Studying Effect of Modifying Nano-Mineral Adsorbents on Efficiency of Dye Removal from Industrial Effluents

Azadeh Agah and Nasrin Falahati

1. Mining department, engineering Faculty, University of Sistan and Baluchestan, Zahedan, Iran
2. Mining Engineering Department, Arak University of Technology, Arak, Iran

Article Info
Received 30 September 2020
Received in Revised form 04 December 2020
Accepted 7 December 2020
Published online 7 December 2020

Abstract
In this research work, the potential capability of nano-clay and tonsil, as low-cost and domestic adsorbents, for the elimination of a cationic dye, (CR18) from contaminated water is investigated. The surface properties of the adsorbents are studied by means of the scanning electron microscopy (SEM) and X-ray diffraction techniques. The effects of the initial dye concentration, pH, stirring speed, contact time, and adsorbent dosage are investigated at 25. The results obtained show that the dye adsorption data from the nano-clay and tonsil experiments fit well to the Langmuir and Freundlich isotherms, respectively. The results of dye adsorption kinetics demonstrate that the adsorption system follows a pseudo-second-order model with a satisfactory correlation value (R=99%). The adsorption thermodynamics is also studied, concluding that the adsorption process is spontaneous and physically controlled. Under the optimum conditions (pH of 7, stirring speed of 200 rpm, CR18 concentration of 30 ppm and contact time of 30 min), the adsorption capacities of the mixed adsorbents show the maximum adsorption efficiency at the tonsil:nano-clay weight ratio of 1:2.

Keywords
Adsorption
Tonsil
Nano-clay
Dye removal
Industrial effluents

1. Introduction
Many industrial units use dyes, especially synthetic dyes, for coloring their products, consuming a considerable amount of water. These include the dyestuff, textile, paper, and plastic industries. Such industries generate, quite naturally, a considerable amount of colored wastewater as well [1-3]. Dyes are very difficult to decompose biologically, are toxic to the aquatic life, and pose serious problems for the local living organisms due to their carcinogenicity and toxicity features [4, 5 and, 6]. Also their solutions are among the major environmental problems; they contain a large amount of suspended solids with high COD (chemical oxygen demand) concentrations and highly fluctuating pH values [7-10]. This is why it is very difficult to treat such streams by the formal physico-chemical and biological treatment procedures. Hence, the search for novel, economical, and suitable materials for the removal of dyes is of paramount importance. Cationic dyes are water-soluble dyes that yield colored cations in aqueous solutions. Their major chemical groups are diazahemicyanines, triarylmethanes, cyanines, hemicyanines, thiazines, oxazines, and acridines [11, 12].

Adsorption methods have been preferred to some other methods of removing colored waste effluents produced by industrial sites including the membrane separation process, chemical oxidation, coagulation, electrochemical precipitation, and ion exchange. This is due to their cheapness and the high quality of the treated effluents, particularly for well-designed adsorption processes [13-17]. Adsorption is a surface phenomenon, and refers to the accumulation of substances near the interface...
with a mainly chemical engineering approach. In this regard, surface forces, concentration of the materials on the adsorbent surface, and porosity are considered to be the controlling factors [18-23]. An adsorption process is favorable when the local concentration becomes greater than the bulk solution concentration [24]. In order to define the equilibrium relation between the quantities of the adsorbed material and the concentration in the bulk fluid phase under a constant temperature, the adsorption isotherms have always been fundamental tools [25, 26].

Activated carbon is the most broadly used adsorbent for the removal of dyes due to its high ability for the adsorption of organic substance; it is, however, too expensive to be widely used in wastewater treatment industries [27 and 28]. Some of the reported adsorbents contain clay minerals (kaolinite, bentonite) [29-37], zeolites [38-40], siliceous materials (alumite, perlite, silica beads) [41-47], agricultural wastes (bagasse pith, maize cob, rice husk, coconut shell, banana and orange peel, etc.) [10, 15, 48-57], industrial waste products (metal hydroxide sludge, waste carbon slurries, steel plant slag) [1, 14, 52, 58-60], bio sorbents [28, 61-68], and others (starch, cyclodextrins, cotton) [1, 67-72].

Application of clay minerals as adsorbents to remove pollutants has lately been paid a growing attention because they are readily accessible, inexpensive, and environmental friendly. The final goal is that, in the future, clay adsorbents be used in order to establish a cost-effective adsorption system, particularly for dye removal. The uptake process is usually affected by some environmental factors such as the pH, contact time, initial dye concentration, stirring speed, ionic strength, adsorbent dosage, temperature, and type of dye.

Due to the quick accessibility and low cost of the clay mineral in Iran, the present work was under taken with the following special objectives: 1. to study the performance and efficiency of nano-clay in the removal of dyes by adsorption from industrial effluents; 2. to define the effects of the pH, initial dye concentration, contact time, and stirring speed on the adsorption ability of nanoclay as an adsorbent; 3. to check the applicability of the Temkin, Langmuir, and Freundlich isotherms, pseudo-first-order adsorption and pseudo-second-order adsorption kinetics; 4. to prepare additional information on the adsorption of the dye by nano-clay; and 5. to recognize the adsorption mechanism of the dyes by the nano-clay based on the factors such as the adsorbent ability, free energy variation, and entropy and enthalpy change.

2. Materials and Methods

The source material for tonsil is silicon dioxide, which is a chemical composite made of an oxide of silicon with the chemical formula SiO_2. The laboratory instruments used to measure the changes in each variable during the experiment were a heater (model: VS-130SH) for temperature measurement, a digital weighing machine (model: Sartorius) for mass measurement, a UV-visible spectrophotometer (model: Perkin-Elmer lambda 25) for determining the dye uptake, a pH-meter (model: Mettler Toledo), a centrifuge machine (model: Hettich EBA 20) for separation of the adsorbent particles from the effluents after dye adsorption tests, and a Jar-test equipment (model: Velp EQ-ER-13) for stirring the adsorbent particles in the solution. Moreover, SEM (model: LEO 1455VP) and XRD (model: Advanced D8) were used in order to study the morphology, the structure of tonsil, and mineral characterization of the sample. The pH values of the solutions were regulated by 2 M NaOH and H_2SO_4 solutions. The dye was provided from Alvansabet Ltd. (Iran), and the other chemicals used were obtained from the Merck Company. Table 1 shows the chemical characterization of cationic red 18, used as a model pollutant. Figure 1 shows the chemical structure of cationic red 18 (CR18).

<table>
<thead>
<tr>
<th>Name</th>
<th>Molecular formula</th>
<th>Molecular weight (g/mol)</th>
<th>λ_{max} (nm)</th>
<th>Extinction coefficient (L.cm.Mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cationic red 18</td>
<td>C${10}$H${32}$C${12}$N${3}$O$_{5}$</td>
<td>426.3</td>
<td>487.5</td>
<td>6435</td>
</tr>
</tbody>
</table>
As it can be seen in Figure 2, the maximum absorbance occurs in a wavelength of about 487 nm. This wave-length could be used in to determine the dye concentration and the initial absorbance of the other parameters.

2.1. Adsorption studies

The sorption measurements were performed by mixing several values of tonsil (0.0075-0.03 g) for CR18 in jars including 250 mL of a dye solution (30 mg/L) at different pH values (2–12). The pH values were investigated in order to find the optimal pH-level at which the maximum dye removal is attained. The experiments were performed at concentrations of 20, 30, 40, 50, and 60 mg/L, by applying 0.03 g tonsil for CR18 at pH 12. The sorption measurements were performed at certain time intervals, including 5, 10, 15, 30, 45, 60, and 120 min. Various stirring rates were used, and there were important discrepancies among the stirring rates of 45 up to 200 rpm. Finally, the samples obtained were centrifuged by Hettich EBA20, and next, the dye concentration was defined. The adsorption efficiency of CR18 on tonsil was estimated by defining the decrease percentage of the absorbance at 485.5 nm by Equation (1) [73].

Dye removal (%) = \(\frac{A_0 - A}{A_0} \times 100 \)

Where, \(A_0 \) denotes the original absorbance, and \(A \) is the last absorbance of the dye solution. Freundlich and Langmuir isotherm equations were checked in the current research.

The Langmuir equation can be given as:

\[q_e = \frac{Q_0 K_L C_e}{1 + K_L C_e} \]

Where \(q_e \) is the quantity of the dye adsorbed on tonsil at the equilibrium, \(Q_0 \) is the maximum adsorption capacity, \(K_L \) is the equilibrium constant, and \(C_e \) is the equilibrium concentration of the dye solution.

The Freundlich isotherm is originated by presuming a non-uniform distribution of the adsorption heat over the heterogeneous surface. It can be written as follows [74, 75].

\[q_e = K_F C_e^{1/n} \]

Here, \(K_F \) denotes the adsorption capacity at unit concentration and \(1/n \) is the adsorption intensity. The Temkin isotherm assumes that the adsorption heat of all molecules decreases linearly with increasing adsorption surface coverage, and the adsorption is described by a uniform distribution of the binding energy, up to the maximum binding energy. The Temkin equation can be defined by:

\[q_e = \frac{RT}{b} \ln(A_T) + \frac{RT}{b} \ln(C_e) \]

Where \(A_T \) (L/g) and \(B = \frac{RT}{b} \) are the Temkin constants, \(T \) is the temperature (K), \(R \) is the universal gas constant of 8.314 (J/mol.K), and \(b \) is related to the adsorption heat [76, 77].

2.2. Studies on characterization of tonsil and nano-clay

The results of SEM images obtained from the tonsil and nano-clay surfaces are shown in Figure 1. As it can be seen in the figure, the tonsil particles are relatively finer and more porous than the nano-clay particles in the same scale, indicating that the surface area of tonsil is larger than that of nano-clay. It also reveals the fact that the tonsil particles are mostly constitute the angular and sharp-corner
forms, while the nano-clay samples show relatively circular particles on the surface. These differences could generate variations in the distribution form of charges on the surface of adsorbents and their stability in the solution media.

In order to identify and quantify the mineralogy of the crystalline compounds in the adsorbents, the X-ray diffraction (XRD) method was implemented. Figure 2 indicates that the major peak \(2\theta:26.61\) refers to silicon dioxide, and also Tosudite is in the range of about \(2\theta:20.73^\circ\). Figure 3 shows that the main phase in the nano-clay sample, which is in the range of about \(2\theta:23^\circ\), refers to montmorillonite. Table 1 describes the abbreviations used in the XRD graphs in Figures 2 and 3.
Table 1. Identified phases and their abbreviations used in Figures 2 and 3.

<table>
<thead>
<tr>
<th>No.</th>
<th>Mineral name</th>
<th>Abbreviation</th>
<th>Chemical formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Delafossite, Potassium Aluminum Silicate</td>
<td>Del</td>
<td>CuFeO₂</td>
</tr>
<tr>
<td>2</td>
<td>Tosudite, Potassium Aluminum Silicate</td>
<td>Tos</td>
<td>(K,Ca) 0.8Al₆(Si,Al) 8O₃₀(OH) 10.4H₂O</td>
</tr>
<tr>
<td>3</td>
<td>Aluminum Phosphate Silicate</td>
<td>Alm</td>
<td>Al₂O₃·SiO₂·P₂O₅·C₁₂H₂₉NO·H₂O</td>
</tr>
<tr>
<td>4</td>
<td>Quartz</td>
<td>Qtz</td>
<td>SiO₂</td>
</tr>
<tr>
<td>5</td>
<td>Neodymium Zinc</td>
<td>Neo</td>
<td>NdZn</td>
</tr>
<tr>
<td>6</td>
<td>Manganese Silicate</td>
<td>Mag</td>
<td>MnS</td>
</tr>
<tr>
<td>7</td>
<td>Montmorillonite</td>
<td>Mnt</td>
<td>(Na,Ca) 0.3(Al,Mg) 2Si₄O₁₀(OH)₂·xH₂O</td>
</tr>
<tr>
<td>8</td>
<td>Aluminum Hydroxide Silicate</td>
<td>Alm Hyd</td>
<td>(Al(OH)₃) 0.33Al₂ Si₃.₆₇Al₁₃.₃₃O₁₀(OH)₂</td>
</tr>
<tr>
<td>9</td>
<td>Sodium Aluminum Silicate Hydroxide hydrate</td>
<td>Sdm Alm</td>
<td>(Na,Ca) 0.3(Al,Mg) 2Si₄O₁₀(OH)₂·xH₂O</td>
</tr>
<tr>
<td>10</td>
<td>Sodium Magnesium Aluminum Silicate Hydroxide hydrate</td>
<td>Sdm Mag</td>
<td>Nax (Al,Mg) 2Si₄O₁₀(OH)₂·xH₂O</td>
</tr>
</tbody>
</table>

3. Results and Discussion

3.1. Effect of adsorbent concentration

In order to find the optimal concentration for each adsorbent, different values of tonsil and nano-clay were used. The optimum adsorbent concentration was estimated based on the dye removal content.

Figure 4. Adsorption efficiency of nano-clay at different concentrations, [dye] = 30 ppm.

Figure 4 demonstrates that increasing the amount of nano-clay from 0.005 g up to 0.015 g significantly improves the dye removal efficiency. However, a further increase in the amount of nano-clay (> 0.015 g) does not affect the dye removal efficiency, and shows a constant value. Considering the results of in Figure 5, increasing the amount of tonsil from 0.005 g to 0.03 g considerably increases the dye removal efficiency up to 68.45%. As highlighted in Section 2.2, the SEM images of nano-clay display a low surface area; thus it shows a limited adsorption capacity. Tonsil, on the other hand, could remove more dye from the solution media, due to its high surface area.

Figure 5. Adsorption efficiency of tonsil at different concentrations, [dye] = 30 ppm.

3.2. Effect of pH

The pH value is extremely important in removing dyes from a soluble medium, which affects the properties of the adsorbents and adsorbed substances. The first observation is that CR18 maintains its stability at the pH range of 2-12. The effect of pH on the yield of dye removal was investigated, and the results obtained were given in Figure 6.
Figure 6. Effect of pH on CR18 adsorption onto tonsil and nano-clay.

Figure 6 reveals the fact that Nano-clay adsorbs dye particles in neutral media, while tonsil works better in alkaline solutions. Tonsil constitutes of numerous functional groups that are touched by the pH of solutions. Its nanoparticles are negatively charged at alkaline solutions, and because of having \(-\text{N}_2\text{N}_2\text{N}_2\)-Trimethyl-Ethanaminium in the structure of CR18, electrostatic attraction is dominant. At pH 12, a strong the electrostatic attraction is present between the surfaces of tonsil with negative electric charge, due to the ionization of the functional groups and positively charged cationic red 18 molecules \([78,79]\). However, the low adsorption of CR18 at an acidic pH is due to the existence of excessive amounts of \(H^+\) ions, destabilizing cationic dyes, and competing with CR18 for available adsorption sites. Regarding this fact, the nano-clay and tonsil adsorption investigations were done in their optimum pH values including 6 and 12, respectively.

3.3. Effect of contact time

As adsorption proceeds, the adsorbed particles such as dyes cover the surface of the adsorbent, what, in turn, makes the adsorption process more difficult. Therefore, the contact time plays a key role in defining the adsorption capability. In order to find out the effect of the contact time on the dye adsorption, various time intervals including 5, 10, 15, 20, 30, 45, 60, 90 and 120 min, were considered together with different amounts of the adsorbents. The results obtained are illustrated in the following figures.

Figures 7 and 8 indicate that increasing the amounts of nano-clay and tonsil from 0.005 g to 0.03 g enhances their adsorption efficiencies. Also the adsorption capacities of nano-clay and tonsil are almost complete at 5 min and 30 min after the beginning of the adsorption process, respectively. This shows that the process of reaching the maximum adsorption of tonsil, which is obtained at high amounts (98.34% at 0.03 g of tonsil after 30 min of the beginning of the adsorption process) is relatively slower than that of the nano-clay adsorbent.

3.4. Effect of dye concentration

The effect of various concentrations of CR18 including 20, 30, 40, 50, and 60 ppm was investigated with the adsorption times. The results obtained are given in Figures 9 and 10.
3.5. Effect of stirring speed

Adsorption kinetic is strongly controlled by the pore or film diffusion, and relies on the time and stirring speed in the system. Figure 11 reveals the fact that increasing the stirring speed tends to improve the adsorption efficiency of the adsorbents. However, the maximum adsorption was achieved at a stirring speed of 200 rpm, and a further increase in the stirring speed decreased the adsorption efficiencies of tonsil and nano-clay. In fact, since the adsorbents move very slowly at low stirring speeds, the surface layer of the liquid around the particle becomes very thick, which, in turn, prevents a further dye adsorption. However, at very high stirring speeds, where pore diffusion controls the adsorption rate, collision between the adsorbent molecules and the walls of the container leads to desorption. Having this fact in mind, the optimum stirring speed was considered 200 rpm for the rest of the experiments.

3.6. Studies on adsorption isotherms

The equilibrium concentration of a substance dissolved on the surface of an adsorbent is related to the concentration of the solutes in solution by a curve called the adsorption isotherm. The Langmuir and Freundlich isotherms are the most commonly used isotherms; however, we also used the Temkin isotherm in this work.
Figure 12. Plot of Temkin isotherm for adsorption of CR18 onto nano-clay.

Figure 13. Plot of Temkin isotherm for adsorption of CR18 onto tonsil.

Figure 14. Plot of Langmuir isotherm for adsorption of CR18 onto nano-clay.

Figure 15. Plot of Langmuir isotherm for adsorption of CR18 onto tonsil.

Figure 16. Plot of Freundlich isotherm for adsorption of CR18 onto nano-clay.

Figure 17. Plot of Freundlich isotherm for adsorption of CR18 onto Tonsil.

Based on the plots of the isotherms for nano-clay, it was found that the adsorption of CR18 strongly fitted to the Langmuir isotherm (Figure 14). The finding emphasizes on a monolayer adsorption of CR18 onto a homogenous nano-clay surface. The results of the tonsil adsorption isotherms demonstrate that it is expressed very well by the Freundlich isotherm model (Figure 17), showing that the adsorption of CR18 takes place on the heterogeneous surface of tonsil with a non-uniform distribution of heat over the surface.
Table 2. Parameters of the Freundlich, Langmuir and Temkin isotherms, obtained for adsorption of CR18.

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>K_F</th>
<th>Q_0</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonsil</td>
<td>0.0327</td>
<td>22.22</td>
<td>0.905</td>
</tr>
<tr>
<td>Nano-clay</td>
<td>1</td>
<td>1000</td>
<td>9.998</td>
</tr>
</tbody>
</table>

Freundlich isotherm

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>K_F</th>
<th>n</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonsil</td>
<td>221.406</td>
<td>4.115</td>
<td>0.985</td>
</tr>
<tr>
<td>Nano-clay</td>
<td>437.029</td>
<td>7.407</td>
<td>0.955</td>
</tr>
</tbody>
</table>

Temkin isotherm

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>A</th>
<th>b</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonsil</td>
<td>0.5085</td>
<td>17205.36</td>
<td>0.82</td>
</tr>
<tr>
<td>Nano-clay</td>
<td>0.319</td>
<td>28.448</td>
<td>0.994</td>
</tr>
</tbody>
</table>

3.7. Adsorption kinetics

The kinetic examinations of the adsorption of CR18 from the solution media onto the tonsil and nano-clay surfaces were conducted. Two common kinetic models including the pseudo-first- and second-order were taken into account in the current research work. The results obtained are demonstrated in Figures 18-21.

The pseudo-first-order kinetics is commonly denoted as follows [78].

$$ \frac{dq}{dt} = k_1(q_e - q_t) \tag{5} $$

Here, k_1 is the equilibrium rate constant of the pseudo-first-order kinetics (1/min), q_e is the quantity of the dye adsorbed at the equilibrium (mmol/g), and q_t is the quantity of CR18 adsorbed at time t (mmol/g). After integrating and using the conditions $q_t = 0$ at $t = 0$ and, $q_t = q_t$ at $t = t$, we obtained [80]:

$$ \ln (q_e - q_t) = \ln q_e - \left(\frac{k_1 t}{2.303}\right) \tag{6} $$

The pseudo-second-order chemisorption kinetic rate was obtained as follows [80]:

$$ \frac{d(q_t t)}{dt} = k(q_e - q_t) \tag{7} $$

Here, k is the equilibrium rate constant of the pseudo-second order kinetics (g/mmol min) and q_e is the quantity of the dye adsorbed at the equilibrium state (mmol/g) [81]. On integrating Eq. (7), we obtained [80]:

$$ \frac{t}{q_t} = \frac{1}{k q_e^2} + t/q_e \tag{8} $$
The results of the adsorption kinetics display that the pseudo-second-order model explains the adsorption kinetics of tonsil and nano-clay most effectively. The high values of the correlation coefficients calculated for both adsorbents (> 0.999) in Figures 21 and 22, strongly approve that the experimental data obtained from the adsorption process could be well-predicted by the pseudo-second-order kinetics. This indicates that the adsorption mechanism is chemisorption, and that the rate of CR18 diffusion in the pores of tonsil and nano-clay limits the total rate of adsorption. Table 3 summarizes the kinetic parameters for the adsorption of CR18 by tonsil and nano-clay.

Table 3. Pseudo-first- and second-order kinetic parameters for adsorption of CR18 onto tonsil and nano-clay.

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Pseudo-first-order</th>
<th>Pseudo-second-order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>K_1 (1/min)</td>
</tr>
<tr>
<td>Tonsil</td>
<td>0.54</td>
<td>0</td>
</tr>
<tr>
<td>Nano-clay</td>
<td>0.83</td>
<td>0.0000184</td>
</tr>
</tbody>
</table>

3.8. Adsorption thermodynamics

The amounts of dye uptake at 288, 298, 308, 318, and 327K were studied in order to measure the thermodynamic factors by the Van’t Hoff equation [82]:

$$\ln K_{ad} = \frac{\Delta S}{R} - \frac{\Delta H}{RT}$$ \hspace{1cm} (9)

Here, K_{ad} is the equilibrium constant, ΔS and ΔH are the entropy (kJ/mol) and enthalpy (kJ/mol) variations of adsorption, respectively, R is the universal gas constant (8.314 J/mol K), and T is the absolute temperature (K). The values for ΔS and ΔH were computed from the slope and intercept of the linear regression of $\ln K_{ad}$ vs. $(1/T)$, respectively. ΔG was estimated using the following equation [83]:

$$\Delta G = \Delta H - T\Delta S$$ \hspace{1cm} (10)

Table 4 shows the thermodynamic parameters in different adsorption temperatures for tonsil and nano-clay. The adsorption of CR18 onto tonsil and nano-clay show the negative Gibbs free energies of -3.48 and -7.37 KJ/mol, respectively, indicating that both adsorption processes are spontaneous. As it can be observed in Table 4, the value of ΔH is negative for tonsil (-29.14 KJ/mol); however, it is a positive value for nano-clay (20.90KJ/mol). This indicates that the tonsil adsorption is exothermic, while the nano-clay adsorption process is an endothermic process.

Table 4. Thermodynamic parameters for adsorption of CR18 onto tonsil and nano-clay.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>K_{ad}</th>
<th>ΔG (KJ/mol)</th>
<th>ΔS (KJ/mol K)</th>
<th>ΔH (KJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonsil</td>
<td>288</td>
<td>14.20</td>
<td>-3.48</td>
<td>-29.14</td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>21.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>308</td>
<td>23.27</td>
<td>-0.086</td>
<td></td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>34.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>328</td>
<td>42.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nano-clay</td>
<td>288</td>
<td>5.67</td>
<td>-7.37</td>
<td>20.90</td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>4.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>308</td>
<td>3.00</td>
<td>0.095</td>
<td></td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>328</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.9. Adsorbent mixture

Different ratios of the adsorbent mixtures were examined at their optimum conditions. Figure 22 displays the adsorption results of three different concentration ratios of tonsil:nano-clay with adsorption times.
The results obtained reveal the fact that the maximum adsorption of CR18 could be achieved by increasing the tonsil: nano-clay concentration ratio.

4. Conclusions

In this research work, the possibility of CR18 adsorption onto tonsil and nano-clay was studied. The effects of some important factors comprising the amount of adsorbent, pH, contact time, original concentration of CR18, and stirring speed were studied. It was detected that the nano-clay adsorption mechanism well-followed the Langmuir isotherm, while tonsil fitted better to the Freundlich isotherm. Kinetic studies displayed that the pseudo-second-order model could effectively explain the behavior of adsorption of CR18 onto both the nano-clay and tonsil surfaces. The results of the thermodynamic experiments indicated that the tonsil and nano-clay adsorptions were exothermic and endothermic, respectively, and that both were spontaneous. Studies on the adsorbent mixtures demonstrated that increasing tonsil to the nano-clay concentration ratio improved the adsorption efficiency in the system. Under the optimum conditions including the pH of 7, stirring speed of 200 rpm, CR18 concentration of 30 ppm, contact time of 30 min, and tonsil: nano-clay ratio of 1:2 (0.06g:0.015g), the maximum adsorption efficiency was achieved. The clay mineral can provide a replacement for the costly adsorption materials such as active carbon due to its accessibility and comparatively low cost. According to many studies, activated carbon is a useful adsorbent for organic contaminants; though, its high initial cost and the requirement for an expensive regeneration system make it less economically feasible as an adsorbent. Cost effectiveness, accessibility, and adsorptive properties are the principal criteria for selecting an adsorbent in order to remove the organic and inorganic contaminants. Taking these criteria into attention, it can be said that the naturally existing clay can be utilized as a more low-cost adsorbent for the adsorption of dyes without requiring a costly regeneration instead of expensive adsorption materials.

Acknowledgements

The authors express their sincere thanks to Dr. Mohammad Ebrahim Olya as the faculty member of Institute for Color Science & Technology for their constant support and helps about the experimental studies.

Conflict of interest

The authors claim that they have no conflict of interest.

References

مطالعه اثر اصلاح جاذب‌های نانو معدنی بر راندمان حذف رنگ از پساب‌های صنعتی

آزاده آگاه ۱ و نسرین فلاحتی ۲

۱- گروه مهندسی معدن، دانشگاه سیستان و بلوچستان، زاهدان، ایران
۲- بخش مهندسی معدن، دانشگاه صنعتی اراک، اراک، ایران

ارسال: ۳۰/۶/۱۳۹۹، پذیرش: ۶/۱۲/۱۳۹۹

نویسنده: agah_eng@eng.usb.ac.ir

چکیده:
در این کار تحقیقاتی، اثر بالقوه نانوسی و تونسیله به عنوان جاذب‌های ارزان قیمت و داخلی در حذف رنگ‌های کاتیوئی قرمز ۱۸ از آلوده در سیستم‌های نایپوسته مطالعه شده است. خصوصیات سطحی جاذب‌ها با استفاده از میکروسکوپ الکترونی پویشی (SEM) و پراش پرتو ایکس (XRD) مورد مطالعه قرار گرفت. نتایج عمومی مختلف اثرات بر فرآیند جذب رنگ از دو مدلهای فرآیندی، فناوری پس و متونه سیستمی مهندسی در بازخوردهای ایزوترومی و برای تونسیله از ایزوترومی نمایه شده. همچنین جاذب‌ها در حفره هیدرولیکی ارتفاع معنی‌دار بود. نتایج عمومی نشان‌دهنده اثرات این جاذب‌ها بر پساب‌های صنعتی است. به‌طور کلی، این جاذب‌ها می‌توانند در حذف رنگ از پساب‌های صنعتی به کار رفته و بهبود و کاهش مصرف نانو‌های معدنی و سایر مواد نانویی را در سیستم‌های نایپوسته به دست آورند.

کلمات کلیدی: جاذب، تونسیله، نانو رس، حذف رنگ، پساب‌های صنعتی.