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Over the past two decades, the frequency domain (FD) of the geochemical data has
been studied by some researchers. Metal zoning is one of the challenging subjects in
the mining exploration, where a new scenario has been proposed for solving this
problem in FD. Three mineralization areas including the Dalli (Cu-Au), Zafarghand
(Cu-Mo), and Tanurcheh (Au-Cu) mineralization areas are selected for this
investigation. After transferring the surface geochemical data to FD, the geochemical
signals obtained are filtered using the wavenumber-based filters. The high and
moderate frequency signals are removed, and the residual signals are interpreted by
the statistical method of principal component analysis (PCA). In order to discriminate
the deep metal ore deposits, the principal factors of elemental power spectrum
extracted by PCA are depicted in a novel diagram (PC1 vs. PC2). This approach
indicates that the geochemical data in the Dalli and Zafarghand deep ore deposits have
similar frequency behaviors. The Au, Mo, and Cu elements in these two areas are
discriminated from the Au, Mo, and Cu mineralization elements of the Tanurcheh areca
as a deep non-mineralization zone in this diagram. This new criterion used for
distinguishing the buried ore deposits and deep non-mineralization zones is properly
confirmed by the exploratory deep drilled boreholes. The geochemical anomaly
filtering demonstrates that the strong signatures of deep mineralization are associated
with the low frequency geochemical signals at the surface, and the buried
mineralization areas with weak surface anomaly can be identified using the
geochemical FD data.

1. Introduction

Interpretation of the geochemical data is an
essential stage in the mining exploration. The
geochemical data is interpreted in three important
domains including the spatial, frequency, and
position-scale domains. The geochemical data can
be transferred to the frequency domain (FD) using
Fourier transformation (FT). FT, as a data mining
approach, has been frequently utilized in various
significant fields such as gravity and magnetic data
in the geophysics, remote sensing, signal
processing, data compression, and image
processing [1]. Cheng et al. (1999, 2000) have
applied the power spectrum (PS) values of the
geochemical data for separating the geochemical
anomaly, background, and noise components at the
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first time [2, 3]. They extended the concentration-
area fractal method in FD, and proposed the power
spectrum-area (S-A) fractal method for anomaly
separation. The fractal/multi-fractal modeling
methods have been applied in order to recognize
the geochemical anomalies [4, 5]. The S-A fractal
method has been applied for separation of the
geochemical background from the anomaly in FD
[6-13]. Zuo (2011) has utilized the principal
component analysis (PCA) and the S—A fractal
method for separation of the Cu, Pb, and Ag
geochemical anomaly [14]. Wang and Zuo (2015)
have accomplished the trend surface and fractal
analysis for separating the anomaly area in FD of
geochemistry [15]. The power spectrum—volume
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fractal method has been used in order to identify
the mineralization zones such as the supergene and
hypogene zones in FD [16, 17].

Shahi et al. (2016, 2015) have achieved new
information about the Cu deep mineralization,
predicting the mineralization zones at various
depths using FD of the surface geochemical data
[18, 19]. They have demonstrated that the deep ore
deposits, the same as the background elements,
create weak geochemical concentrations at the
surface containing low-frequency geochemical
signals that can be distinguished using the spectral
analysis of the geochemical data. They predicted
the variability of mineralization from the surface to
the depth by interpretation of the PS values of the
mineralization elements. FD of the geochemical
data has also been applied in order to distinguish
the deep mineralized and non-mineralized zones
[20].

Various studies have been performed on FD of
the geochemical data in order to detect the
geochemical  patterns. New  exploratory
information about the presence or absence of metal
ore deposits at the depth can be extracted from the
surface geochemical frequency signals.

In this investigation, the geochemical anomaly
filtering in three mineralization areas (Dalli Cu-Au
mineralization  area,  Zafarghand = Cu-Mo
mineralization area, and Tanurcheh Au-Cu
mineralization area) was performed using the
wavenumber-based filters, and the geochemical
signals were interpreted using PCA. PCA and
robust PCA were performed for enhancement of
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the  multivariate  geochemical  anomalies,
dimension reduction of variables, detection of data
structure, and prediction of hidden geochemical
patterns [10, 16, 21, 22]. Recognizing the
significant ~ geological ~ factors and the
mineralization process is an important issue in
mineral exploration [23, 24]. In this work, the PCA
method was performed in order to determine the
geological and mineralization factors involved in
FD.

PCA, as a multivariate statistical method, can
determine the relationship between the elements on
the basis of the correlation coefficients or
covariance. PCA reduces the dimensionality of
a multivariate data set and summarizes the
information by creating a smaller numbers of new
variables named the principal components (PCs)
based on the initial variables [25]. The interrelated
variables create PCs that are uncorrelated. The first
PC includes the greatest variance of the dataset
[26].

2. Power spectrum of geochemical data

Joseph Fourier has indicated that the spatial and
temporal functions can be decomposed into the
simple sinusoidal functions using a mathematical
tool named FT. 2D-FT, as a data mining method,
converts 2D spatial data such as images to FD [27].
A variety of simple frequency signals are extracted
from the spatial and temporal functions using the
following equation [28]:

F(K.,K,)= T T S(x,y)eos(K, x+ K, y)dxdy —i T T S(x,y)sin(K, x+ K, y)dxdy

—00 —00

Q)

—00 —00

This equation can be used to calculate the
function F(Kx, Ky) in FD based on the 2D f(x, y)
spatial function. Ky and K are “wave numbers” on
the basis of the x and y axes. The wave numbers
correspond to the frequency values, and hold a
direct relationship with the wavelengths as bellow:

A, =2r/K and A =27/K,
or )

A=2mJ(1/ K2 +1/K?)

FT can be used to calculate the real, R(K,, Ky),
and imaginary, (K., K,), components of the
signals. The PS values can be obtained on the basis
of the following equation:

E(K,,K)=RK_ K)+IK_,K) @3
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The geochemical maps include superimposed
signals with different frequencies [2]. The Fourier
method, as a powerful technique, has been applied
to transfer the geochemical data to FD. In the first
step, the geochemical distribution map should be
depicted using the conventional interpolation
methods such as the Kriging and inverse distance
weighted methods. The geochemical interpolated
map obtained is considered as the 2D f(x, y)
function, and FT is accomplished on this spatial
map. Therefore, the geochemical map can be
converted into the F(K,, Ky) function in FD that
provides the Kx-Ky map consisting of the PS and
phase spectrum values. The spectral maps
obtained, which show the distribution of
geochemical frequency signals, can be interpreted
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using various methods such as the fractal and
statistical methods in FD [29].

3. Case studies

In this research work, three mineralization areas,
as the case studies, were selected and applied for
discussion. These areas include the Dalli Cu-Au
mineralization  area,  Zafarghand = Cu-Mo
mineralization area, and Tanurcheh Au-Cu
mineralization area, all located in Iran (Figure 1).
The hidden mineralization zones have been
explored at the depth in the Dalli and Zafarghand
areas so that these areas are known as the economic
buried mineralization zones. The drilled boreholes
do not show notable mineralization zones at the
depth in the Tanurcheh area. These three
mineralization areas were utilized in order to
characterize the deep non-mineralization and
mineralization zones using the frequency features
of the geochemical elements.

160

Dalli area i

Tanurcheh area *

Figure 1. Location of the studied areas in the map
of Iran.

3.1. Dalli Cu-Au porphyry mineralization area

The Dalli area is located in the Uremia—Dokhtar
magmatic belt in the central Iran [30]. The copper-
gold mineralization of the Dalli area has been
formed in the dacite, andesite, porphyritic
amphibole andesite, diorite, and quartz diorite
porphyry rocks [30, 31]. Various alterations
consisting of potassic, sericitic, sericite—chlorite,
propylitic, and silicic are seen in this area. The
alterations of potassic and quartz—sericite are
related to the gold-copper mineralization. The
mineralization includes the stockworks of quartz,
Chalcopyrite, pyrite, bornite, magnetite, malachite,
and iron oxides [30].
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3.2. Zafarghand Cu-Mo porphyry deposit

The Zefarghand area is also located in the
Urumieh—-Dokhtar magmatic belt. There is a strong
porphyry alteration system (7 km?) in this area, and
dacite, rhyolite dacite porphyry, quartz diorite,
andesite porphyry, and diorite porphyries have
been strongly altered to potassic, phyllic, argillic,
and propyllitic. The mineralization includes
quartz-magnetite  stockworks, quartz  veins,
chalcopyrite, pyrite, galena, sphalerite, malachite,
and iron oxides. Some mineralization elements can
be seen in the silicified quartz veins [32]. The
readers are referred to Shahi et al. (2016) [19] for
further information.

3.3. Tanurcheh Cu-Au porphyry mineralization
area

The Tanurcheh area is located in the Khaf-
Daruneh geological belt in the northeast of Iran.
The major lithological units include pyroclastic,
lavas, and intrusive igneous rocks. The pyroclastic
rocks mainly consist of tuff, lapilli-tuff, and
crystal-tuff. The intrusive igneous rocks consist of
porphyry-monzonite,  quartz-monzonite, and
porphyry-diorite. The latite rocks have a porphyry
texture, and their major alteration is silicification.
Secondary iron oxides are usually in the veins and
veinlets forms, and brecciated or disseminated
zones. The veinlets of stock-work, semi-parallel
veinlets with secondary iron oxides, are located in
the phyllic alteration zone. The secondary iron
oxides such as hematite, goethite, and limonite are
distributed over the altered area of Tanurcheh, and
can be the result of oxidization of sulfide minerals.
In addition to silicification at different parts of the
Tanurcheh area, a complex of silica veins and
veinlets enriched with the secondary iron oxides
has also been developed. Mineralization within
silica is in the form of vuggy quartz type with fine
pyrite disseminated in the rock texture. The pyrites
in the later phases appear with the veins, veinlets,
and breccias, and are associated with the secondary
iron oxides mainly in the form of goethite [34].

4. Frequency behavior of elements in buried
mineral deposits

Exploring the buried and deep ore deposits is an
important priority in the exploratory geochemistry.
Understanding the geological and structural
features, geochemical migration processes, and
behavior of mineralization elements in the spatial
domain and FD can help us to identify the buried
ore deposits with a weak surface geochemical
anomaly. Cheng (2014) has mathematically
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characterized the decreasing rate of element
concentration from the depth to the surface. He has
demonstrated that there is a non-linear relationship
between the mineralization element concentration
and the vertical distance from the buried ore
deposit that has been caused due to regolith,
geochemical barriers, and complicated migration
processes. The mineralization elements of deep ore
deposits with thick overburden layers may hold
very weak concentrations at the surface [35]. The
buried ore deposits create weak geochemical
signals at the surface due to the regolith and
overburden layers, and hence, discrimination of
these low-frequency signals from the low-
frequency signals of the background is impossible
in most cases using the traditional methods [35].
The geochemistry traditional methods cannot
properly identify the buried mineral deposits,
especially in the areas with weak mineralization
outcrops and thick overburden. Therefore,
detecting these geochemical patterns and
signatures of deep mineralization is an important
goal that is related to the mineralization processes
and migration mechanisms. There is no distinct and
unit idea about the migration processes of
geochemical elements in covered mineral deposits
[35, 36]. The weak geochemical signals can be
caused at the surface due to the elemental
migration of deep and covered mineral deposits.
The quantitative approaches are required for
investigation of these weak anomalies and
migration process. The buried and deep ore
deposits commonly have a weaker elemental
concentration at the surface rather than the areas
with mineralization outcrops and surface ore
deposits [37]. Cheng (2012) has illustrated a deep
deposit with a depth of around 1 km; unlike the
surface outcropped deposits, it created weak Sn
concentrations at the surface containing the low-
frequency signals, the same as the regional

background component. The mineralization
elements of the deep buried resources show low
surficial geochemical signatures, and

discriminating these weak geochemical anomalies
from the high background component is so hard
[35]. In some covered areas, separation of the low
anomaly from the high background that have been
mixed and superimposed is very difficult [37]. The
geochemical data formed by various mixed
geological processes should be decomposed using
the novel sophisticated computational approaches
[36, 37]. Cheng (2012) has shown that the
superficial mineral deposits cause the high surface
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anomalies and the hidden and deep mineral
deposits to create weak anomalies at the surface
[37]. Mahdiyanfar (2019) has shown that the
hidden and deep mineralizations create a
geochemical distribution map at the surface with a
weak intensity and low variability (i.e. low-
frequency signals) that may be the same as the
background values. He demonstrated that the deep
mineral deposits cause a weak surface anomaly
with low-frequency signals at the surface [20]. The
weak surface anomaly may not be distinguishable
properly from the background component. In these
cases, the surface geochemical distribution map of
the mineralization elements shows a weak
concentration with low-frequency signals, the
same as the background map. Zuo and Wang
(2015) have presented the simulated deep mineral
deposit models with various depths in order to
show the distribution map of the frequency signals
at the surface. They demonstrated that very deep
deposits create low surface concentrations with
low-frequency  signals  that have  been
superimposed on the background component. They
obviously showed in this cases that the
geochemical patterns such as the mineralization

processes and background component are
indistinguishable, and that the geochemical
anomaly cannot be detected wusing the

concentration-area and S-A fractal methods [11].
Shahi et al. (2015) have shown that the deep
mineralization elements can be identified using the
low-frequency geochemical signals extracted from
a surface geochemical distribution map [18].

5. Sampling and analytical methods

The distribution maps of the geochemical
samples in these areas are depicted in Figure 2. 165
soil samples on a network with distances of 50 m
were collected from the Dalli area, and these
samples with a size fraction of -200 mesh were
analyzed using the ICP-MS method in the Amdel
laboratory in Australia [30]. In the Tanurcheh area,
104 lithogeochemical samples were collected from
the alteration zones and mineralization outcrops in
several stages in order to study the assay of gold,
copper, and 24 other elements. These samples were
analyzed using the ICP method in OMAC at
Ireland and ALS CHEMEX at Canada [34]. In the
Zafarghand area, 177 lithogeochemical samples
were collected and analyzed for 36 elements using
the ICP-MS method in the Amdel laboratory in
Australia [32].
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Figure 2. Distribution maps of the geochemical samples from the Dalli area (A), Zafarghand area (B), and
Tanurcheh area (C).

6. Results and Discussion

Various aspects of the geochemical FD data can
be considered for recognition of the complex
geochemical patterns and extraction of new
exploratory information. In this section, a novel
criterion in FD is proposed in order to distinguish
the deep mineralization zones and the deep non-

mineralization zones. Three different
mineralization areas with thick overburden
consisting of the Dalli, Zafarghand, and southern
Tanurcheh mineralization areas were surveyed for
discussion. The statistical attributes of the
mineralization elements at the surface in the
studied areas are shown in Table 1.

Table 1. Statistical attributes of the mineralization elements in the studied areas based on the surface
geochemical data.

Southern Tanurcheh Dalli Zafarghand
Number of samples 104 165 177
Number of analyzed elements 26 30 36
Mineralization elements Au Cu Au Cu Cu Mo
Max. 11.48 552 2.87 5403 17002  89.6
Min. 0.02 9 0.01 49 2 0.88
Mean 0.97 123 0.29 871.44 190.79  6.24
Median 0.40 95.50 0.04 343 41 1.09
Std. 2.17 117.17  0.49 1055 1281.14 13.32
Variance 4.72 13728 0.2 1113033 1641328 177.4
Skewness 4.32 1.87 24 1.77 12.99 3.95
Kurtosis 20.2 5.09 6.7 2.99 171.25  18.07

The Dalli Cu-Au porphyry and the Zafarghand
Cu-Mo porphyry ore deposits are known as the
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deep mineralization zones, while the Tanurcheh
Cu-Au porphyry mineralization area does not show



Mahdiyanfar

a notable mineralization at high depths on the basis
of drilled boreholes. The distribution maps of the
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surface geochemical anomaly for these areas are
depicted in Figure 3.
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Figure 3. Surface geochemical anomaly maps of the three mentioned case studies.

Two different types of filter functions can be
designed in the FD of geochemical data including
the PS-based and wavenumber-based filters. The
PS-based filter is applied only on the PS values
without considering the wavelengths and wave
numbers, and divides them into several classes.
The applied filters in the S-A fractal method are on
the basis of the PS values. The wavenumber-based
filters are designed on the basis of the wave number
and wavelength values, and include the low band
and high pass filters. In these filters, certain
frequency signals are eliminated and some
frequency signals are enhanced based on the
amount of wave numbers in the Kx-Ky map [19,
20]. These two types of filter functions have been
utilized in order to interpret the low-frequency
signals and identify the geochemical patterns.
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Zuo et al. (2015) have simulated the ore deposit
models with different depths, and have
demonstrated that the S-A fractal method and the
PS-based filters cannot detect the hidden and deep
ore deposits with a thick overburden [20]. The PS
maps of the elements have not been deeply
analyzed, especially by the advanced mathematical
approaches in order to achieve the reality of the
geochemical frequency signals and their features
until now. There are several important questions
that should be discussed for the buried ore deposit
detection. Do the deep and buried mineral deposits
have no effect on the low-frequency signals in the
surface geochemical data? Do the hidden deep ore
deposits and the outcropped and superficial
deposits have similar frequency behaviors together
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and create similar dispersion patterns at the
surface?

The weak surface geochemical anomalies of the
deep deposits can be combined with the
background values and create the complicated
geochemical patterns, and hence, identification of
the geological phenomena and mineralization
processes, especially in the spatial domain, is so
difficult [38]. The geological and mineralization
processes can be distinguished using interpretation
of the frequency behavior of elements in FD that is
related to their migration features and variabilities
at the surface. Application of data processing
approaches associated with the multivariate data
analysis methods can be helpful to solve this
important issue. This work indicates that deep
deposits have different frequency behaviors from
the background elements at the surface.

In order to understand the frequency behavior of
the deep ore deposits in low-frequency signals the
geochemical anomalies were filtered by low-pass
filters, and the outputs obtained were analyzed
using the PCA multivariate statistical method.

The PS distribution maps of the mineralization
elements in three mineralization areas are
illustrated in Figure 4. A low-pass filter function
that eliminates the frequencies with high and

Boundary of
low pass filter

amh ol add ooz
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moderate wave numbers was designed and
performed on the Kx-Ky maps of all of elements.
This filter preserves the wave numbers less than
0.01 in the horizontal and vertical directions and
eliminates other frequencies for all the elements. In
orderto investigate the relationships between the
elements and achieve new information, the PCA
method was performed on these low-frequency
signals that were obtained by the wavenumber-
based filters. This scenario was performed on the
geochemical data for three mineralization areas
separately. The rotated component matrices of
PCA are shown in Table 2.

The low-frequency signals with wave numbers
less than 0.01 were separated, and the PCA method
was performed on this dataset including the PS
values for all of elements. PCA, as a powerful
multivariate method, can be helpful to determine
the independent factors and their features. The
share and effect of any variable (in this case, the
elements) in the PCs obtained can be quantified
and the various hidden patterns in the dataset can
be revealed. The geochemical dataset is a
superimposition of different geological processes
and mineralization mechanisms. PCA can distinct
these independent patterns and characterize their
effective elements.

LogPS

Boundary of
low pass filter

Figure 4. PS maps obtained by FT and schematic boundaries of the designed low-pass filter a: Dalli area, Au; b:
Zafarghand area, Cu; c: Tanurcheh area, Cu.

In the Dalli area, PCA has reduced 30 elements
into two components (Table 2). The intense
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dimension reduction of the variables indicate that
there are clear and distinct patterns in this data.
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Two distinct geochemical patterns were extracted
from PCA. The mineralization elements consisting
of Au, Cu, Mo, and S are clearly shown in the
second component as the mineralization factor and

Journal of Mining & Environment, Vol. 12, No. 1, 2021

are separated from the other elements. PCI
containing the other elements is related to the
background factor.

Table 2. Rotated component matrices of PCA on the low-frequency signals showing that the independent
components are related to the mineralization and background processes.

Dalli Zafarghand Tanurcheh
Component Component Component
1 2 1 2 1 2

Au 049 080 Au 054 083 Au 0.69 0.65
Al 094 033 Al 094 034 Al 065 0.71
As 091 040 Ca 090 042 As 088 040
B 093 036 Fe 08 046 Ba 092 0.36
Ba 094 034 K 091 042 Ca 095 031
Ca 08 044 Mg 092 038 Ce 096 0.29
Ce 094 033 Na 093 037 Co 094 032
Co 094 034 Ag 081 059 Cr 088 046
Cr 094 035 As 070 072 Cu 093 034
Cu 059 077 Ba 08 045 Fe 095 030
Fe 094 033 Be 094 034 K 046 0.80
Ga 094 033 Bi 036 093 La 095 0.29
K 094 033 Cd 08 046 Mg 0.76 0.64
La 094 033 Ce 093 038 Mn 094 033
Li 094 035 Co 087 048 Mo 0.81 048
Mg 094 033 Cr 038 078 Na 047 0.82
Mn 094 035 Cs 095 033 Ni 082 053
Mo 007 09 Cu 025 097 P 0.94 0.35
Na 094 034 La 093 037 Pb 049 0.69
Ni 092 039 Li 091 042 S -0.07 0.88
P 094 033 Mn 089 045 Sc 086 048
Pb 094 034 Mo 045 088 Sr 082 0.51
S 059 072 Nb 094 035 Ti 056 0.80
Sc 094 034 Ni 067 067 V 075 0.64
St 093 037 P 094 034 Y 088 046
Ti 094 034 Pb 006 097 Zn 092 036

V. 094 034 Rb 093 037

Y 094 033 S 053  0.69

Zn 094 033 Sb 095 032

Zr 093 036 Sc 094 034

Th 093 036

Ti 094 034

W 094 034

Yb 093 037

Zn  0.75 0.66

Zr 093 037

These results obviously demonstrate that there
are strong effects of the mineralization process in
the low surface frequency signals of deep ore
deposits. The deep ore deposits with thick
overburden layers can create the low-frequency
geochemical signals at the surface.

The drilled borehole in the area indicates various
mineralizations such as hematite, goethite,
malachite, bornite, and native Cu at different
depths. The PC mineralization obtained has a good
correspondence with the deep mineralization
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process, and has properly separated the deep
mineralization elements from the other elements.
PCA has also divided the 36 elements in the
Zafarghand area into two components consisting of
the mineralization factor and the background
factor. The elements Au, Cu, Mo, As, Bi, Cr, S, and
Ni have been perfectly separated in the
mineralization component (Table 2). The
mineralization pattern and the effects of the
mineralization process are strongly shown in the
low-frequency signals in this deep mineralization
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area with a thick overburden. In the covered deeply
mineralized zones, the low-frequency geochemical
signals of the surface distribution map are affected
by the background component and deep
mineralization elements. The deep ore deposits
with a thick overburden, particularly those without
significant outcrops create the surface geochemical
anomalies with low variabilities and low frequency
signals, the same as the background geochemical
signals, which can be distinguished by the
mathematical multivariate methods.

The distinct mineralization pattern is not shown
in the PCA results obtained from the Tanurcheh
area (Table 2). The mineralization elements Au and
Cu in the Tanurcheh area were separated in
component 1 as the background factor. The deep
boreholes drilled in this area did not show any

Journal of Mining & Environment, Vol. 12, No. 1, 2021

mineralization zone at high depths. This mentioned
area holds relatively great mineralization outcrops,
while includes a non-mineralized zone at high
depths. The frequency behavior of the
mineralization elements in the Tanurcheh area is
completely different from the blind mineralization
zones in Dalli and Zafarghand that are associated
with deep mineralization zones, and are known as
the economic deep mineralization areas.

A novel diagram as a differentiating criterion on
the basis of the obtained PCs is proposed in order
to distinguish the deep mineralization zones from
the non-mineralization areas (Figure 5). The scores
of the mineralization elements in PCs of PCA were
plotted, and the positions of the mineralization
elements for three areas were illustrated in this
figure.

0.8
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mineralization zone at
the depth

[PC2
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0 0.1 0.2 0.3 04

Non-mineralization
zone at the depth

PC1

0.6

0.7 0.8 0.9 1

Figure 5. Proposed diagram based on the PCA results of geochemical filtering that classifies the hidden ore
deposits and non-mineralized zones.

The positions of the Au, Mo, and Cu elements in
Tanurcheh (T(Au), T(Mo), and T(Cu)), and
Zafarghand (Z(Au), Z(Mo) and Z(Cu)), Dalli
(D(Au), D(Mo), and D(Cu)) are depicted in this
figure. The mineralization elements of the buried
ore deposits were completely separated from the
elements in the deep non-mineralization area based
on the behavior of the elements in FD. The three
case studies were perfectly classified into the two
deep mineralization and deep non-mineralization
zones. The coefficients of elements in PC2 for the
three mineralization areas are depicted in Figure 6.
This figure shows the role and importance of the
elements in the mineralization factor. The
frequency behaviors of the elements in the Dalli
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and Zafarghand areas are similar. The values of the
mineralization elements Cu, Mo, Au, and S in these
two areas are bigger than the threshold of 0.6. The
effective elements on this PC in the Tanurcheh area
are different from the mineralization elements in
the Dalli and Zafarghand areas. The frequency
behavior of the elements in the background factor
(PC1) for the Dalli, Tanurcheh, and Zafarghand
areas is depicted in Figure 7. Most elements in the
Dalli and Zafarghand areas behave similar to each
other. In the Tanurcheh area, the elements Cu, Au
and Mo hold the important role in this PC
(background factor), unlike the Dalli and
Zafarghand areas.
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Figure 6. Frequency behavior of the elements in the mineralization factor (PC2) for the Dalli, Tanurcheh, and
Zafarghand areas.
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Figure 7. Frequency behavior of the elements in the background factor (PC1) for the Dalli, Tanurcheh, and
Zafarghand areas.

The  vertical  distribution  of  the
mineralization elements at the depth by drilled
boreholes strongly correspond to the results
obtained (Figure 8). The drilled boreholes
show that there is a non-mineralized zone at
the high depth in the Tanurcheh area, and
indicate that the Dalli and Zafarghand areas are
from the true anomaly type and hold hidden
mineralized zones at the depth. Three
mineralized zones consisting of supergene
(e.g. Malachite, Hematite, and Goethite),
transition (e.g. native Cu), and hypogene (e.g.
Bornite) at different depths have been explored
in the Dalli area. In the Zafarghand area,
various exploration layers consisting of the
Cu-Mo geochemical anomaly maps, a strong
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IP-RS anomaly map, a phyllic alteration map,
and quartz stockwork and Fe oxides maps were
employed in order to determine the location of
boreholes. The geophysics profiles on the Cu
anomaly area show deep strong anomalies that
are associated with the sulfide zones at the
depth. The drilled borehole indicates that there
is a mineralized zone at the depth (Figure 8).
The proposed approach demonstrates that the
low-frequency geochemical signals at the
surface are indeed a combination of the effects
of the deep mineralization zones and the
background component. This sophisticated
method can quantitatively distinguish the deep
mineralized and non-mineralizes zones.
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The combined PCA and geochemical anomaly
filtering approach can provide information about
the mineralization zones and the geochemical
patterns at the depth, especially in the buried
deposits with a thick overburden. This combined
approach including PCA and anomaly filtering is
proposed as an effective tool for prediction of the
deep mineralization elements and identification of
the buried ore deposits that may be hidden and
undiscovered in the exploratory studies.

B Non-mneralization
Figure 8. Vertical distribution of the mineralization elements by drilled boreholes showing the deep non-
mineralized zone in the Tanurcheh area and the deep mineralized zone in the Dalli and Zafarghand areas.
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7. Conclusions

In this work, the wavenumber-based filter
function was applied for the geochemical anomaly
filtering. The wavenumber-based filter was done
on the power spectrum distribution map in the three
case studies of the Dalli, Zafarghand, and
Tanurcheh mineralization areas, and the wave
numbers less than 0.01 were separated and
analyzed using PCA. The results obtained indicate
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that there are strong effects of the mineralization
process on the low-frequency signals. The deep
buried ore deposits (Dalli and Zafarghand) were
properly discriminated from the deep non-
mineralized Tanurcheh area using a new diagram
on the basis of the scores of the mineralization
elements in the principal factors obtained. The
drilled boreholes thoroughly confirmed the results
obtained. This effective scenario demonstrates that
the low-frequency signals of geochemical data
hold new important exploratory information.

The proposed approach demonstrates that the
low-frequency geochemical signals at the surface
data are affected by the deep ore deposits and the
background factor.
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