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 Over the past two decades, the frequency domain (FD) of the geochemical data has 
been studied by some researchers. Metal zoning is one of the challenging subjects in 
the mining exploration, where a new scenario has been proposed for solving this 
problem in FD. Three mineralization areas including the Dalli (Cu-Au), Zafarghand 
(Cu-Mo), and Tanurcheh (Au-Cu) mineralization areas are selected for this 
investigation. After transferring the surface geochemical data to FD, the geochemical 
signals obtained are filtered using the wavenumber-based filters. The high and 
moderate frequency signals are removed, and the residual signals are interpreted by 
the statistical method of principal component analysis (PCA). In order to discriminate 
the deep metal ore deposits, the principal factors of elemental power spectrum 
extracted by PCA are depicted in a novel diagram (PC1 vs. PC2). This approach 
indicates that the geochemical data in the Dalli and Zafarghand deep ore deposits have 
similar frequency behaviors. The Au, Mo, and Cu elements in these two areas are 
discriminated from the Au, Mo, and Cu mineralization elements of the Tanurcheh area 
as a deep non-mineralization zone in this diagram. This new criterion used for 
distinguishing the buried ore deposits and deep non-mineralization zones is properly 
confirmed by the exploratory deep drilled boreholes. The geochemical anomaly 
filtering demonstrates that the strong signatures of deep mineralization are associated 
with the low frequency geochemical signals at the surface, and the buried 
mineralization areas with weak surface anomaly can be identified using the 
geochemical FD data. 
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1. Introduction 
Interpretation of the geochemical data is an 

essential stage in the mining exploration. The 
geochemical data is interpreted in three important 
domains including the spatial, frequency, and 
position-scale domains. The geochemical data can 
be transferred to the frequency domain (FD) using 
Fourier transformation (FT). FT, as a data mining 
approach, has been frequently utilized in various 
significant fields such as gravity and magnetic data 
in the geophysics, remote sensing, signal 
processing, data compression, and image 
processing [1]. Cheng et al. (1999, 2000) have 
applied the power spectrum (PS) values of the 
geochemical data for separating the geochemical 
anomaly, background, and noise components at the 

first time [2, 3]. They extended the concentration-
area fractal method in FD, and proposed the power 
spectrum-area (S-A) fractal method for anomaly 
separation. The fractal/multi-fractal modeling 
methods have been applied in order to recognize 
the geochemical anomalies [4, 5]. The S-A fractal 
method has been applied for separation of the 
geochemical background from the anomaly in FD 
[6-13]. Zuo (2011) has utilized the principal 
component analysis (PCA) and the S–A fractal 
method for separation of the Cu, Pb, and Ag 
geochemical anomaly [14]. Wang and Zuo (2015) 
have accomplished the trend surface and fractal 
analysis for separating the anomaly area in FD of 
geochemistry [15]. The power spectrum–volume 
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fractal method has been used in order to identify 
the mineralization zones such as the supergene and 
hypogene zones in FD [16, 17]. 

Shahi et al. (2016, 2015) have achieved new 
information about the Cu deep mineralization, 
predicting the mineralization zones at various 
depths using FD of the surface geochemical data 
[18, 19]. They have demonstrated that the deep ore 
deposits, the same as the background elements, 
create weak geochemical concentrations at the 
surface containing low-frequency geochemical 
signals that can be distinguished using the spectral 
analysis of the geochemical data. They predicted 
the variability of mineralization from the surface to 
the depth by interpretation of the PS values of the 
mineralization elements. FD of the geochemical 
data has also been applied in order to distinguish 
the deep mineralized and non-mineralized zones 
[20].  

Various studies have been performed on FD of 
the geochemical data in order to detect the 
geochemical patterns. New exploratory 
information about the presence or absence of metal 
ore deposits at the depth can be extracted from the 
surface geochemical frequency signals.  

In this investigation, the geochemical anomaly 
filtering in three mineralization areas (Dalli Cu-Au 
mineralization area, Zafarghand Cu-Mo 
mineralization area, and Tanurcheh Au-Cu 
mineralization area) was performed using the 
wavenumber-based filters, and the geochemical 
signals were interpreted using PCA. PCA and 
robust PCA were performed for enhancement of 

the multivariate geochemical anomalies, 
dimension reduction of variables, detection of data 
structure, and prediction of hidden geochemical 
patterns [10, 16, 21, 22]. Recognizing the 
significant geological factors and the 
mineralization process is an important issue in 
mineral exploration [23, 24]. In this work, the PCA 
method was performed in order to determine the 
geological and mineralization factors involved in 
FD. 

PCA, as a multivariate statistical method, can 
determine the relationship between the elements on 
the basis of the correlation coefficients or 
covariance.  PCA reduces the dimensionality of 
a multivariate data set and summarizes the 
information by creating a smaller numbers of new 
variables named the principal components (PCs) 
based on the initial variables [25]. The interrelated 
variables create PCs that are uncorrelated. The first 
PC includes the greatest variance of the dataset 
[26]. 

2. Power spectrum of geochemical data 

Joseph Fourier has indicated that the spatial and 
temporal functions can be decomposed into the 
simple sinusoidal functions using a mathematical 
tool named FT. 2D-FT, as a data mining method, 
converts 2D spatial data such as images to FD [27]. 
A variety of simple frequency signals are extracted 
from the spatial and temporal functions using the 
following equation [28]: 

 

( , ) ( , )cos(K ) ( , ) sin(K )x y x y x yF K K f x y x K y dxdy i f x y x K y dxdy
   

   

        (1) 

 
This equation can be used to calculate the 

function F(Kx, Ky) in FD based on the 2D f(x, y) 
spatial function. Kx and Ky are “wave numbers” on 
the basis of the x and y axes. The wave numbers 
correspond to the frequency values, and hold a 
direct relationship with the wavelengths as bellow: 

2 /x xK   and 2 /y yK  , 

or 
2 22 (1/ 1 / ) x yK K   

(2) 

FT can be used to calculate the real, R(Kx, Ky), 
and imaginary, I(Kx, Ky), components of the 
signals. The PS values can be obtained on the basis 
of the following equation: 

2 2(K , K ) (K ,K ) (K , K ) x y x y x yE R I  (3) 

The geochemical maps include superimposed 
signals with different frequencies [2]. The Fourier 
method, as a powerful technique, has been applied 
to transfer the geochemical data to FD. In the first 
step, the geochemical distribution map should be 
depicted using the conventional interpolation 
methods such as the Kriging and inverse distance 
weighted methods. The geochemical interpolated 
map obtained is considered as the 2D f(x, y) 
function, and FT is accomplished on this spatial 
map. Therefore, the geochemical map can be 
converted into the F(Kx, Ky) function in FD that 
provides the Kx-Ky map consisting of the PS and 
phase spectrum values. The spectral maps 
obtained, which show the distribution of 
geochemical frequency signals, can be interpreted 
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using various methods such as the fractal and 
statistical methods in FD [29].  

3. Case studies 

In this research work, three mineralization areas, 
as the case studies, were selected and applied for 
discussion. These areas include the Dalli Cu-Au 
mineralization area, Zafarghand Cu-Mo 
mineralization area, and Tanurcheh Au-Cu 
mineralization area, all located in Iran (Figure 1). 
The hidden mineralization zones have been 
explored at the depth in the Dalli and Zafarghand 
areas so that these areas are known as the economic 
buried mineralization zones. The drilled boreholes 
do not show notable mineralization zones at the 
depth in the Tanurcheh area. These three 
mineralization areas were utilized in order to 
characterize the deep non-mineralization and 
mineralization zones using the frequency features 
of the geochemical elements. 

 

 
Figure 1. Location of the studied areas in the map 

of Iran.

 3.1. Dalli Cu-Au porphyry mineralization area 
The Dalli area is located in the Uremia–Dokhtar 

magmatic belt in the central Iran [30]. The copper-
gold mineralization of the Dalli area has been 
formed in the dacite, andesite, porphyritic 
amphibole andesite, diorite, and quartz diorite 
porphyry rocks [30, 31]. Various alterations 
consisting of potassic, sericitic, sericite–chlorite, 
propylitic, and silicic are seen in this area. The 
alterations of potassic and quartz–sericite are 
related to the gold-copper mineralization. The 
mineralization includes the stockworks of quartz, 
Chalcopyrite, pyrite, bornite, magnetite, malachite, 
and iron oxides [30]. 

3.2. Zafarghand Cu-Mo porphyry deposit  
The Zefarghand area is also located in the 

Urumieh–Dokhtar magmatic belt. There is a strong 
porphyry alteration system (7 km2) in this area, and 
dacite, rhyolite dacite porphyry, quartz diorite, 
andesite porphyry, and diorite porphyries have 
been strongly altered to potassic, phyllic, argillic, 
and propyllitic. The mineralization includes 
quartz-magnetite stockworks, quartz veins, 
chalcopyrite, pyrite, galena, sphalerite, malachite, 
and iron oxides. Some mineralization elements can 
be seen in the silicified quartz veins [32]. The 
readers are referred to Shahi et al. (2016) [19] for 
further information. 

3.3. Tanurcheh Cu-Au porphyry mineralization 
area 

The Tanurcheh area is located in the Khaf-
Daruneh geological belt in the northeast of Iran. 
The major lithological units include pyroclastic, 
lavas, and intrusive igneous rocks. The pyroclastic 
rocks mainly consist of tuff, lapilli-tuff, and 
crystal-tuff. The intrusive igneous rocks consist of 
porphyry-monzonite, quartz-monzonite, and 
porphyry-diorite. The latite rocks have a porphyry 
texture, and their major alteration is silicification. 
Secondary iron oxides are usually in the veins and 
veinlets forms, and brecciated or disseminated 
zones. The veinlets of stock-work, semi-parallel 
veinlets with secondary iron oxides, are located in 
the phyllic alteration zone. The secondary iron 
oxides such as hematite, goethite, and limonite are 
distributed over the altered area of Tanurcheh, and 
can be the result of oxidization of sulfide minerals. 
In addition to silicification at different parts of the 
Tanurcheh area, a complex of silica veins and 
veinlets enriched with the secondary iron oxides 
has also been developed. Mineralization within 
silica is in the form of vuggy quartz type with fine 
pyrite disseminated in the rock texture. The pyrites 
in the later phases appear with the veins, veinlets, 
and breccias, and are associated with the secondary 
iron oxides mainly in the form of goethite [34]. 

4. Frequency behavior of elements in buried 
mineral deposits 

Exploring the buried and deep ore deposits is an 
important priority in the exploratory geochemistry. 
Understanding the geological and structural 
features, geochemical migration processes, and 
behavior of mineralization elements in the spatial 
domain and FD can help us to identify the buried 
ore deposits with a weak surface geochemical 
anomaly. Cheng (2014) has mathematically 
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characterized the decreasing rate of element 
concentration from the depth to the surface. He has 
demonstrated that there is a non-linear relationship 
between the mineralization element concentration 
and the vertical distance from the buried ore 
deposit that has been caused due to regolith, 
geochemical barriers, and complicated migration 
processes. The mineralization elements of deep ore 
deposits with thick overburden layers may hold 
very weak concentrations at the surface [35]. The 
buried ore deposits create weak geochemical 
signals at the surface due to the regolith and 
overburden layers, and hence, discrimination of 
these low-frequency signals from the low-
frequency signals of the background is impossible 
in most cases using the traditional methods [35]. 
The geochemistry traditional methods cannot 
properly identify the buried mineral deposits, 
especially in the areas with weak mineralization 
outcrops and thick overburden. Therefore, 
detecting these geochemical patterns and 
signatures of deep mineralization is an important 
goal that is related to the mineralization processes 
and migration mechanisms. There is no distinct and 
unit idea about the migration processes of 
geochemical elements in covered mineral deposits 
[35, 36]. The weak geochemical signals can be 
caused at the surface due to the elemental 
migration of deep and covered mineral deposits. 
The quantitative approaches are required for 
investigation of these weak anomalies and 
migration process. The buried and deep ore 
deposits commonly have a weaker elemental 
concentration at the surface rather than the areas 
with mineralization outcrops and surface ore 
deposits [37]. Cheng (2012) has illustrated a deep 
deposit with a depth of around 1 km; unlike the 
surface outcropped deposits, it created weak Sn 
concentrations at the surface containing the low-
frequency signals, the same as the regional 
background component. The mineralization 
elements of the deep buried resources show low 
surficial geochemical signatures, and 
discriminating these weak geochemical anomalies 
from the high background component is so hard 
[35]. In some covered areas, separation of the low 
anomaly from the high background that have been 
mixed and superimposed is very difficult [37]. The 
geochemical data formed by various mixed 
geological processes should be decomposed using 
the novel sophisticated computational approaches 
[36, 37]. Cheng (2012) has shown that the 
superficial mineral deposits cause the high surface 

anomalies and the hidden and deep mineral 
deposits to create weak anomalies at the surface 
[37]. Mahdiyanfar (2019) has shown that the 
hidden and deep mineralizations create a 
geochemical distribution map at the surface with a 
weak intensity and low variability (i.e. low-
frequency signals) that may be the same as the 
background values. He demonstrated that the deep 
mineral deposits cause a weak surface anomaly 
with low-frequency signals at the surface [20]. The 
weak surface anomaly may not be distinguishable 
properly from the background component. In these 
cases, the surface geochemical distribution map of 
the mineralization elements shows a weak 
concentration with low-frequency signals, the 
same as the background map. Zuo and Wang 
(2015) have presented the simulated deep mineral 
deposit models with various depths in order to 
show the distribution map of the frequency signals 
at the surface. They demonstrated that very deep 
deposits create low surface concentrations with 
low-frequency signals that have been 
superimposed on the background component. They 
obviously showed in this cases that the 
geochemical patterns such as the mineralization 
processes and background component are 
indistinguishable, and that the geochemical 
anomaly cannot be detected using the 
concentration-area and S-A fractal methods [11]. 
Shahi et al. (2015) have shown that the deep 
mineralization elements can be identified using the 
low-frequency geochemical signals extracted from 
a surface geochemical distribution map [18].  

5. Sampling and analytical methods 
The distribution maps of the geochemical 

samples in these areas are depicted in Figure 2. 165 
soil samples on a network with distances of 50 m 
were collected from the Dalli area, and these 
samples with a size fraction of -200 mesh were 
analyzed using the ICP-MS method in the Amdel 
laboratory in Australia [30]. In the Tanurcheh area, 
104 lithogeochemical samples were collected from 
the alteration zones and mineralization outcrops in 
several stages in order to study the assay of gold, 
copper, and 24 other elements. These samples were 
analyzed using the ICP method in OMAC at 
Ireland and ALS CHEMEX at Canada [34]. In the 
Zafarghand area, 177 lithogeochemical samples 
were collected and analyzed for 36 elements using 
the ICP-MS method in the Amdel laboratory in 
Australia [32]. 
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Figure 2. Distribution maps of the geochemical samples from the Dalli area (A), Zafarghand area (B), and 

Tanurcheh area (C).  

6. Results and Discussion  

Various aspects of the geochemical FD data can 
be considered for recognition of the complex 
geochemical patterns and extraction of new 
exploratory information. In this section, a novel 
criterion in FD is proposed in order to distinguish 
the deep mineralization zones and the deep non-

mineralization zones. Three different 
mineralization areas with thick overburden 
consisting of the Dalli, Zafarghand, and southern 
Tanurcheh mineralization areas were surveyed for 
discussion. The statistical attributes of the 
mineralization elements at the surface in the 
studied areas are shown in Table 1. 

Table 1. Statistical attributes of the mineralization elements in the studied areas based on the surface 
geochemical data. 

 Southern Tanurcheh Dalli Zafarghand 
Number of samples 104 165 177 

Number of analyzed elements 26 30 36 
Mineralization elements Au Cu Au Cu Cu Mo 

Max. 11.48 552 2.87 5403 17002 89.6 
Min. 0.02 9 0.01 49 2 0.88 
Mean 0.97 123 0.29 871.44 190.79 6.24 

Median 0.40 95.50 0.04 343 41 1.09 
Std. 2.17 117.17 0.49 1055 1281.14 13.32 

Variance 4.72 13728 0.2 1113033 1641328 177.4 
Skewness 4.32 1.87 2.4 1.77 12.99 3.95 
Kurtosis 20.2 5.09 6.7 2.99 171.25 18.07 

 
 

The Dalli Cu-Au porphyry and the Zafarghand 
Cu-Mo porphyry ore deposits are known as the 

deep mineralization zones, while the Tanurcheh 
Cu-Au porphyry mineralization area does not show 
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a notable mineralization at high depths on the basis 
of drilled boreholes. The distribution maps of the 

surface geochemical anomaly for these areas are 
depicted in Figure 3. 

 
Figure 3. Surface geochemical anomaly maps of the three mentioned case studies. 

Two different types of filter functions can be 
designed in the FD of geochemical data including 
the PS-based and wavenumber-based filters. The 
PS-based filter is applied only on the PS values 
without considering the wavelengths and wave 
numbers, and divides them into several classes. 
The applied filters in the S-A fractal method are on 
the basis of the PS values. The wavenumber-based 
filters are designed on the basis of the wave number 
and wavelength values, and include the low band 
and high pass filters. In these filters, certain 
frequency signals are eliminated and some 
frequency signals are enhanced based on the 
amount of wave numbers in the Kx-Ky map [19, 
20]. These two types of filter functions have been 
utilized in order to interpret the low-frequency 
signals and identify the geochemical patterns. 

Zuo et al. (2015) have simulated the ore deposit 
models with different depths, and have 
demonstrated that the S-A fractal method and the 
PS-based filters cannot detect the hidden and deep 
ore deposits with a thick overburden [20]. The PS 
maps of the elements have not been deeply 
analyzed, especially by the advanced mathematical 
approaches in order to achieve the reality of the 
geochemical frequency signals and their features 
until now. There are several important questions 
that should be discussed for the buried ore deposit 
detection. Do the deep and buried mineral deposits 
have no effect on the low-frequency signals in the 
surface geochemical data? Do the hidden deep ore 
deposits and the outcropped and superficial 
deposits have similar frequency behaviors together 
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and create similar dispersion patterns at the 
surface?  

The weak surface geochemical anomalies of the 
deep deposits can be combined with the 
background values and create the complicated 
geochemical patterns, and hence, identification of 
the geological phenomena and mineralization 
processes, especially in the spatial domain, is so 
difficult [38]. The geological and mineralization 
processes can be distinguished using interpretation 
of the frequency behavior of elements in FD that is 
related to their migration features and variabilities 
at the surface. Application of data processing 
approaches associated with the multivariate data 
analysis methods can be helpful to solve this 
important issue. This work indicates that deep 
deposits have different frequency behaviors from 
the background elements at the surface.  

In order to understand the frequency behavior of 
the deep ore deposits in low-frequency signals the 
geochemical anomalies were filtered by low-pass 
filters, and the outputs obtained were analyzed 
using the PCA multivariate statistical method.  

The PS distribution maps of the mineralization 
elements in three mineralization areas are 
illustrated in Figure 4. A low-pass filter function 
that eliminates the frequencies with high and 

moderate wave numbers was designed and 
performed on the Kx-Ky maps of all of elements. 
This filter preserves the wave numbers less than 
0.01 in the horizontal and vertical directions and 
eliminates other frequencies for all the elements. In 
orderto investigate the relationships between the 
elements and achieve new information, the PCA 
method was performed on these low-frequency 
signals that were obtained by the wavenumber-
based filters. This scenario was performed on the 
geochemical data for three mineralization areas 
separately. The rotated component matrices of 
PCA are shown in Table 2. 

The low-frequency signals with wave numbers 
less than 0.01 were separated, and the PCA method 
was performed on this dataset including the PS 
values for all of elements. PCA, as a powerful 
multivariate method, can be helpful to determine 
the independent factors and their features. The 
share and effect of any variable (in this case, the 
elements) in the PCs obtained can be quantified 
and the various hidden patterns in the dataset can 
be revealed. The geochemical dataset is a 
superimposition of different geological processes 
and mineralization mechanisms. PCA can distinct 
these independent patterns and characterize their 
effective elements. 

 
Figure 4. PS maps obtained by FT and schematic boundaries of the designed low-pass filter a: Dalli area, Au; b: 

Zafarghand area, Cu; c: Tanurcheh area, Cu. 
In the Dalli area, PCA has reduced 30 elements 

into two components (Table 2). The intense 
dimension reduction of the variables indicate that 
there are clear and distinct patterns in this data. 
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Two distinct geochemical patterns were extracted 
from PCA. The mineralization elements consisting 
of Au, Cu, Mo, and S are clearly shown in the 
second component as the mineralization factor and 

are separated from the other elements. PC1 
containing the other elements is related to the 
background factor. 

Table 2. Rotated component matrices of PCA on the low-frequency signals showing that the independent 
components are related to the mineralization and background processes. 

Dalli  Zafarghand  Tanurcheh 
 Component  Component  Component 
 1 2 1 2 1 2 

Au 0.49 0.80 Au 0.54 0.83 Au 0.69 0.65 
Al 0.94 0.33 Al 0.94 0.34 Al 0.65 0.71 
As 0.91 0.40 Ca 0.90 0.42 As 0.88 0.40 
B 0.93 0.36 Fe 0.89 0.46 Ba 0.92 0.36 
Ba 0.94 0.34 K 0.91 0.42 Ca 0.95 0.31 
Ca 0.89 0.44 Mg 0.92 0.38 Ce 0.96 0.29 
Ce 0.94 0.33 Na 0.93 0.37 Co 0.94 0.32 
Co 0.94 0.34 Ag 0.81 0.59 Cr 0.88 0.46 
Cr 0.94 0.35 As 0.70 0.72 Cu 0.93 0.34 
Cu 0.59 0.77 Ba 0.89 0.45 Fe 0.95 0.30 
Fe 0.94 0.33 Be 0.94 0.34 K 0.46 0.80 
Ga 0.94 0.33 Bi 0.36 0.93 La 0.95 0.29 
K 0.94 0.33 Cd 0.88 0.46 Mg 0.76 0.64 
La 0.94 0.33 Ce 0.93 0.38 Mn 0.94 0.33 
Li 0.94 0.35 Co 0.87 0.48 Mo 0.81 0.48 
Mg 0.94 0.33 Cr 0.38 0.78 Na 0.47 0.82 
Mn 0.94 0.35 Cs 0.95 0.33 Ni 0.82 0.53 
Mo 0.07 0.96 Cu 0.25 0.97 P 0.94 0.35 
Na 0.94 0.34 La 0.93 0.37 Pb 0.49 0.69 
Ni 0.92 0.39 Li 0.91 0.42 S -0.07 0.88 
P 0.94 0.33 Mn 0.89 0.45 Sc 0.86 0.48 

Pb 0.94 0.34 Mo 0.45 0.88 Sr 0.82 0.51 
S 0.59 0.72 Nb 0.94 0.35 Ti 0.56 0.80 
Sc 0.94 0.34 Ni 0.67 0.67 V 0.75 0.64 
Sr 0.93 0.37 P 0.94 0.34 Y 0.88 0.46 
Ti 0.94 0.34 Pb 0.06 0.97 Zn 0.92 0.36 
V 0.94 0.34 Rb 0.93 0.37    
Y 0.94 0.33 S 0.53 0.69    
Zn 0.94 0.33 Sb 0.95 0.32    
Zr 0.93 0.36 Sc 0.94 0.34    
   Th 0.93 0.36    
   Ti 0.94 0.34    
   W 0.94 0.34    
   Yb 0.93 0.37    
   Zn 0.75 0.66    
   Zr 0.93 0.37    

 
These results obviously demonstrate that there 

are strong effects of the mineralization process in 
the low surface frequency signals of deep ore 
deposits. The deep ore deposits with thick 
overburden layers can create the low-frequency 
geochemical signals at the surface. 

The drilled borehole in the area indicates various 
mineralizations such as hematite, goethite, 
malachite, bornite, and native Cu at different 
depths. The PC mineralization obtained has a good 
correspondence with the deep mineralization 

process, and has properly separated the deep 
mineralization elements from the other elements. 

PCA has also divided the 36 elements in the 
Zafarghand area into two components consisting of 
the mineralization factor and the background 
factor. The elements Au, Cu, Mo, As, Bi, Cr, S, and 
Ni have been perfectly separated in the 
mineralization component (Table 2). The 
mineralization pattern and the effects of the 
mineralization process are strongly shown in the 
low-frequency signals in this deep mineralization 
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area with a thick overburden. In the covered deeply 
mineralized zones, the low-frequency geochemical 
signals of the surface distribution map are affected 
by the background component and deep 
mineralization elements. The deep ore deposits 
with a thick overburden, particularly those without 
significant outcrops create the surface geochemical 
anomalies with low variabilities and low frequency 
signals, the same as the background geochemical 
signals, which can be distinguished by the 
mathematical multivariate methods.  

The distinct mineralization pattern is not shown 
in the PCA results obtained from the Tanurcheh 
area (Table 2). The mineralization elements Au and 
Cu in the Tanurcheh area were separated in 
component 1 as the background factor. The deep 
boreholes drilled in this area did not show any 

mineralization zone at high depths. This mentioned 
area holds relatively great mineralization outcrops, 
while includes a non-mineralized zone at high 
depths. The frequency behavior of the 
mineralization elements in the Tanurcheh area is 
completely different from the blind mineralization 
zones in Dalli and Zafarghand that are associated 
with deep mineralization zones, and are known as 
the economic deep mineralization areas. 

 A novel diagram as a differentiating criterion on 
the basis of the obtained PCs is proposed in order 
to distinguish the deep mineralization zones from 
the non-mineralization areas (Figure 5). The scores 
of the mineralization elements in PCs of PCA were 
plotted, and the positions of the mineralization 
elements for three areas were illustrated in this 
figure.  

 
Figure 5. Proposed diagram based on the PCA results of geochemical filtering that classifies the hidden ore 

deposits and non-mineralized zones. 

The positions of the Au, Mo, and Cu elements in 
Tanurcheh (T(Au), T(Mo), and T(Cu)), and 
Zafarghand (Z(Au), Z(Mo) and Z(Cu)), Dalli 
(D(Au), D(Mo), and D(Cu)) are depicted in this 
figure. The mineralization elements of the buried 
ore deposits were completely separated from the 
elements in the deep non-mineralization area based 
on the behavior of the elements in FD. The three 
case studies were perfectly classified into the two 
deep mineralization and deep non-mineralization 
zones. The coefficients of elements in PC2 for the 
three mineralization areas are depicted in Figure 6. 
This figure shows the role and importance of the 
elements in the mineralization factor. The 
frequency behaviors of the elements in the Dalli 

and Zafarghand areas are similar. The values of the 
mineralization elements Cu, Mo, Au, and S in these 
two areas are bigger than the threshold of 0.6. The 
effective elements on this PC in the Tanurcheh area 
are different from the mineralization elements in 
the Dalli and Zafarghand areas. The frequency 
behavior of the elements in the background factor 
(PC1) for the Dalli, Tanurcheh, and Zafarghand 
areas is depicted in Figure 7. Most elements in the 
Dalli and Zafarghand areas behave similar to each 
other. In the Tanurcheh area, the elements Cu, Au 
and Mo hold the important role in this PC 
(background factor), unlike the Dalli and 
Zafarghand areas.  
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Figure 6. Frequency behavior of the elements in the mineralization factor (PC2) for the Dalli, Tanurcheh, and 

Zafarghand areas. 

 
Figure 7. Frequency behavior of the elements in the background factor (PC1) for the Dalli, Tanurcheh, and 

Zafarghand areas. 

The vertical distribution of the 
mineralization elements at the depth by drilled 
boreholes strongly correspond to the results 
obtained (Figure 8). The drilled boreholes 
show that there is a non-mineralized zone at 
the high depth in the Tanurcheh area, and 
indicate that the Dalli and Zafarghand areas are 
from the true anomaly type and hold hidden 
mineralized zones at the depth. Three 
mineralized zones consisting of supergene 
(e.g. Malachite, Hematite, and Goethite), 
transition (e.g. native Cu), and hypogene (e.g. 
Bornite) at different depths have been explored 
in the Dalli area. In the Zafarghand area, 
various exploration layers consisting of the 
Cu-Mo geochemical anomaly maps, a strong 

IP-RS anomaly map, a phyllic alteration map, 
and quartz stockwork and Fe oxides maps were 
employed in order to determine the location of 
boreholes. The geophysics profiles on the Cu 
anomaly area show deep strong anomalies that 
are associated with the sulfide zones at the 
depth. The drilled borehole indicates that there 
is a mineralized zone at the depth (Figure 8). 
The proposed approach demonstrates that the 
low-frequency geochemical signals at the 
surface are indeed a combination of the effects 
of the deep mineralization zones and the 
background component. This sophisticated 
method can quantitatively distinguish the deep 
mineralized and non-mineralizes zones.  
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Figure 8. Vertical distribution of the mineralization elements by drilled boreholes showing the deep non-

mineralized zone in the Tanurcheh area and the deep mineralized zone in the Dalli and Zafarghand areas. 

The combined PCA and geochemical anomaly 
filtering approach can provide information about 
the mineralization zones and the geochemical 
patterns at the depth, especially in the buried 
deposits with a thick overburden. This combined 
approach including PCA and anomaly filtering is 
proposed as an effective tool for prediction of the 
deep mineralization elements and identification of 
the buried ore deposits that may be hidden and 
undiscovered in the exploratory studies. 

7. Conclusions 

In this work, the wavenumber-based filter 
function was applied for the geochemical anomaly 
filtering. The wavenumber-based filter was done 
on the power spectrum distribution map in the three 
case studies of the Dalli, Zafarghand, and 
Tanurcheh mineralization areas, and the wave 
numbers less than 0.01 were separated and 
analyzed using PCA. The results obtained indicate 
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that there are strong effects of the mineralization 
process on the low-frequency signals. The deep 
buried ore deposits (Dalli and Zafarghand) were 
properly discriminated from the deep non-
mineralized Tanurcheh area using a new diagram 
on the basis of the scores of the mineralization 
elements in the principal factors obtained. The 
drilled boreholes thoroughly confirmed the results 
obtained. This effective scenario demonstrates that 
the low-frequency signals of geochemical data 
hold new important exploratory information. 

The proposed approach demonstrates that the 
low-frequency geochemical signals at the surface 
data are affected by the deep ore deposits and the 
background factor. 
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  چکیده:

بندي فلزي یکی از موضوعات چالشی مورد مطالعه قرار گرفته است. منطقهوسیله برخی از محققین در طول دو دهه گذشته حوزه فرکانس داده هاي ژئوشیمیایی به
 -سسازي مدر اکتشاف معدن است که یک سناریوي جدید در حوزه فرکانس براي حل این مشکل پیشنهاد شده است. سه منطقه کانی سازي شامل منطقه کانی

یمی هاي ژئوشاند. بعد از انتقال دادهطلاي تنورچه براي این تحقیق انتخاب شده -ازي مسسمولیبدن ظفرقند و منطقه کانی -سازي مسطلاي دالی، منطقه کانی
الا حذف هاي فرکانسی متوسط و بشوند. سیگنالهاي ژئوشیمیایی حاصل با استفاده از فیلترهایی بر مبناي عدد موج فیلتر میسطحی به حوزه فرکانس، سیگنال

گیرند. به منظور تمایز بین ذخایر معدنی عمیق فلزي،  فاکتورهاي هاي اصلی مورد تفسیر قرار میفاده از روش آماري تحلیل مولفهمانده با استهاي باقیشده و سیگنال
ین وند. اشهاي اصلی، در یک نمودار جدید (مولفه اصلی اول در مقابل مولفه اصلی دوم) ترسیم میامده بوسیله روش تحلیل مولفهاصلی طیف توان عنصري بدست

هاي ژئوشیمیایی در ذخایر معدنی عمیق دالی و ظفرقند رفتارهاي فرکانسی مشابهی دارند. عناصر طلا، مولیبدن و مس در این دو منطقه دهد که دادهروش نشان می
شوند. این معیار جدید جهت متمایز می سازي عمیق در این نمودار متمایزسازي طلا، مولیبدن و مس منطقه تنورچه  به عنوان یک منطقه فاقد کانیاز عناصر کانی

 شود. فیلتر کردن آنومالیهاي عمیق اکتشافی حفر شده تایید میوسیله گمانهسازي عمیق به طور مناسبی بهکردن ذخایر معدنی مدفون و مناطق فاقد کانی
دفون با سازي مژئوشیمیایی در سطح همراه هستند و مناطق کانیهاي فرکانسی پایین سازي عمیق با سیگنالدهد که علائم قوي از کانیژئوشیمیایی نشان می

  هاي حوزه فرکانس ژئوشیمیایی شناسایی شوند.توانند با استفاده از دادهآنومالی ضعیف سطحی می

  فیلتر کردن آنومالی ژئوشیمیایی، ذخیره مدفون، فیلتر بر مبناي عدد موج، طیف توان. کلمات کلیدي:
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