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 Nowadays due to the existence of the economic and geological uncertainties and the 
increasing use of scenario-based project evaluation in the design of open-pit mines, it 
is necessary to find an exact algorithm that can determine the ultimate pit limit in a 
short period of time. Determining the ultimate pit limit is an important optimization 
problem that is solved to define what will be eventually extracted from the ground, 
and directly impacts the mining costs, revenue, choosing mining equipment, and 
approximation of surface infrastructures outside the pit. This problem is solved in 
order to maximize the non-discounted profit under the precedence relation (access) 
constraints. In this paper, the Highest-Level Push-Relabel (HI-PR) implementation of 
the push–relabel algorithm is discussed and applied in order to solve the ultimate pit 
limit optimization problem. HI-PR uses the highest-label selection rule, global update, 
and gap heuristics to reduce the computations. The proposed algorithm is implemented 
to solve the ultimate pit limit for the nine real-life benchmark case study publicly 
available on the Minelib website. The results obtained show that the HI-PR algorithm 
can reach the optimum solution in a less computational time than the currently 
implemented algorithms. For the largest dataset, which includes 112687 blocks and 
3,035,483 constraints, the average solution time in 100 runs of the algorithm is 4 s, 
while IBM CPLEX, as an exact solver, could not find any feasible solution in 24 hours. 
This speeding-up capability can significantly improve the current challenges in the 
real-time mine planning and reconciliation, where fast and reliable solutions are 
required. 
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Abbreviation 
2D: Two Dimensional 

3D: Three Dimensional 

DFS: Depth First Search  

FIFO: First-in, First-out 

HI-PR: Highest-Level Implementation of Push–
Relabel 

LG: Lerchs and Grossmann 

Minelib: A library of Open-Pit Mining Problems 

UPL: Ultimate Pit Limit 

 

1. Introduction 

Open-pit mine planning consists of a series of 
decision-making problems including defining the 
ultimate minable shape of a given mineral deposit 
and its overlying waste rocks. The optimum 
ultimate pit limit (UPL) defines a boundary that 
leads to the maximum non-discounted profit under 
the physical and pre-defined techno-economic 
configurations of the project. The pre-defined term 
states that any change in the input parameters such 
as the commodity price could potentially affect the 
whole profile of mining cash flow. An excellent 
mine planning tool should be able to respond to the 
input changes in a short period of time in order to 
prevent the production deficit. It is worth noting 
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that a mine plan that improves 1% in the net present 
value can represent millions of dollars in respect to 
the mining operation scale. 

The UPL determination is the main core of a 
mine planning practice. From a discrete 
optimization viewpoint, UPL is formed by a set of 
rectangular blocks that should be extracted from 
the ground in the entire life of the mine. A block is 
a part of the mining area that represents a certain 
volume of rock with its estimated attributes. A set 
of such blocks is called a geological block model. 
The attributes such as the ore grade and density are 
estimated for each block using the geostatistical 
methods based on the exploration studies [1]. The 
economic values of blocks are calculated 
considering a cut-off grade, mining and processing 
costs, product price, and other technical parameters 
such as the mining recovery. The blocks with a 
positive value are defined as ore; otherwise, as 
waste. The optimum UPL is a boundary of mining 
that achieves the maximum positive value of 
extraction. 

In order to model the UPL problem, it is crucial 
to obtain the block economic value from Equation 
(1), presented by Bakhtavar et al. [2], where iv is 
the block economic value, P is the unit selling 
price of ore, sC is the unit selling cost of ore, r is 
the total ore recovery, ig is the block grade, oT is 

the total amount of ore in block, oC is the unit 
operational cost of ore extraction, wC is the unit 
cost of waste removal, and wT is the total amount 
of waste in each block. 

( ). . . . .i s i o o o w wv P C r g T C T C T     (1) 

The UPL problem can be modeled as a binary 
programming model as Equation 2, where ݔ is the 
decision variable for mining of block ݅, ݒ is the 
economic value of block ݅, and ܤ is the set of all 
blocks. 

Maximize i i
i B

v x

  (2) 

Subject to i jx x  
(3)  , & ii j B j A    

{0,1}ix   
(4) i B  

In the above model, ܣ௜  is a set of blocks that must 
be extracted before block ݅ to physically and safely 
access this block. The number of predecessors in 

௜ܣ  may vary for different blocks depending on the 
location of block ݅, regional geological structure, 
and rock stability measures. ܣ௜  is called a 
predecessor set for block ݅, and it should be defined 
before running a solver for the UPL model. The 
model presented above is used for determination of 
UPL in all algorithms. 

Solving the UPL problem has been an interesting 
optimization problem since the emergence of the 
personalized computer age in the 1960s. 
Surprisingly, in an early study, a polynomial graph-
based algorithm has been presented by Lerchs and 
Grossmann [3] that is able to obtain the optimum 
solution for the UPL problem. This algorithm is 
known as the LG algorithm, and is widely used in 
the mine design packages [4]. However, the 
complexity of the algorithm and the low-capacity 
computers directed other researchers toward 
developing new solution techniques. Zhao and Kim 
[5] have appended some heuristics to the original 
LG algorithm in order to reduce the computation 
time while keeping the optimality of the solution. 
Khalokakaie and Dowd [6] have extended a 
modified version of the LG algorithm with the 
capability of considering variable wall slopes, 
which imply a variable predecessor set. Giannini 
[7] has applied a maximum flow algorithm in order 
to solve the UPL problem. Underwood and 
Tolwinski [8] have proposed a combined 
mathematical programming and graph theory 
approach and, employing a dual simplex algorithm 
to find the optimum solution of the UPL problem. 
Hochbaum and Chen [9] have discussed the LG 
algorithm’s computational complexity, applying a 
maximum flow push–relabel algorithm to solve 
UPL. 

Several studies have used dynamic programming 
for the UPL problem. In the study by Lerchs and 
Grossmann [3], a dynamic programming algorithm 
has been proposed for the 2D optimization of UPL. 
Later, Koenigsberg [10] presented a dynamic 
programming algorithm in order to solve the 
problem in a 3D approach. Erarslan and Celebi [11] 
have added production sequencing to the original 
UPL problem and have used a dynamic 
programming algorithm to optimize both problems 
simultaneously. Najafi et al. [12] have proposed 
the Dijkstra’s algorithm in order to solve UPL and 
have compared it using the 2D dynamic 
programming. 

Since 1965 and the emergence of the UPL 
problem, several heuristics approaches have been 
proposed in order to solve the problem in a shorter 
period of time. Pana [13] has proposed a floating 
cone algorithm, and Wright [14] has extended a 
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modified version of this algorithm. The floating 
cone algorithm was widely used in the early days 
of computerized mine planning due to its simplicity 
and its low computational complexity. Achireko 
and Frimpong [15, 16] and Sayadi et al. [17] have 
used the neural network-based heuristics in order 
to solve the problem under uncertainty and 
deleterious element constraints. A brief summary 
of the UPL solution algorithms is shown in Table 
1. 

Although solving the generic form of the UPL 
problem is not a challenge, finding a 
computationally cheaper algorithm to solve the 
UPL problem is still of interest to the mine planners 
and managers for several reasons. First, 
revolutionizing technology in data collection 
creates new inputs for mine planning, which 
enforces extensive reconciliation efforts. Secondly, 

commodity price volatility and inherent grade 
uncertainty necessitate fast and reliable solution 
techniques to solve UPL for a few million 
simulation realizations. Thirdly, the UPL solution 
will still be the main pillar of automatic-oriented 
mine planning tools and practice such as automated 
road design [18] or open-pit to the underground 
transition optimization problem [19]. Finally, a 
more flexible algorithm is of interest to the 
variation of the UPL problem where an additional 
constraint may be added to the generic version of 
UPL. Consideration of mining royalty [20] or semi 
and full in-pit crushing [21, 22] are examples of the 
extended UPL problem. Therefore, a flexible 
algorithm is required to use in such more 
sophisticated instances. 

Table 1. A brief summary of previous UPL algorithms. 
Researcher(s) Year Optimization method Exact algorithm 3D model 

Lerchs & Grossmann [3] 1965 Dynamic programing Yes No 
Lerchs & Grossmann[3] 1965 Graph theory Yes Yes 
Pana [13] 1965 Heuristic No No 
Meyer [23] 1969 Linear programing Yes Yes 
Janson & Sharp [24] 1971 Dynamic programing No Yes 
Koenigsberg [10] 1982 Dynamic programing Yes Yes 
Giannini [7] 1990 Graph theory Yes Yes 
Zhao & Kim [5] 1992 Graph theory No Yes 
Underwood & Tolwinski [8] 1998 Graph theory Yes Yes 
Frimpong & Achireko [25] 1998 Heuristic No Yes 
Wright [14] 1999 Heuristic No No 
Khalokakaei & Dowd [6] 2000 Graph theory Yes Yes 
Hochbaum & Chen [9] 2000 Graph theory Yes Yes 
Erarsalan & Celebi [26] 2001 Dynamic programming Yes Yes 
Frimpong [27] 2002 Heuristic No Yes 
Sayyadi et al. [17] 2011 Heuristic No Yes 
Elahi et al. [28] 2012 Heuristic No No 
Hay et al. [22] 2019 Hybrid heuristic and graph theory No Yes 

 
In this work, the so-called HI-PR implementation 

of the push–relabel algorithm was coded and used 
to solve the UPL problem. The implementation of 
this algorithm for the UPL problem is the novelty 
of this paper. Although several exact algorithms in 
the literature have been applied to optimally solve 
the UPL problem, the implemented HI-PR 
algorithm can significantly improve the solution 
time. A successful implementation of this 
algorithm will be a key pillar of the upcoming 

research projects for real-time capacitated UPL and 
scenario-based production planning and 
optimization problems, which are not in the scope 
of this paper. However, the main part of the 
solutions to those problems is the HI-PR algorithm, 
which is proposed in this paper. The computation 
time of the HI-PR algorithm was tested and 
validated on several benchmark real-life case 
studies. 
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2. Network modeling of mineral deposits 
The first step in solving UPL using the network 

flow algorithms including HI-PR is to create a 
representative graph of the geological block model. 
In order to construct the corresponding graph, each 
block is considered as a vertex with the weight 
equal to the block economic value. Directed arc-
connected vertices are defined according to the 
precedence relationships. The most common 
patterns used to construct the precedence 
relationships are the 1:5 pattern (to extract a given 
block, five overlying blocks should be extracted in 
advance), 1:9 pattern, and 1:5:8 (or knight move) 
pattern [29]. Figure 1 shows a 2D side-view of a 

block model with nine blocks and the 
corresponding network model for both the original 
and reverse graphs. In this example, the precedence 
relations are generated according to a 1:3 pattern, 
and the block economic values are tagged inside 
the blocks. The next step is to add two dummy 
vertices as the source and the sink vertices 
 An arc should connect the source to .(݅ݏ and ݋ݏ)
each positive vertex, and an arc should originate 
from each negative vertex to the sink. The capacity 
of an arc between the source/sink and a vertex is 
equal to the economic value of the corresponding 
block. The arcs that represent the precedence 
relationships have an infinite capacity. 

-1-1

4-1

-1 -1

-1

-1

1
(1) (2) (3)

(4)

(9)(8)(7)

(6)(5)

 
(a) 

  
(b) (c) 

Figure 1. a) A simple 2D block model and its 1:3 precedence relations pattern; b) and c) are the corresponding 
original and reverse networks. 

3. Generic push–relabel algorithm 
A push–relabel algorithm is a polynomial-time 

algorithm for solving the maximum flow problem. 
As Hochbaum and Chen [9] have stated, this 
algorithm has been first presented by Goldberg. 
Ahuja et al. [30] have discussed the details of this 
algorithm and the other techniques that can 
improve the time complexity of this algorithm. 
According to Ahuja et al., the time complexity of 
the generic push–relabel algorithm is ܱ(݊݉ +
݊ଶ logܷ), where ݊ and ݉ represent the number of 

vertices and arcs, respectively, and U is the 
maximum edge capacity. 

In the push–relabel algorithm, a function ݀:ܰ →
ܼା ∪ {0} is defined and named the distance label 
for vertex ݅; ݀ is a valid function if: 

 
0

1 for , & ,
soi

i j

d
d d i j N i j A


    

 (5) 
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In addition, the arc ( , )i j  is an admissible arc if 
1i jd d  ; otherwise, it is an admissible arc. A 

path (a series of arcs) is called admissible if it only 
contains admissible arcs. 

The generic push–relabel algorithm starts by 
pushing all flows of the source to the adjacent 
vertices. Based on the vertex balance constraint, 
the excess ( ௜݁) flow of each vertex ݅ is calculated 
as Equation (6). 

:( , ) :( , )
0    -{ , }i ji il

j j i A l i l A
e x x i N So Si

 

      (6) 

௜݁ ≥ 0    for all nodes except source;  

௜݁ < 0    for source source;  

If ௜݁ > 0, the node ݅ is called an active vertex 
(except sink); otherwise, it is called an inactive 
vertex. 

 

In the next step, the algorithm selects one active 
vertex and tries to send the excess flows of this 
vertex to a sink or another node that is closer to the 
sink through admissible arcs. In order to find the 
admissible arcs, the distance label algorithm is 
applied. If all the outgoing arcs of node ݅ are 
saturated and ݁௜ is still non-zero, then vertex ݅ will 
be relabeled and ݁௜ will be returned to the source. 
This process terminates when all the excess flows 
are changed to zero. In order to show how the UPL 
problem is solved by the push–relabel algorithm, a 
2D instance of this problem is solved and the 
corresponding push and relabeling iterations are 
shown in Figure 2. 
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Figure 2. An example of determining the ultimate pit limit using the push–relabel algorithm. 
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4. HI-PR implementation of push–relabel 
algorithm 

Although the generic push–relabel algorithm is 
an efficient algorithm, a major downside may 
affect its efficiency. This drawback can be 
explained by considering Figure 3. In this figure, 
after pushing flow from the source to vertices 1, 2, 
and 3, the set {1, 2, 3} is considered as a list of 
active vertices. According to the push–relabel 
algorithm with the first-in first-out (FIFO) policy, 
vertex 3 is selected as the first active vertex, and 

two units of flow are pushed to the sink (vertex ݏ௜). 
As a result, vertex 3 is changed to an inactive 
vertex and omitted from the list of active vertices. 
Now, the set {1, 2} is a list of active vertices. 
Vertex 2 is selected, and two units of flow are 
pushed to vertex 3. Therefore, vertex 3 turns to an 
active vertex and is added to the back of the list. If 
the FIFO procedure continues for this example, it 
will be observed that vertex 3 is examined for three 
times, vertex 2 is examined twice, and therefore, 
the solution time increases. 

 
Figure 3. An example of a push–relabel algorithm and its computational inefficiency. 

The HI-PR implementation of the push–relabel 
algorithm has been discussed by Cherkassky and 
Goldberg [31]. As reviewed by Goldberg [32], this 
algorithm takes advantage of the highest-label 
selection rule, global labeling, and gap heuristic 
benefit in order to speed-up the solution time. 
Local re-labeling labels each vertex locally, and it 
may cause the graph to lose its distance label 
picture. Global re-labeling calculates the exact 
vertex distance from the sink using a backward 
breath-first search. This could be done in a linear 
time, and compared with local re-labeling is 
computationally more expensive. Global 
relabeling should run periodically after k re-label 
operations. This operation strongly improves the 
running time. 

Global re-labeling uses layers of the bucket data 
structure, which correspond to the vertex distance 

labels. Each layer contains the active and inactive 
buckets. A vertex ݒ with ݀(ݒ) = ݅ is in the active 
bucket ߙ௜ if ௙݁(௩) > 0, and in bucket ߚ௜  for the 
inactive bucket if ௙݁(௩) ≤ 0. The highest-label 
selection rule requires to maintain the index ߤ of 
the highest layer with a non-empty active bucket. 
During a re-label operation, if an active vertex is 
inserted to layer ݅ higher than the current value of 
 .the index should increase to ݅ [32] ,ߤ

At every step of the algorithm, ߙఓ must be 
examined. If it is empty, ߤ will be decreased, and 
if ߤ = 0, the algorithm is terminated; otherwise, the 
first active vertex of ߙఓ extracts to ݒ. If there is an 
admissible arc such as (ݓ,ݒ), the flow should be 
pushed along it. As a result of pushing the flow, 
௙݁(ݓ) may be increased from zero, which makes ݓ 

an active vertex. In this situation, ݓ will be 
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removed from ߚௗ(௪) and inserted to ߙௗ(௪). In 
another situation, ௙݁(ݓ) may be decreased to zero, 
which makes ݒ inactive. In this case, ݒ will be 
removed from the head of ߙௗ(௩) and inserted to 
 will be ݒ ,exists ݒ ௗ(௩). If no admissible arc out ofߚ
re-labeled. This operation increases ݀(ݒ) and ݒ 
will be extracted from the head of ߙௗᇲ(௩), where 
݀ᇱ(ݒ) is the old distance label of ݒ, and will be 
inserted to ߙௗ(௩). In this case, ߤ should be increased 
to ݀(ݒ). Then the algorithm will proceed to the 
next step [32]. 

The role of the gap heuristic is temporary to 
delete some of the vertices that cannot reach sink 

in regard to the validity of ݀. Suppose for 0 (݅ݏ) <
݅ < ݊, there is no vertex with a distance label of ݅ 
but some vertices ݓ have distance labels ݆: ݅ < ݆ <
݊. The validity of ݀ allows w to be temporarily 
deleted from the graph [32]. The layer modeling 
speeds-up the implementation of the gap heuristic. 
Global update places the remaining vertices in the 
appropriate buckets, and resets their current arcs to 
the corresponding first arcs. 

Although it is difficult to perform the HI-PR 
implementation manually, a simple example is 
shown in Error! Reference source not found.. 
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Figure 4. An example of an HI-PR implementation  
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Continues of Figure 4. An example of an HI-PR implementation. 
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According to the max-flow min-cut theorem, the 
maximum amount of flow passing from the source 
to the sink is equal to the total weight of the edges 
in the minimum cut; in other words, the smallest 
total weight of the edges that if removed, would 
disconnect the source from the sink. In order to 
determine the cut, source cut, and sink cut, after 
finalizing the max-flow algorithm, a depth first 
search (DFS) runs from the source in the residual 
graph and all vertices that can be reached from the 
source are source cut; otherwise, the sink cut and 
all edges that connect the source cut to the sink cut 
are then cut. The sink cut represents the ultimate pit 
limits. 

5. Numerical experiments 
In order to test the computational complexity of 

the HI-PR algorithm in solving the UPL problem, 
the proposed algorithm was applied to solve UPL 
for several real-life datasets. The datasets are 
available on the Minelib website [33], and they are 
publicly available as the test instances for three 
classical types of open-pit mine planning problems 

including the UPL problem and two other 
production scheduling problems. The 
specifications of the problem size including the 
number of decision variables (number of blocks) 
and constraints (number of precedence 
relationships) are presented in Table 1. These 
datasets are classified as small- to medium-size 
problems in the mining industry. Each dataset was 
solved using HI-PR as well as IBM ILOG CPLEX, 
version 12.6. CPLEX is a standard solver that 
employs a branch and bound algorithm in order to 
solve the integer programming problems. The 
computational times for both approaches are given 
in Table 2 and visualized in Figure 5. As it can be 
seen, the solution time of the CPLEX solver 
exponentially increases as the problem size 
increases. For the largest dataset with 112,687 
blocks and 3,035,483 precedence relations, the 
CPLEX solver could not find a feasible solution in 
two hours, while using HI-PR, the optimum 
solution was achieved in less than four minutes. As 
expected, and seen in Figure 5, the solution time by 
CPLEX increases exponentially, while there is a 
slight linear incremental trend for HI-PR. 

Table 2. Specifications of benchmark dataset and solution times. 

Instance Dataset name Number 
of blocks 

Number of 
precedencies 

CPLEX solution 
time (s) 

HI-PR solution 
time (s) 

1 Newman1 1060 3922 1.14 0.00 
2 Zuck_small 9400 145640 11.98 0.11 
3 Kd 14153 219778 18.80 0.18 
4 Zuck_medium 29277 1271207 135.29 1.43 
5 P4hd 40947 738609 65.67 0.61 
6 Marvin 53271 650631 50.74 0.47 
7 W23 74260 764786 75.87 0.71 
8 Zuck_large 96821 1053105 145.95 0.97 
9 Sm2 99014 96642 11.137 0.10 
10 Mclaughlin_limit 112687 3035483 - 3.99 

 

In addition, each case study was run 100 times to 
check the effect of the random element in the HI-
PR algorithm on the solution times. The results 
obtained are summarized in Table 3. As seen, the 
maximum running time for the largest instance is 
7.4 (worst case), which is still a reasonable time for 
such a medium-size problem. 

 
Figure 5. Solution time for HI-PR and CPLEX. 
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Table 3. Descriptive statistics of HI-PR solutions for 100 runs. 
Instance Block model Average of run time (s) Std (s) Min (s) Max (s) #Blocks #Precedence 

1 Newman1 0.00 0.00 0.00 0.00 1060 3922 
2 Zuck_small 0.12 0.03 0.08 0.22 9400 145640 
3 Kd 0.19 0.04 0.13 0.29 14153 219778 
4 Zuck_medium 1.43 0.30 1.03 2.27 29277 1271207 
5 P4hd 0.61 0.08 0.48 0.93 40947 738609 
6 Marvin 0.47 0.07 0.37 0.72 53271 650631 
7 W23 0.72 0.09 0.55 1.05 74260 761453 
8 Zuch_large 0.98 0.13 0.78 1.40 96821 1053105 
9 Sm2 0.11 0.02 0.08 0.23 99014 96642 

10 Mclaughlin_limit 3.99 0.72 2.51 7.41 112687 3035483 
 

If an engineer wishes to design a mine according 
to a few possible scenarios, CPLEX or other 
polynomial-time algorithms such as a generic 
push–relabel algorithm can solve UPL for the 
optimum solution. However, regarding different 
sources of uncertainties in the mining industry, a 
common practice would be running multiple 
scenarios in order to evaluate the risk of the project, 
understanding best- and worst-case scenarios, and 
eventually, making the best decision. In a common 
case, one may generate 100 possible realizations of 
the orebody (due to grade uncertainty). In addition 
to grade, variation in the commodity prices may 
force the managers and designers to evaluate 100 
simulations of the price. In such a situation, 10000 
UPL problems must be solved. If the sensitivity 
analysis on other parameters such as unit cost of 
mining is also considered, then an even larger 
number of scenarios must be evaluated. For 
example, in another try-and-evaluate method, the 
mine production rate is also achieved by analyzing 
a range of production capacities to obtain the best 
production rate. Therefore, adding 10 more 
scenarios of production rate leads to 100000 
possible scenarios. Solving UPL in such a situation 
and for a medium-size deposit (such as Zuck_large 
in Table 2 with 96821 blocks) by CPLEX takes 
4054 h of computer running time, while the same 
situation takes only 27 h using HI-PR. This 
example clearly shows that the faster solution 
techniques are required, although UPL can be 
optimally solved by the other algorithms. 
Considering that in some mines the block models 
could be a few million blocks, a fast and reliable 
technique such as the HI-PR algorithm is a must in 
order to achieve a low-risk mine design and 
planning. 

6. Conclusions 
The UPL problem is a basic optimization 

problem in surface mining. UPL determines the 
final shape of the mine. Indeed, UPL selects the 

profitable area of mining, and all the other 
planning, scheduling, design, and equipment 
selection will be optimized based on the results of 
solving UPL. The UPL problem is a discrete 
optimization problem such that in large-size 
instances, a few million decision variables must be 
assigned values under several million constraints. 
In this work, the HI-PR algorithm was 
implemented in order to solve the UPL faster than 
the previous algorithms. The computational time 
was tested on several benchmark datasets and 
compared with the results of the exact solution by 
IMB ILOG CPLEX. The solution time for the 
largest dataset, named mclaughlin_limit with 
112,267 decision variables and 3,035,483 
constraints, is 4 s on average. In addition, in order 
to verify the robustness of the proposed algorithm, 
each one of the case studies was solved 100 times. 
The maximum solution time was 7.4 s for the most 
extensive dataset. Thus the results clearly 
demonstrate the strength of the HI-PR algorithm in 
achieving the optimum solution in a short period of 
time. This verifies that this algorithm would be 
very useful when the solution of hundreds of 
thousands of scenarios is required or when changes 
are frequently happening in the input and technical 
parameters. As the HI-PR algorithm is a 
polynomial algorithm, a solution can be found in a 
reasonable time period even if the size of the 
problem is large. This is the strength of this 
algorithm, which can be highly beneficial when the 
ore deposit is very large or the block size is small 
and sub-cells are included in the block model. 
However, the same as the other exact algorithms 
for the UPL problem, HI-PR is not flexible to 
include extra constraints (other than the precedence 
constraints). A future research work will focus on 
implementing this algorithm in order to solve the 
next steps of the long-term and short-term 
production scheduling in a real-time manner. 
Moreover, this algorithm can be implemented in 
the simultaneous optimization of open-pit and 
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underground mine design and planning to optimize 
the open-pit to the underground transition time. 
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  چکیده:

 روباز، ضروري استمحور در طراحی معادن -هاي اقتصادي و زمین شناسی و همچنین افزایش استفاده از روش ارزیابی سناریوامروزه و با در نظر گرفتن عدم قطعیت
 سازي مهم است که جواب آنتا الگوریتم دقیق و سریعی براي حل مسئله محدوده نهایی معدن استفاده شود. تعیین محدوده نهایی معادن روباز یک مسئله بهینه

 هاي معدنب ماشین آلات و موقعیت زیرساختهاي معدنکاري، درآمد، انتخاتعیین کننده میزان نهایی استخراج سنگ از معدن است و به طور مستقیم بر هزینه
 شود. در این مقاله، از پیاده سازيسازي سود غیرتنزیلی و تحت محدودیت پیش نیازي (محدودیت دسترسی) حل میگذارد. این مسئله با هدف بیشینهتاثیر می
ود. این الگوریتم از قواعد انتخاب بالاترین برچسب، به روز رسانی کلی شبرچسب براي حل مسئله محدوده نهایی معدن استفاده می-سطح الگوریتم ارسال-بالاترین

ها به صورت عمومی در هاي آنمطالعه موردي که داده 9کند. الگوریتم پیشنهادي، براي حل هاي ابتکاري براي کاهش زمان حل مسئله استفاده میو الگوریتم
ه موردي با ترین مطالعباشد. براي پیچیدههاي دیگر کمتر میان حل این الگوریتم نسبت به الگوریتمدسترس هستند، به کار گرفته شد. نتایج نشان داد که زم

 IBMباشد. این در حالی است که براي این مورد، نرم افزارثانیه می 4تکرار کمتر از  100محدودیت، متوسط زمان حل براي  3035483بلوك و  112687
CPLEX   هاي برخط برطرف کند. ریزيتواند چالش زمان حل طولانی را در برنامهساعت پیدا نکرد. این بالا بردن سرعت می 24جوابی را در مدت 
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