we aim to delineate the potassic and phyllic alteration regions in the 
hypogene zone of Cu porphyry deposit based on the estimation obtained of WNN and 
OK methods, and utilize Concentration–Volume (C–V) fractal model. In this regard, 
at first C–V log–log plots are generated based on the results of OK and WNN. The 
plots then are used to determine the Cu threshold values of the alteration zones. To 
investigate the correlation between geological model and C-V fractal results, the log 
ratio matrix is applied. The results showed that, Cu values less than 1.1% from WNN 
have more overlapped voxels with phyllic alteration zone by overall accuracy (OA) of 
0.74. Spatial correlation between the potassic alteration zones resulted from 3D 
geological modeling and high concentration zones in C-V fractal model showed that 
the alteration zone has Cu values between 1.1% and 2.2% with OA of 0.72 and finally 
have an appropriate overlap with Cu values greater than 2.2% with OA of 0.7. 
Generally, the results showed that the WNN (Morlet activation function) with OA 
greater than OK can be can be a suitable and robust tool for quantitative modeling of 
alteration zones, instead of qualitative methods.  
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1. Introduction
The lateral and vertical grade variability is

affected by various factors including rock type and 
alteration variations [1, 2]. Therefore, delineating 
the different alteration patterns and investigating 
their spatial variability are important tasks for 
mining engineers and geologists and play a 
significant role in grade distribution within 
porphyry ore deposits [3, 4]. In the recent decades, 
several methods and techniques have been utilized 
to delineate alteration zones in hydrothermal 
deposits. Some of these methods include: (1) 
geological investigations based on the 

mineralogical and petrographical assemblages of 
minerals, (2) geochemical methods based on the 
thin sections, X-Ray Diffraction (XRD), Electron 
Probe Micro Analyzer (EPMA), Scanning Electron 
Microscopy (SEM) and Portable Infrared Mineral 
Analyzer (PIMA), (3) based on  the studies of fluid 
inclusions in the porphyry deposits and, (4) based 
on the investigation of the isotope value variations 
in different zones of the porphyry deposits [5-12]. 

Despite the great functionality and excellent 
efficiency of the mentioned methods, ore grade 
variability has not been considered widely, even 
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though, as a significant matter, the porphyry 
deposits have shown zonation based on the grade 
variations in the ore elements [4, 13]. On the other 
hands, taking the ore element grade values into 
account will lead to a better geological 
interpretation of the delineation alteration patterns 
and the spatial variability of them. According to the 
high importance of the grade in the quantitative 
modeling, the choice of the appropriate estimation 
method is very critical as the methods including 
fractal and multi-fractal and, especially the C–V 
modeling depend on the concentration [14]. In the 
last three decades, several methods such as 
geostatistical [15-17], fractal and multi-fractal [13] 
[18- 26] and, different types of ANNs techniques 
[27-32] have been used in modeling the spatial 
variability and distributions of the uncertain 
surveyed data. 

In this paper, wavelet neural network (WNN) 
combining the properties of the wavelet transform 
and the advantages of ANNs and Ordinary Kriging 
(OK) are applied to estimate cu grade in a 
hypogene zone. After the comparison of obtained 
results, WNN and C-V fractal modeling are used to 

delineate the alteration regions in the hypogene 
zone of the porphyry ore deposit in Shahr-e-Babak 
district, SE  of Iran. 

2. Study area  
There are many structural and lithotectonical 

zones in Iran [33] that generally are divided into the 
following categories: i) Zagros, ii) Sanandaj-
Sirjan, iii) Sahand-Bazman, iv) Central Iran, v) 
Alborz, vi) Kope Dagh, vii) Lut block, vii) Makran, 
and, ix) the East- Iranian suture zone. The 
Urumieh-Dokhtar Magmatic orogenic zone which 
formed as a result of subduction of the Arabian 
plate beneath central Iran during the Alpine 
orogeny, hosts all known Iranian porphyry copper 
mineralizations (Figure 1) such as Sar-Cheshmeh 
and Sungun deposits [33]. The study area is 
positioned in 45 km NE of the Shahr-Babak area 
and 85 km NW of the Sar Cheshmeh porphyry 
copper deposit in Kerman province, Iran (Figure 
1). This deposit is located at latitudes 30°10' 27" 
and 29º 56' 55" N, and longitudes 55º 10' 8" and 
55º 52' 28" E [34].  

 
Figure1. The structural and geological map of the case study in the Shahr-e-Babak district, SE Iran. 

It is a quartz diorite-related deposit. Ore in case 
study is fungi-form with 350400 m dimensions 
and its upper part consists of oxide-zone and 
supergene-zone (mostly chalcocite). The Razak 
volcanic complex is the main host rock of the 
deposit [34].The complex is divided into three 
main units: (i) lower part mainly consist of mafic 
sub-complex (trachybasalt, andesite and 
trachyandesite); (ii) a middle felsic sub-complex 
(tuff); and (iii) an upper mafic sub-complex 
(trachyandesite and andesite– basalt). The oldest 
units in the area (Figure 1) are Cenomanian – 

Turonian calcareous flysch that covered by Eocene 
flysch. From bottom to top the porphyry system 
comprises three distinct Cu reservoirs: (1) the 
hypogene zone contains primary high-temperature 
sulfides (mixtures of chalcopyrite and pyrite) and 
disseminated blebs of magnetite and anhydrite. The 
occurrence of quartz–chalcopyrite–pyrite veins 
and veinlets indicates intense stockwork 
mineralization in the potassic zone. Pyrite is the 
most abundant hypogene sulfide in sericitic 
alteration and is followed by chalcopyrite. (2) The 
supergene enrichment zone is characterized by 
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chalcocite and digenite stockwork veins and 
veinlets. Chalcopyrite and pyrite are completely or 
partially replaced by chalcocite, digenite, and 
covellite. Supergene sulfides also occur 
interstitially to supergene pyrite grains. (3) The 
leached cap contains residual malachite, 
chalcanthite, native copper and Fe oxides/ sulfate 
(e.g., jarosite, goethite, and hematite) produced by 
weathering of pyrite and chalcopyrite. The cap 
locally overlies the supergene sulfide enrichment 
zone and has a reddish color. Turquoise veins are 
surprisingly abundant in this zone and occur at 
shallow depths and along fractures extending 
deeper [34]. 

 According to, detailed studies of the 
mineralogy/petrography, and, chemistry of a large 
number of drill cores and outcrop samples from 
various parts of the intrusive, four hypogene 
alteration zones are distinguished at the deposit, 
which include potassic, transition (sodic-potassic), 
phyllic, and Propylitic. Potassic alteration is the 
earliest alteration with potassic mineral 
assemblages and pervasive intense development 
formed as halos around deep veinlet systems. It is 
consists of K-feldspar, crystals of Mg-enriched 
secondary biotite, and anhydrite. The propylitic 
alteration has a thickness about 400 m and main 
minerals are ubiquitous epidote, chlorite (± pyrite 
± calcite) and plagioclase. The transition alteration 
is located in the central part of cupola and large 
zone of sodic alteration is overprinted on potassic 
alteration. The phyllic alteration is typically low 
grade and contains chalcopyrite ± pyrite ± quartz 
veins except for intervals within ca. 100–250 m 
[34]. 

 

 

3. Borehole dataset 
The borehole dataset plays an important role in 

geoscience investigations in both mineral 
exploration and grade estimation. A total of 153 
boreholes were drilled in the study area in which, 
49 of them belonged to the pre-drilled boreholes 
(MD series) with a total length of 26,961 m, 100 
boreholes were related to MDK series boreholes 
with a total length of 33642 m and 4 boreholes 
associated with MDK-RC series boreholes with a 
total length 1300 m (Figure 2). The dataset 
included the collars, lithology, down-hole survey, 
and assay. The other acquired data for the study 
were zone, alteration, mineral and recovery. These 
samples with 2 m composites were analyzed by 
ICP-MS method for 44 elements at Zarazma 
laboratory, Tehran. Based on mineralogical, 
geological and geochemical results, it was found 
that the case study was favorable for the 
mineralization of Cu. The data was validated and 
subjected to statistical analysis. The histogram and 
descriptive statistics of the copper grades from 
15952 samples in the hypogene zone of the case 
study are displayed in Figure 3 and Table 1. The 
statistical parameters of Cu grade based on the 
lithology and alteration in the hypogene zone of the 
case study are also shown in Table 2. Accordingly, 
three lithology units consist of quartz-diorite, 
andesite and quartz-diorite dyke and three 
alteration zones composed of phyllic, potassic and 
propylitic accounted for more than 94% of the data 
length. The Cu regionalized variable was modeled 
by a second-order stationary random function. 
There was no trend of Cu concentration in any 
directions; this means that Cu concentration does 
not depend on the coordinates of the samples 
(Figure 4 (a-c)). Consequently, assumptions of the 
stationary are tenable. 

  
Figure 2. Borehole location map of the studied Cu 

porphyry deposit 
Figure 3. Histogram of the Cu raw data in the 

hypogene zone. 
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Table 1. Statistical parameters of the Cu element in the boreholes (raw data) 
Variable DL** (ppm) Accuracy Length* (m) Mean Min. Max. StD*** Variance Skewness 
Cu (%) 1 1 15952 0.643 0.001 4.8 0.480 0.231 1.011 

* Some samples are removed from the study due to low value under the detection limit. 
** Detection Limit 
*** Standard Deviation 

 
Figure 4. Variability of the Cu concentration in (a) east–west direction, (b) north–south direction and (c) depth 

within the hypogene zone 

Table 2. Statistical parameters of the Cu grade based on the lithology and alteration in the hypogene zone. 
Cu (%) Length (%) Length (m)   Mean Maximum Minimum 

0.56 3 0.0012 15.32 4968.35 ANS 

Rock type 

0.83 1.45 0.02 0.513 166.5 ANS_QDI 
0.52 1.05 0.95 0.565 183.35 CLS 
0.02 0.06 0.01 0.043 14.2 DIA_D 
0.28 0.93 0.08 0.176 57.3 DIO_D 
1.039 2.75 0.28 2.65 861.4 GRD 
0.9 2.45 0.05 1.89 613.8 NBX 
0.63 4.8 0.001 72.26 23427 QDI 
0.88 1.6 0.0.7 0.27 88.3 QDI_ANS 
0.85 3.1 0.0325 3.88 1260.9 QDI_D 
0.53 1.44 0.09 0.224 72.75 QDI_GRD 
0.12 2.16 0.002 1.80 584.75 TUF 
0.60 1.36 0.02 0.37 120.3 BLANK 
0.01 0.01 0.01 0.01 6 ARG 

Alteration 
type 

- - - 0.03 12.3 CLS 
2.45 1.08 0.02 1.82 590.05 NA 
4.04 0.31 0.001 33.71 10930.5 PHY 
4.8 0.81 0 58.67 19021.55 POT 
0.6 0.13 0.01 0.42 137.6 PRP 
1.62 0.56 0.12 0.07 23.75 SER 
0.12 0.05 0.02 0.05 17 UNA 
2.35 0.71 0.02 5.18 1680.15 BLANK 
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4. Methods 
In order to avoid increasing the volume of the 

article, the basics and principles of the methods 
used are not mentioned and the reader can refer to 
[35-40] to study the basics of OK method and [14, 
26] for  C-V fractal method. Here, only the WNN 
method is described 

4.1. Wavelet Neural Networks (WNNs) 
In the last decade, WNN has been considered as 

an alternative approach instead of ANN systems in 
many applications, since interpretation of the 
model with neural net is very difficult. The starting 
point of WNNs can be found in the work by 
Daugman [41] in which Gabor wavelets were used 
for image segmentation and then, Zhang and 
Benveniste (1992), Pati and Krishnaprasad (1993) 
have been developed these networks. Wavelet 
neural network systems typically approach grade 
variance and distribution as complex functions in 
space, approached by their various components. 
WNN combines the properties of the wavelet 
theory and the capabilities (i.e. pattern recognition, 
learning and memorization) of ANNs. They have 
attracted great interest in various fields of 
mathematics and engineering. The advantage of the 
WNN on the neural network is that training 
algorithms for WNN requires a smaller number of 
iterations compared to neural network and WNN 
use a wavelet as an activation function, instead of 
the classic sigmoidal family. In contrast to classical 
ANNs, WNs allow for constructive procedures that 

efficiently initialize the parameters of the network 
[42-44]. 

4.1.1. Structure of a wavelet network 

The WNN presented in this study for ore grade 
estimation has a three-layer structure. The lower 
layer represents the input layer, the middle layer is 
the hidden layer and the upper layer is the output 
layer. In the input layer the explanatory variables 
are introduced to the WN. The hidden layer 
consists of the hidden units (HUs) or wavelons. In 
this layer the input variables are transformed to 
dilated and translated version of the mother 
wavelet. Finally, in the output layer the 
approximation of the target values is estimated. 
The structure of the WNN is shown in Figure 5. 
The network output is given by the Equation (1): 

n

M L

i n ij a,b jk k
j 0 k 0

xn

y(t) (x ) w x (t) (i 1,2,..., N)

1(x ) (1 e )

 



  
        

  

 


   
(1) 

 is the mother wavelet; yi denotes the ith 
component of the output vector; xk is the kth 
component of the input vector; vij is the connection 
weight between the output unit i and the hidden 
unit j; wjk denotes the weight between the hidden 
unit j and input unit k; aj and bj are dilation and 
translation coefficient of wavelons in hidden layer 
respectively; L; M; N indicates the sum of input, 
hidden and output nodes respectively [42]. 

 
Figure 5. The structure of WNN network composed of one input layers, one hidden layer with wavelet activation 

function and one output layer [42] 
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4.1.2. Initialization of the parameters of the 
network 

Choosing initial values of the network 
parameters is critical since random initialization 
affects the speed of training and may lead to a local 
minimum of the loss function. In other words, 
efficient initialization lead to less iterations in the 
training phase of the network and avoid of local 
minimums of the loss function in the training 
phase. In the past decades, different methods have 
been presented for efficient initialization of the 
wavelet parameters. In this study, Zhang and 

Benveniste [45] methods has been employed for 
the initialization of translation and dilation 
parameters by Equations (2) - (3): 

jk k ka 0.2(p q )   (2) 

jk k kb 0.5(p q )   (3) 

where pk and qk are defined as the maximum and 
minimum of input xi. In the Figure 6 the mother 
wavelets accompanied by their daughters are 
illustrated that are created using mentioned method 
[44, 70]. 

 
Figure 6. Different samples of mother wavelets with their daughters [42]. 

4.1.3. Training algorithm 
After the initialization phase, the network is 

further trained in order to find the weights (w,v), 
translation (a), and dilation (b) which minimize the 
cost function. The main aim is to update the 
parameters during the training step. The cost 
function can be written as Equation (4) [42]: 

P N
p p 2
i i

p 1 i 1

1E (d y )
2  

   (4) 

whre the p
id is as the ith desired target output of 

pth input pattern. According to the above-
mentioned reasoning based on the Scaled 
Conjugate Gradient (SCG) algorithm, and 
Levenberg–Marquardt (L-M) the training 
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algorithm is applied. The training algorithm 
diagram is shown in Figure 7. 

4.1.4. Stopping Conditions for Training  

Parameters of the WNN are training during the 
learning phase for approximation. The desired 

function Scaled Conjugate Gradient and 
Levenberg–Marquardt methods have been applied 
for adjustable parameters. When variation of 
gradient and parameters reaches a lower bound or 
the number of iterations reaches a fixed maximum, 
training is stopped [42]. 

 
Figure 7. Learning algorithm for WNN. 

5. Result and Discussion 
5.1. Results of Ordinary Kriging (OK) 

Here, the described data in Section 3 here is used 
to estimate the Cu grade. However, prior to the 
kriging calculations, it is necessary to carry out a 
series of data pre-processing. The first step is to 
determine and correct the outlier values. These 
values dramatically impact the statistical analysis 
and results interpretation. 

High-grade values as outliers, are able to 
transform a mineral occurrence into an economic 
mineral deposit and may be sufficient to justify the 
development of a mining project [46, 47]. There 
are several ways to deal with the effects of the 
outlier values and control them. In this paper, the 

box plot method is applied to remove outliers [48]. 
Another important issue in data preprocessing is 
the composite. In the other hand, it is very 
important to work with equal support (volume) 
samples [49]. In this study, the data for the analysis 
of Shahr-e-Babak resource by using the OK are 
divided into 2 m composites. According to the 
composite length, the lowest loss length is obtained 
while, the Cu grade and variance of Cu are similar 
to the original data. 

Data variography for OK is the next step after the 
data preprocessing. Given the spatial variability 
and randomness, the variogram function can reflect 
the structure of spatial variability of a regionalized 
variable. The best way to describe spatial 
dependencies in the process of stationary is 
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covariance variogram. An omnidirectional semi-
variogram of raw data along azimuth of 00°, 
Plunge of 00°, spread of 90°, and lag spacing of 60 
m follows a spherical model with a nugget effect of 
0.052 (%)2which reaches to a sill of 0.168 (%)2 at 
a range of 410 m (Figure 8-a). To investigate 
anisotropy, directional semi-variograms were 
thereafter calculated and modelled with different 
directions with 30° horizontal angular increments, 
15° horizontal angular tolerance, 30° vertical 

angular increments and, 15° vertical angular 
tolerance in the hypogene zone of the porphyry ore 
deposit. The ore deposit has anisotropy because 
most of the variograms have different ranges. The 
main directions resulted from variography for 3 
main directions of the search ellipsoid are 
presented in Figure 8. (b)- (d). The directional 
semi-variogram model parameters are shown in 
Table. 3.  

  
(a) (b) 

  
(c) (d) 

Figure 8. Experimental semi-variogram and appropriate fitted model of the (a) omnidirectional semi-variograms 
and (b) directional semi-variograms with Azimuth=0; Dip = 0 (c) directional semi-variograms with Azimuth=90; 

Dip = 30 (d) directional semi-variograms with Azimuth=270; Dip = 60 for 3 main directions of the search 
ellipsoid in the hypogene zone of porphyry ore deposit. 

Table.3. directional Semi-variogram Parameters for 3 main directions of search ellipsoid in the hypogene zone of 
the porphyry ore deposit 

Variogram model Azimuth Dip nugget effect (%)2 Range (m) Threshold (%)2 

Spherical 0 0 0.043 287 0.192 
Spherical 90 30 0.043 394 0.192 
Spherical 270 60 0.043 421 0.192 

 
The cross-validation method is used to validate 

the fitted model to the variogram of the hypogene 
zone. The correlation coefficient of the estimated 
values and actual values was partially acceptable 
and about 91%. Then, a block model was generated 

from the ore body wireframe model using the block 
model tool in Data mine software. The parent cell 
size of 15  15  10 m corresponds to 
approximately one half the average drill hole 
spacing along strike, average mining width of the 
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deposit across strike and the likely mining bench 
height (10 m) in the vertical dimension 
respectively. Data search criteria employed took 
into account clustering of the local data, the 
geometry and continuity of local grade. The 
estimation and 3D modeling process are 
commenced from the elevation of 1300 m to 2700 
m above the sea level in the mine. It also began 
from 3000 to 5010 m in the east direction and from 
6500 to 7700 m in the north direction. The 3D 

model of the Cu grade by OK in the Cu copper 
deposit is shown in Figure9. 

OK block models were validated to assess the 
accuracy of grade. Cross sectional views of color 
coded drill-hole composites were superimposed on 
similarly colour-coded block grades [17]. The best 
block model was the one whose colour codes 
compared closest to those of the sample grades. 
The obtained result are very suitable. 

 
Figure 9. 3D model of the Cu concentration estimation by OK. 

5.2. Results of wavelet Neural Networks (WNN) 

In this study, a nonlinear WNN method is applied 
to estimate the Cu grade based on the borehole 
dataset. To obtain this aim, the below steps are 
followed: 

5.2.1. Sample data acquisition 

A sufficient amount of data is needed for ore 
grade estimation in train, validation, and test steps 
in WNN. In this paper, data on the porphyry copper 
deposit has been used. According to available 
reports, the deposit is non-homogeneous. The 
grades given are the actual grades of the boreholes. 
This dataset will be used to train and validation 
WNNs. The center points of cubes of dimension 15 
m×15 m×10 m will be used to test. 

5.2.2. Data preparation 

The data pre-processing which is applied to train 
and validate the WNN topologies is discussed after 
the selection of the source data deposits. At the first 
stage of the modeling, the data is normalized which 
helps to scale the inputs and output and 
consequently leads to a better prediction. Scaling 
the inputs and output before applying ANN is very 
important. The main advantage is to avoid 
attributes in greater numeric ranges dominating 

those in smaller numeric ranges. Another 
advantage is to avoid numerical difficulties during 
the calculation [20]. To normalize the data, 
different methods have been developed to improve 
the network training. In this study the input and 
output data are normalized by Equation (5). 

min
norm

max min

x xX
x x





 (5) 

where x is the data which should be normalized, 
and xmax and xmin are the maximum and minimum 
of the original data, respectively. Moreover, Xnorm 
is the transformed normalized data [50-52].  

Divisionism as one of the most important issues 
would lead to inaccurate and illogical results if has 
not been considered properly. WNN’s data are 
divided into three groups: 1) Training data: the 
obvious characteristic of this group is that they are 
definite and clear and are used during training 
process. 2) Test data: the characteristic of these 
data is that their target is not clear and they are used 
after training process.3) Validation data: they are 
used to avoid over fitting, are not definite and are 
also used during training process. In this paper, all 
of the available datasets were divided randomly 
into three distinct subsets consisting of the training 
(70%), validation (15%) and testing (15%).  
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5.2.3. Performance of WNN 
There are different error metrics to evaluate the 

accuracy of models, including coefficient of 
determination (R2), EI, RMSE, mean bias error 
(MBE). In addition to these indices, persistence 
index (PI) and extrapolation index (EXI) are also 
included [53]. All selected indices (except the 
mean bias error and coefficient of extrapolation) 
also can be found in Crochemore et al. [54], which 
summarizes various error metrics for evaluating 
modeled hydrograph. The coefficient of 
determination (R2), RMSE and Mean Absolute 
Error (MAE) were used in this study. R2 measures 
the degree of correlation between the observed and 
the predicted values. A model’s strength is 
measured by R2 through developing a relationship 
between the input and output variables. The values 
of R2 range from 0 to 1, in which 1 indicates a 
perfect fit between the data and the line drawn 
through them, and 0 represents no statistical 
correlation between the data and the line. R2 is 
calculated by Equation (6) [55]: 

N
2

k k
2 k 1

N
2

k k
k 1

(t y )
R 1

(t t )






 






 (6) 

where tk and yk are target and network outputs for 
the kth output, respectively; kt  is the average of the 
targets and N is the total number of the considered 
events. 

The root mean square error (RMSE) indicates the 
discrepancy between the observed and the 
calculated values. The lower the RMSE, the more 
accurate is the prediction and is given by Equation 
(7) [55]: 

N
2

i i
i 1

(y y )
RMSE

N






 
(7) 

where yi is the observed data, iy  is the calculated 
data and, N is the number of the observations. A 
perfect fit between observed and forecasted values 
has an RMSE of 0. The best fit between observed 
and calculated values1, which is unlikely to occur, 
would have R2 as 1 and RMSE as 0. 

Mean Absolute Error (MAE) is as Eq. (8): 
N

i i
i 1

1MAE y y
N 

   (8) 

5.2.4. Modeling of WNN 

All the mentioned properties such as data 
selection, pre-processing and WNN’s parameters, 
were selected and considered for the modeling. In 
contrast, standard feed forward neural networks 
which in the activation function of hidden layer 
neurons is a sigmoid function in order to increase 
their performance generality, activation functions 
are substituted with different daughter wavelet 
functions to create various WNNs. Different 
wavelet function formulas are shown as activation 
functions in Table. 4. Table.5 summarized the 
results obtained from data the neural network 
adaptive wavelet (WNN) model. 

The numbers of hidden layers and neurons were 
selected by a number of repeated trials and 
estimated errors in this study. According to Table. 
5the optimal results were obtained when one 
hidden layer with 5 neurons with Morlet activation 
function was used for training which have the 
smallest RMSE and grater R2 compared compared 
to other activation networks. The number of 
inputted neurons corresponds to the three inputted 
i.e. x coordinate, y coordinate and z coordinate. 
The output layer has one neurons corresponding to 
the Cu grades. The WNN, when combined with the 
architecture and the saved weights, and evaluate 
with validation data can be used to predict the test 
points. Figure10 show the 3D model of the Cu 
grade by WNN in the Cu copper deposit.  

 
Figure 10. 3D model of the Cu concentration 

estimation by WNN. 
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Table.4. Proposed wavelets for the application in WNN 

Case 
number Name h() 
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Table.5. Results of the observed and predicted data obtained from the WNN. The best obtained network is in 
bold. 

Determination 
Coefficient (R2) MAE RMSE Number 

of 
Neurons 

Wavelet 
name Number 

validation test Train validation test Train validation test Train 
0.83 0.86 0.71 5.46 5.73 5.20 7.25 7.481 6.21 6 Shannon 1 
0.87 0.82 0.95 5.39 5.83 2.29 5.73 6.21 4.08 7 Mexican hat 2 
0.92 0.96 0.84 2.14 3.10 1.53 3.22 3.75 3.31 5 Morlet 3 
0.67 0.64 0.62 4.25 4.98 5.98 6.43 5.76 8.34 8 POLYWOG1 4 
0.88 0.81 0.76 3.67 3.22 3.53 5.68 4.26 7.29 5 POLWOG2 5 
0.53 0.56 0.63 5.44 5.23 5.98 6.21 6.46 7.97 7 POLYWOG3 6 
0.61 0.55 0.75 3.16 4.9 8.15 5.14 6.54 2.24 8 POLYWOG4 7 
0.79 0.60 0.83 5.95 5.03 3.72 6.23 6.18 5.49 6 POLYYOG5 8 
0.78 0.68 0.79 4.98 5.11 3.45 5.86 5.56 5.96 4 SLOG1 9 
0.72 0.68 0.72 4.75 4.83 4.18 5.31 5.73 6.57 9 SLOG2 10 
0.58 0.58 0.66 5.42 5.17 5.46 6.32 6.98 7.72 8 RASP1 11 
0.77 0.67 0.75 4.13 4.47 3.98 5.43 5.67 5.89 9 RASP2 12 
0.81 0.74 0.67 5.32 5.68 4.44 5.39 5.98 7.67 6 RASP3 13 

 
A comparison between two methods of WNN 

and OK showed that, both methods are able to 
estimate cu grade very well. Nevertheless, the 
WNN is faster and non-linear estimator. The 
advantage of the WNN method is that it does not 

require any pre-processing or need to carry out 
variogram operations. It also can be used for initial 
data without any special pre-processing however, 
OK algorithms smooth the data, and thus, their 
application in pre-processing of data for fractal 
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analysis is not suitable. In the next subsection, the 
results of the WNN are been used in the 
determination of alteration zones in the Shahr-e-
Babak porphyry copper deposit. 

5.3. Results of Concentration-Area (C-V) fractal 
model 

The C–V fractal model can be considered as a 
proper method to describe spatial distributions of 
different attributes (ore elements in this scenario) 
within the various ore bodies. Using the 3D model 

of Cu distribution obtained from OK and WNN in 
the porphyry ore deposit, the C–V log-log plot was 
calculated (Figure 11). The data pairs of the 
concentrations and volumes were projected to log–
log graphs and linear regression was applied to fit 
straight lines. The coefficient of determination R2 
(0 ≤ R2 ≤ 1) was calculated to evaluate the effect of 
linear regression. The regression line was 
determined via adjusting it to achieve the largest 
coefficient of determination. Consequently, two 
threshold values and three populations were 
obtained (Table. 6).  

  
(a) (b) 

Figure 11. C-V fractal log-log plots resulted from the (a) OK and (b) WNN modeling. 

Table. 6. Cu (%) threshold value obtained from the C-V plot 
Cu (%) threshold value (WNN) Cu (%) threshold value (OK) population 

0 Cu(%) < 1.1 0 Cu (%) < 1 Population 1 
1.1  Cu(%) < 2.5 1 Cu (%) < 2.2 Population 2 
2.5  Cu (%) < 2.8 2.2  Cu (%) < 2.4 Population 3 

 
5.4. Comparison between fractal and spatial 
alteration models  

In order to validate the results obtained through 
the C-V fractal modeling, the models are compared 
to the 3D alteration zone models of the Shahr-e-
Babak porphyry copper deposit’ zone comprising 
the phyllic and potassic zones (Figure 12). The 
models are generated by applying the Datamine 
studios software and the geological drill core data. 

To calculate spatial correlations between two 
binary models, especially mathematical and 
geological ones, logratio matrix can be applied. 
The comparison between C-V fractal model results 
and geological model of the alteration zones is 
carried out to obtain the number of overlapped 
voxels (A, B, C and D). Using the obtained 
numbers, Type I error (T1E), Type II error (T2E), 
and overall accuracy (OA) of different fractal 
populations are estimated for each one of the 
alteration zones.  

Alteration models have a key role in zone 
delineation and also in presenting geological 
models. Potassic alteration in Lowell and Guilbert 
[1] model hosts of high grade Cu mineralization 
and located in the central part of Cu porphyry 
deposits. Based on these models, phyllic alterations 
host major mineralization in supergene enrichment 
and hypogene zones. The first cu threshold is 1% 
in Ok estimation and 1.1% in WNN estimation, and 
values of <1% or 1.1% Cu refer to phyllic 
alteration. The second Cu threshold is 2.2% in Ok 
and 2.5 % in WNN, and values of >2.2 or 2.5 % Cu 
indicate potassic alteration. Results of C–V 
modeling of the porphyry ore deposit are compared 
to the 3D geological model of the deposit 
constructed by utilizing the Data mine v.3.24 
software. There is good correlation between both 
the geological and C–V fractal models for phyllic 
and potassic alterations. This was quantitatively 
proved by a matrix of number of overlapping 
voxels in the geological and C– v fractal models 
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(Figure 12, Table. 7 and Table.8). The result of 
matrix was shown that C-V Fractal model resulted 
from WNN has better correspondence with 
geological model.  

There is spatial coincidence between alteration 
zones defined by the C–V and WNN modeling and 
the zones defined by modeling of geological drill 

core data. The propylitic alteration derived via C–
V and WNN modeling occurs in marginal parts of 
the area which has good correlation with geological 
data in the case study. However, potassic alteration 
obtained by WNN and C–V modeling is situated in 
the central part of a study area which confirmed the 
geological data (Figure 12).  

 
Figure 12. Alteration zones in hypogene zone based of geological model: (a) potassic, and (b) phyllic alteration 

Table 7. OA, T1E and T2E resulted from Comparison between the Phyllic alteration zone in 3D geological model 
and threshold values of Cu in C–V fractal model resulted from Ok and WNN in hypogene zone. 

   Geological model    
   Inside zone  outside zone 

Fractal model Inside zone  True positive (A)  False positive (B) 
 Outside zone  False negative (C)  True negative (D) 
   Type I Error =  Type II Error = 
   C / (A +C)  B / (B + D) 
   Overall accuracy =(A + D) / (A + B + C + D) 
   Phyllic alteration of geological model 
   Inside zones  Outside zones 

C–V fractal model of 
Neural network 

(0<Cu<1) 

Inside zones  A 86630  B 103504 
Outside zones  C 2758  D 159362 

  T1E 0.03  T2E 0.39 
   OA 0.68    

C–V fractal model of 
Neural network 

(1≤Cu<2.2) 

Inside zones  A 864  B 32986 
Outside zones  C 18860  D 139085 

  T1E 0.95  T2E 0.19 
   OA 0.72    

C–V fractal model of 
Neural network 

(Cu2.2) 

Inside zones  A 0  B 9 
Outside zones  C 33290  D 216349 

  T1E 1  T2E 0.00004 
   OA 0.86    

C–V fractal model of 
Ordinary Kriging   

(0<Cu<1.1) 

Inside zones  A 75557  B 101203 
Outside zones  C 3758  D 139342 

  T1E 0.04  T2E 0.42 
   OA 0.67    

C–V fractal model of 
Ordinary Kriging 

(1.1≤Cu< 2.5) 

Inside zones  A 654  B 39986 
Outside zones  C 26860  D 139085 

  T1E 0.97  T2E 0.22 
   OA 0.67    

C–V fractal model of 
Ordinary Kriging 

(Cu2.5) 

Inside zones  A 0  B 7 
Outside zones  C 33289  D 183062 

  T1E 1  T2E 3.0.00001 
   OA 0.84    
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Table 8. OA, T1E and T2E resulted from Comparison between the potassic alteration zone in 3D geological 
model and threshold values of Cu in C–V fractal model resulted from Ok and WNN in hypogene zone. 

  Potassic alteration of geological model 
  Inside zones Outside zones 

C–V fractal model of 
Neural network 

(0<Cu<1) 

Inside zones A 21763 B 7523 

Outside zones C 81230 D 242282 

  T1E 0.78 T2E 0.03 
  OA 0.74   

C–V fractal model of 
Neural network 

(1≤Cu<2.2) 

Inside zones A 11647 B 2724 

Outside zones C 91231 D 228186 
  T1E 0.88 T2E 0.01 
  OA 0.72   

C–V fractal model of 
Neural network 

(Cu2.2) 

Inside zones A 17 B 8 

Outside zones C 101698 D 240789 

  T1E 0.99 T2E 0.0003 
  OA 0.7   

C–V fractal model of 
Ordinary Kriging 

(0<Cu<1.1) 

Inside zones A 12999 B 2433 

Outside zones C 95876 D 218492 
  T1E 0.88 T2E 0.01 
  OA 0.70   

C–V fractal model of 
Ordinary Kriging 

(1.1≤Cu< 2.5) 

Inside zones A 4245 B 1517 

Outside zones C 106421 D 229415 

  T1E 0.96 T2E 0.006 
  OA 0.68   

C–V fractal model of 
Ordinary Kriging 

(Cu2.5) 

Inside zones A 6 B 2 

Outside zones C 102871 D 240822 
  T1E 0.99 T2E 0.00001 
  OA 0.68   

 
6. Conclusions 

Modeling of alteration zones is one of the most 
important stage in mineral exploration Project. 
Alteration modeling is complicated and should be 
consistent with geological interpretation. 
Conventional modeling based on drill core logging 
is often descriptive along with uncertainty and lack 
of proper recognition of alteration zones. This type 
of modeling does not consider ore grades whereas 
ore grade is very important variable and there is an 
obvious correlation between alteration patterns and 
grade distribution. In the Other hands, spatial 
structure of alteration zones can be determined via 
ore grades. In this paper, a combination of Wavelet 
Neural Network (WNN) and Concentration–
Volume (C-V) fractal methods was used to 
delineate the alteration regions in the hypogene 
zone of porphyry ore deposit, Shahr-e-Babak 
district, SE Iran. At first, the applicability of 
wavelet neural network (WNN) technique for ore 
grade estimation was examined which is based on 
integration between wavelet theory and Artificial 
Neural Network (ANN). The outcome is compared 
with Ordinary Kriging (OK). Then, estimates 

obtained from WNN and OK to delineate the 
potassic and phyllic alteration regions in the 
hypogene zone of Cu porphyry deposit was used in 
Concentration–Volume (C–V) fractal model. 
According to correlation derived from log ratio 
matrix, which was used to compare between 
geological model and quantitative modeling 
obtained from C-V fractal model and WNN, was 
shown that Cu values less than 1.1% from WNN 
has more overlapped voxels with phyllic alteration 
zone by overall accuracy (OA) of 0.74. Spatial 
correlation between the potassic alteration zones 
resulted from 3D geological modeling and high 
concentration zones in C-V fractal model shows 
that the alteration zone has Cu values between 
1.1% and 2.2% with OA of 0.72 and finally have 
an appropriate overlap with Cu values greater than 
2.2% with OA of 0.7. Generally, the results showed 
that the wavelet network (WNN, Morlet) with OA 
greater than OK would be an appropriate substitute 
for determining alteration zones. 
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در  )C-V(حجم  -و فرکتال غلظت )WNN(هاي شبکه عصبی موجک هاي دگرسانی با روشسازي زونمشخص
  زون هیپوژن نهشته مس پورفیري، منطقه شهربابک، جنوب شرق ایران

  

  و اردشیر هزارخانی*بشیر شکوه سلجوقی

  بخش مهندسی معدن، دانشگاه صنعتی امیر کبیر تهران، ایران

  10/10/2020، پذیرش 18/09/2020ارسال 
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  چکیده:

در تخمین عیار کانه است  )WNN(در این مقاله، ما قصد داریم به دو هدف خاص دست یابیم. نخستین هدف، بررسی قابلیت کاربرد تکنیک شبکه عصبی موجک 
هاي گمانه سازي براي تخمین عیار مس دادههاي مختلف به عنوان توابع فعالاست. موجک )ANN(که مبتنی بر ترکیب نظریه موجک و شبکه عصبی مصنوعی 

هاي شبکه در مانند اتساع و انتقال ثابت بودند و تنها وزن WNNدر زون هیپوژن نهشته پورفیري، ناحیه شهربابک، جنوب شرق ایران بکار برده شد. پارامترهاي 
مقایسه شد. دوم، ما قصد داریم تا نواحی  )OK(طوا فرایند یادگیري بهینه شدند. کارایی این نوع شبکه در یادگیري تابع و تخمین با روش کریجینگ معمولی 

 -و با استفاده از مدل فرکتال غلظت OKو  WNNهاي دگرسانی پتاسیک و فیلیک را در زون هیپوژن نهشته مس پورفیري براساس تخمین بدست آمده از روش
تولید شد. نمودارها سپس براي تعیین مقادیر  WNNو  OKبراساس نتایج  C-Vلگاریتم  -مشخص نماییم. بدین منظور، در ابتدا نمودارهاي لگاریتم )C-V(حجم 

اي بکار برده شد. نتایج ماتریس لگاریتم ریشه C-Vشناسی و نتایج فرکتال هاي دگرسانی استفاده شدند. براي بررسی همبستگی بین مدل زمینآستانه مس زون
دارد. همبستگی  OA( 74/0(تري با زون دگرسانی فیلیک با صحت همپوشانی هاي همپوشانوکسل WNNدرصد روش  1/1نشان داد که مقادیر مس کمتر از 

حجم نشان داد که زون دگرسانی داراي  -هاي غلظت بالاي در مدل فرکتال غلظتشناسی سه بعدي و زونهاي دگرسانی پتاسیک مدلسازي زمینفضایی بین زون
دارد. به  7/0حدود  OAدرصد با  2/2است و در نهایت همپوشانی مناسبی با مقادیر مس بزرگتر از  72/0د حدو OAدرصد با  2/2درصد تا  1/1مقادیر مس بین 

هاي دگرسانی سازي کمی زونتواند ابزار مناسب و معتبرتري براي مدلمی OKبزرگتر از  OAسازي مورلت با با تابع فعال WNNطور کلی، نتایج نشان داد که 
  شند.هاي کیفی باجاي روشبه

  ، شهربابک.)WNN(، موجک، شبکه عصبی موجک C-V، مدل فرکتال )OK(هاي دگرسانی، کریجینگ معمولی زون کلمات کلیدي:
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