

Journal of Mining and Environment (JME), Vol. 12, No. 2, 2021, 443-455

 Corresponding author: a_mousavi@modares.ac.ir (A. Mousavi).

Shahrood
University of
Technology

Iranian Society
of Mining

Engineering
(IRSME)

Journal of Mining and Environment (JME)

journal homepage: www.jme.shahroodut.ac.ir

Highest-Level Implementation of Push–Relabel Algorithm to Solve
Ultimate Pit Limit Problem

Mahdi Talaie, Amin Mousavi* and Ahmad Reza Sayadi

Department of Mining Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran

Article Info Abstract

Received 19 January 2021
Received in Revised form 27
February 2021
Accepted 15 March 2021
Published online 15 March 2021

DOI:10.22044/jme.2021.10481.1999

 Nowadays due to the existence of the economic and geological uncertainties and the
increasing use of scenario-based project evaluation in the design of open-pit mines, it
is necessary to find an exact algorithm that can determine the ultimate pit limit in a
short period of time. Determining the ultimate pit limit is an important optimization
problem that is solved to define what will be eventually extracted from the ground,
and directly impacts the mining costs, revenue, choosing mining equipment, and
approximation of surface infrastructures outside the pit. This problem is solved in
order to maximize the non-discounted profit under the precedence relation (access)
constraints. In this paper, the Highest-Level Push-Relabel (HI-PR) implementation of
the push–relabel algorithm is discussed and applied in order to solve the ultimate pit
limit optimization problem. HI-PR uses the highest-label selection rule, global update,
and gap heuristics to reduce the computations. The proposed algorithm is implemented
to solve the ultimate pit limit for the nine real-life benchmark case study publicly
available on the Minelib website. The results obtained show that the HI-PR algorithm
can reach the optimum solution in a less computational time than the currently
implemented algorithms. For the largest dataset, which includes 112687 blocks and
3,035,483 constraints, the average solution time in 100 runs of the algorithm is 4 s,
while IBM CPLEX, as an exact solver, could not find any feasible solution in 24 hours.
This speeding-up capability can significantly improve the current challenges in the
real-time mine planning and reconciliation, where fast and reliable solutions are
required.

Keywords

Graph Theory
HI-PR
Push–Relabel
Maximum Flow
Open Pit

Abbreviation
2D: Two Dimensional

3D: Three Dimensional

DFS: Depth First Search

FIFO: First-in, First-out

HI-PR: Highest-Level Implementation of Push–
Relabel

LG: Lerchs and Grossmann

Minelib: A library of Open-Pit Mining Problems

UPL: Ultimate Pit Limit

1. Introduction

Open-pit mine planning consists of a series of
decision-making problems including defining the
ultimate minable shape of a given mineral deposit
and its overlying waste rocks. The optimum
ultimate pit limit (UPL) defines a boundary that
leads to the maximum non-discounted profit under
the physical and pre-defined techno-economic
configurations of the project. The pre-defined term
states that any change in the input parameters such
as the commodity price could potentially affect the
whole profile of mining cash flow. An excellent
mine planning tool should be able to respond to the
input changes in a short period of time in order to
prevent the production deficit. It is worth noting

mailto:a_mousavi@modares.ac.ir
http://www.jme.shahroodut.ac.ir

Talaie et al Journal of Mining & Environment, Vol. 12, No. 2, 2021

444

that a mine plan that improves 1% in the net present
value can represent millions of dollars in respect to
the mining operation scale.

The UPL determination is the main core of a
mine planning practice. From a discrete
optimization viewpoint, UPL is formed by a set of
rectangular blocks that should be extracted from
the ground in the entire life of the mine. A block is
a part of the mining area that represents a certain
volume of rock with its estimated attributes. A set
of such blocks is called a geological block model.
The attributes such as the ore grade and density are
estimated for each block using the geostatistical
methods based on the exploration studies [1]. The
economic values of blocks are calculated
considering a cut-off grade, mining and processing
costs, product price, and other technical parameters
such as the mining recovery. The blocks with a
positive value are defined as ore; otherwise, as
waste. The optimum UPL is a boundary of mining
that achieves the maximum positive value of
extraction.

In order to model the UPL problem, it is crucial
to obtain the block economic value from Equation
(1), presented by Bakhtavar et al. [2], where iv is
the block economic value, P is the unit selling
price of ore, sC is the unit selling cost of ore, r is
the total ore recovery, ig is the block grade, oT is

the total amount of ore in block, oC is the unit
operational cost of ore extraction, wC is the unit
cost of waste removal, and wT is the total amount
of waste in each block.

().i s i o o o w wv P C r g T C T C T    (1)

The UPL problem can be modeled as a binary
programming model as Equation 2, where ݔ is the
decision variable for mining of block ݅, ݒ is the
economic value of block ݅, and ܤ is the set of all
blocks.

Maximize i i
i B

v x

 (2)

Subject to i jx x
(3) , & ii j B j A  

{0,1}ix 
(4) i B

In the above model, ܣ௜ is a set of blocks that must
be extracted before block ݅ to physically and safely
access this block. The number of predecessors in

௜ܣ may vary for different blocks depending on the
location of block ݅, regional geological structure,
and rock stability measures. ܣ௜ is called a
predecessor set for block ݅, and it should be defined
before running a solver for the UPL model. The
model presented above is used for determination of
UPL in all algorithms.

Solving the UPL problem has been an interesting
optimization problem since the emergence of the
personalized computer age in the 1960s.
Surprisingly, in an early study, a polynomial graph-
based algorithm has been presented by Lerchs and
Grossmann [3] that is able to obtain the optimum
solution for the UPL problem. This algorithm is
known as the LG algorithm, and is widely used in
the mine design packages [4]. However, the
complexity of the algorithm and the low-capacity
computers directed other researchers toward
developing new solution techniques. Zhao and Kim
[5] have appended some heuristics to the original
LG algorithm in order to reduce the computation
time while keeping the optimality of the solution.
Khalokakaie and Dowd [6] have extended a
modified version of the LG algorithm with the
capability of considering variable wall slopes,
which imply a variable predecessor set. Giannini
[7] has applied a maximum flow algorithm in order
to solve the UPL problem. Underwood and
Tolwinski [8] have proposed a combined
mathematical programming and graph theory
approach and, employing a dual simplex algorithm
to find the optimum solution of the UPL problem.
Hochbaum and Chen [9] have discussed the LG
algorithm’s computational complexity, applying a
maximum flow push–relabel algorithm to solve
UPL.

Several studies have used dynamic programming
for the UPL problem. In the study by Lerchs and
Grossmann [3], a dynamic programming algorithm
has been proposed for the 2D optimization of UPL.
Later, Koenigsberg [10] presented a dynamic
programming algorithm in order to solve the
problem in a 3D approach. Erarslan and Celebi [11]
have added production sequencing to the original
UPL problem and have used a dynamic
programming algorithm to optimize both problems
simultaneously. Najafi et al. [12] have proposed
the Dijkstra’s algorithm in order to solve UPL and
have compared it using the 2D dynamic
programming.

Since 1965 and the emergence of the UPL
problem, several heuristics approaches have been
proposed in order to solve the problem in a shorter
period of time. Pana [13] has proposed a floating
cone algorithm, and Wright [14] has extended a

Talaie et al Journal of Mining & Environment, Vol. 12, No. 2, 2021

445

modified version of this algorithm. The floating
cone algorithm was widely used in the early days
of computerized mine planning due to its simplicity
and its low computational complexity. Achireko
and Frimpong [15, 16] and Sayadi et al. [17] have
used the neural network-based heuristics in order
to solve the problem under uncertainty and
deleterious element constraints. A brief summary
of the UPL solution algorithms is shown in Table
1.

Although solving the generic form of the UPL
problem is not a challenge, finding a
computationally cheaper algorithm to solve the
UPL problem is still of interest to the mine planners
and managers for several reasons. First,
revolutionizing technology in data collection
creates new inputs for mine planning, which
enforces extensive reconciliation efforts. Secondly,

commodity price volatility and inherent grade
uncertainty necessitate fast and reliable solution
techniques to solve UPL for a few million
simulation realizations. Thirdly, the UPL solution
will still be the main pillar of automatic-oriented
mine planning tools and practice such as automated
road design [18] or open-pit to the underground
transition optimization problem [19]. Finally, a
more flexible algorithm is of interest to the
variation of the UPL problem where an additional
constraint may be added to the generic version of
UPL. Consideration of mining royalty [20] or semi
and full in-pit crushing [21, 22] are examples of the
extended UPL problem. Therefore, a flexible
algorithm is required to use in such more
sophisticated instances.

Table 1. A brief summary of previous UPL algorithms.
Researcher(s) Year Optimization method Exact algorithm 3D model

Lerchs & Grossmann [3] 1965 Dynamic programing Yes No
Lerchs & Grossmann[3] 1965 Graph theory Yes Yes
Pana [13] 1965 Heuristic No No
Meyer [23] 1969 Linear programing Yes Yes
Janson & Sharp [24] 1971 Dynamic programing No Yes
Koenigsberg [10] 1982 Dynamic programing Yes Yes
Giannini [7] 1990 Graph theory Yes Yes
Zhao & Kim [5] 1992 Graph theory No Yes
Underwood & Tolwinski [8] 1998 Graph theory Yes Yes
Frimpong & Achireko [25] 1998 Heuristic No Yes
Wright [14] 1999 Heuristic No No
Khalokakaei & Dowd [6] 2000 Graph theory Yes Yes
Hochbaum & Chen [9] 2000 Graph theory Yes Yes
Erarsalan & Celebi [26] 2001 Dynamic programming Yes Yes
Frimpong [27] 2002 Heuristic No Yes
Sayyadi et al. [17] 2011 Heuristic No Yes
Elahi et al. [28] 2012 Heuristic No No
Hay et al. [22] 2019 Hybrid heuristic and graph theory No Yes

In this work, the so-called HI-PR implementation

of the push–relabel algorithm was coded and used
to solve the UPL problem. The implementation of
this algorithm for the UPL problem is the novelty
of this paper. Although several exact algorithms in
the literature have been applied to optimally solve
the UPL problem, the implemented HI-PR
algorithm can significantly improve the solution
time. A successful implementation of this
algorithm will be a key pillar of the upcoming

research projects for real-time capacitated UPL and
scenario-based production planning and
optimization problems, which are not in the scope
of this paper. However, the main part of the
solutions to those problems is the HI-PR algorithm,
which is proposed in this paper. The computation
time of the HI-PR algorithm was tested and
validated on several benchmark real-life case
studies.

Talaie et al Journal of Mining & Environment, Vol. 12, No. 2, 2021

446

2. Network modeling of mineral deposits
The first step in solving UPL using the network

flow algorithms including HI-PR is to create a
representative graph of the geological block model.
In order to construct the corresponding graph, each
block is considered as a vertex with the weight
equal to the block economic value. Directed arc-
connected vertices are defined according to the
precedence relationships. The most common
patterns used to construct the precedence
relationships are the 1:5 pattern (to extract a given
block, five overlying blocks should be extracted in
advance), 1:9 pattern, and 1:5:8 (or knight move)
pattern [29]. Figure 1 shows a 2D side-view of a

block model with nine blocks and the
corresponding network model for both the original
and reverse graphs. In this example, the precedence
relations are generated according to a 1:3 pattern,
and the block economic values are tagged inside
the blocks. The next step is to add two dummy
vertices as the source and the sink vertices
 An arc should connect the source to .(݅ݏ and ݋ݏ)
each positive vertex, and an arc should originate
from each negative vertex to the sink. The capacity
of an arc between the source/sink and a vertex is
equal to the economic value of the corresponding
block. The arcs that represent the precedence
relationships have an infinite capacity.

-1-1

4-1

-1 -1

-1

-1

1
(1) (2) (3)

(4)

(9)(8)(7)

(6)(5)

(a)

(b) (c)

Figure 1. a) A simple 2D block model and its 1:3 precedence relations pattern; b) and c) are the corresponding
original and reverse networks.

3. Generic push–relabel algorithm
A push–relabel algorithm is a polynomial-time

algorithm for solving the maximum flow problem.
As Hochbaum and Chen [9] have stated, this
algorithm has been first presented by Goldberg.
Ahuja et al. [30] have discussed the details of this
algorithm and the other techniques that can
improve the time complexity of this algorithm.
According to Ahuja et al., the time complexity of
the generic push–relabel algorithm is ܱ(݊݉ +
݊ଶ logܷ), where ݊ and ݉ represent the number of

vertices and arcs, respectively, and U is the
maximum edge capacity.

In the push–relabel algorithm, a function ݀:ܰ →
ܼା ∪ {0} is defined and named the distance label
for vertex ݅; ݀ is a valid function if:

 
0

1 for , & ,
soi

i j

d
d d i j N i j A


    

 (5)

Talaie et al Journal of Mining & Environment, Vol. 12, No. 2, 2021

447

In addition, the arc (,)i j is an admissible arc if
1i jd d  ; otherwise, it is an admissible arc. A

path (a series of arcs) is called admissible if it only
contains admissible arcs.

The generic push–relabel algorithm starts by
pushing all flows of the source to the adjacent
vertices. Based on the vertex balance constraint,
the excess (௜݁) flow of each vertex ݅ is calculated
as Equation (6).

:(,) :(,)
0 -{ , }i ji il

j j i A l i l A
e x x i N So Si

 

     (6)

௜݁ ≥ 0 for all nodes except source;

௜݁ < 0 for source source;

If ௜݁ > 0, the node ݅ is called an active vertex
(except sink); otherwise, it is called an inactive
vertex.

In the next step, the algorithm selects one active
vertex and tries to send the excess flows of this
vertex to a sink or another node that is closer to the
sink through admissible arcs. In order to find the
admissible arcs, the distance label algorithm is
applied. If all the outgoing arcs of node ݅ are
saturated and ݁௜ is still non-zero, then vertex ݅ will
be relabeled and ݁௜ will be returned to the source.
This process terminates when all the excess flows
are changed to zero. In order to show how the UPL
problem is solved by the push–relabel algorithm, a
2D instance of this problem is solved and the
corresponding push and relabeling iterations are
shown in Figure 2.

so

6

321

9

4 5

si

7 8

d5=2
e5=4

d4=1
e4=0

d7=1
e7=0

d8=
e8=

d9=1
e9=0

1

1 1
1 1

1

4

1

1

d3=1
e3=0

d2=2
e2=1

d1=1
e1=0

d6=1
e6=0

F=0

so

6

321

9

4 5

si

7 8

d5=2
e5=4

d4=1
e4=0

d7=1
e7=0

d8=1
e8=0

d9=1
e9=0

1

1 1
1 1

1

4

1

1

d3=1
e3=0

d2=2
e2=0

d1=1
e1=0

d6=2
e6=0

F=1

so

6

321

9

4 5

si

7 8

dsi=0
esi=0

d5=2
e5=0

d4=1
e4=0

d7=1
e7=0

d8=1
e8=0

d9=1
e9=0

dso=3
eso=5

1

1 1
1 1

1

4

1

1

d3=1
e3=0

d2=2
e2=0

d1=1
e1=0

d6=1
e6=0

F=0 dsi=0
esi=0

dso=11
eso=-5

dsi=0
esi=1

dso=11
eso=-5 so

6

321

9

4 5

si

7 8

d5=2
e5=3

d4=1
e4=0

d7=1
e7=0

d8=1
e8=0

d9=3
e9=0

1

1 1
1 1

1

4

1

1

d3=1
e3=0

d2=2
e2=0

d1=1
e1=0

d6=2
e6=0

F=2dsi=0
esi=2

dso=11
eso=-5

so

6

321

9

4 5

si

7 8

d5=2
e5=2

d4=1
e4=0

d7=1
e7=0

d8=3
e8=0

1

1 1
1 1

1

4

1

1

d2=2
e2=0

d1=1
e1=0

dsi=0
esi=3

dso=11
eso=-5

1
1

1

d9=3
e9=0

d3=1
e3=0

d6=3
e6=0

F=3

so

6

321

9

4 5

si

7 8

d5=12
e5=1

d4=1
e4=0

d7=13
e7=0

d8=13
e8=0

1

1 1
1 1

1

4

1

1

d2=2
e2=0

d1=1
e1=0

dsi=0
esi=3

dso=11
eso=-5

1
1

1

d9=13
e9=0

d3=1
e3=0

d6=3
e6=0

F=4

1

1

1
1

Original network Iteration 1

Iteration 5Iteration 4

Iteration 2 Iteration 3

Figure 2. An example of determining the ultimate pit limit using the push–relabel algorithm.

Talaie et al Journal of Mining & Environment, Vol. 12, No. 2, 2021

448

4. HI-PR implementation of push–relabel
algorithm

Although the generic push–relabel algorithm is
an efficient algorithm, a major downside may
affect its efficiency. This drawback can be
explained by considering Figure 3. In this figure,
after pushing flow from the source to vertices 1, 2,
and 3, the set {1, 2, 3} is considered as a list of
active vertices. According to the push–relabel
algorithm with the first-in first-out (FIFO) policy,
vertex 3 is selected as the first active vertex, and

two units of flow are pushed to the sink (vertex ݏ௜).
As a result, vertex 3 is changed to an inactive
vertex and omitted from the list of active vertices.
Now, the set {1, 2} is a list of active vertices.
Vertex 2 is selected, and two units of flow are
pushed to vertex 3. Therefore, vertex 3 turns to an
active vertex and is added to the back of the list. If
the FIFO procedure continues for this example, it
will be observed that vertex 3 is examined for three
times, vertex 2 is examined twice, and therefore,
the solution time increases.

Figure 3. An example of a push–relabel algorithm and its computational inefficiency.

The HI-PR implementation of the push–relabel
algorithm has been discussed by Cherkassky and
Goldberg [31]. As reviewed by Goldberg [32], this
algorithm takes advantage of the highest-label
selection rule, global labeling, and gap heuristic
benefit in order to speed-up the solution time.
Local re-labeling labels each vertex locally, and it
may cause the graph to lose its distance label
picture. Global re-labeling calculates the exact
vertex distance from the sink using a backward
breath-first search. This could be done in a linear
time, and compared with local re-labeling is
computationally more expensive. Global
relabeling should run periodically after k re-label
operations. This operation strongly improves the
running time.

Global re-labeling uses layers of the bucket data
structure, which correspond to the vertex distance

labels. Each layer contains the active and inactive
buckets. A vertex ݒ with ݀(ݒ) = ݅ is in the active
bucket ߙ௜ if ௙݁(௩) > 0, and in bucket ߚ௜ for the
inactive bucket if ௙݁(௩) ≤ 0. The highest-label
selection rule requires to maintain the index ߤ of
the highest layer with a non-empty active bucket.
During a re-label operation, if an active vertex is
inserted to layer ݅ higher than the current value of
 .the index should increase to ݅ [32] ,ߤ

At every step of the algorithm, ߙఓ must be
examined. If it is empty, ߤ will be decreased, and
if ߤ = 0, the algorithm is terminated; otherwise, the
first active vertex of ߙఓ extracts to ݒ. If there is an
admissible arc such as (ݓ,ݒ), the flow should be
pushed along it. As a result of pushing the flow,
௙݁(ݓ) may be increased from zero, which makes ݓ

an active vertex. In this situation, ݓ will be

Talaie et al Journal of Mining & Environment, Vol. 12, No. 2, 2021

449

removed from ߚௗ(௪) and inserted to ߙௗ(௪). In
another situation, ௙݁(ݓ) may be decreased to zero,
which makes ݒ inactive. In this case, ݒ will be
removed from the head of ߙௗ(௩) and inserted to
 will be ݒ ,exists ݒ ௗ(௩). If no admissible arc out ofߚ
re-labeled. This operation increases ݀(ݒ) and ݒ
will be extracted from the head of ߙௗᇲ(௩), where
݀ᇱ(ݒ) is the old distance label of ݒ, and will be
inserted to ߙௗ(௩). In this case, ߤ should be increased
to ݀(ݒ). Then the algorithm will proceed to the
next step [32].

The role of the gap heuristic is temporary to
delete some of the vertices that cannot reach sink

in regard to the validity of ݀. Suppose for 0 (݅ݏ) <
݅ < ݊, there is no vertex with a distance label of ݅
but some vertices ݓ have distance labels ݆: ݅ < ݆ <
݊. The validity of ݀ allows w to be temporarily
deleted from the graph [32]. The layer modeling
speeds-up the implementation of the gap heuristic.
Global update places the remaining vertices in the
appropriate buckets, and resets their current arcs to
the corresponding first arcs.

Although it is difficult to perform the HI-PR
implementation manually, a simple example is
shown in Error! Reference source not found..

0 0

1 1

2 2

3 3

{} { }
{} {2,3}
{} {1}
{} { }

BFS
Si

So

 
 
 
 

 

 
 

 

0 0

1 1

2 2

3 3

{} { }
{} {2,3}
{1} {}
{} { }
2

Si

So

 
 
 
 


 
 
 
 


0 0

1 1

2 2

3 3

{} { }
{2} {3}
{1} {}
{} { }
2

Si

So

 
 
 
 


 
 
 
 


0 0

1 1

2 2

3 3

4 4

{} { }
{2} {3}
{} {}
{} { }
{1} {}

4

Si

So

 
 
 
 
 


 
 
 
 
 


Figure 4. An example of an HI-PR implementation

Talaie et al Journal of Mining & Environment, Vol. 12, No. 2, 2021

450

0 0

1 1

2 2

3 3

4 4

{} { }
{2} {3}
{} {}
{} { }
{} {1}

1

Si

So

 
 
 
 
 


 
 
 
 
 


0 0

1 1

2 2

3 3

4 4

{} { }
{3} {}
{2} {}
{} { }
{} {1}

2

Si

So

 
 
 
 
 


 
 
 
 
 


0 0

1 1

2 2

3 3

{} { }
{2,3} {}
{} {1}
{} { }

1

BFS
Si

So

 
 
 
 


 
 

 
 



0 0

1 1

2 2

3 3

{} { }
{3} {}
{1} {}
{} { ,2}
2

Si

So

 
 
 
 


 
 
 
 


0 0

1 1

2 2

3 3

4 4

{} { }
{3} {}
{} {}
{} { ,2}
{} {1}

1

Si

So

 
 
 
 
 


 
 
 
 
 


0 0

1 1

2 2

3 3

{} { }
{} {2,3}
{} {1}
{} { }
0

BFS
Si

So

 
 
 
 


 
 

 
 



Continues of Figure 4. An example of an HI-PR implementation.

Talaie et al Journal of Mining & Environment, Vol. 12, No. 2, 2021

451

According to the max-flow min-cut theorem, the
maximum amount of flow passing from the source
to the sink is equal to the total weight of the edges
in the minimum cut; in other words, the smallest
total weight of the edges that if removed, would
disconnect the source from the sink. In order to
determine the cut, source cut, and sink cut, after
finalizing the max-flow algorithm, a depth first
search (DFS) runs from the source in the residual
graph and all vertices that can be reached from the
source are source cut; otherwise, the sink cut and
all edges that connect the source cut to the sink cut
are then cut. The sink cut represents the ultimate pit
limits.

5. Numerical experiments
In order to test the computational complexity of

the HI-PR algorithm in solving the UPL problem,
the proposed algorithm was applied to solve UPL
for several real-life datasets. The datasets are
available on the Minelib website [33], and they are
publicly available as the test instances for three
classical types of open-pit mine planning problems

including the UPL problem and two other
production scheduling problems. The
specifications of the problem size including the
number of decision variables (number of blocks)
and constraints (number of precedence
relationships) are presented in Table 1. These
datasets are classified as small- to medium-size
problems in the mining industry. Each dataset was
solved using HI-PR as well as IBM ILOG CPLEX,
version 12.6. CPLEX is a standard solver that
employs a branch and bound algorithm in order to
solve the integer programming problems. The
computational times for both approaches are given
in Table 2 and visualized in Figure 5. As it can be
seen, the solution time of the CPLEX solver
exponentially increases as the problem size
increases. For the largest dataset with 112,687
blocks and 3,035,483 precedence relations, the
CPLEX solver could not find a feasible solution in
two hours, while using HI-PR, the optimum
solution was achieved in less than four minutes. As
expected, and seen in Figure 5, the solution time by
CPLEX increases exponentially, while there is a
slight linear incremental trend for HI-PR.

Table 2. Specifications of benchmark dataset and solution times.

Instance Dataset name Number
of blocks

Number of
precedencies

CPLEX solution
time (s)

HI-PR solution
time (s)

1 Newman1 1060 3922 1.14 0.00
2 Zuck_small 9400 145640 11.98 0.11
3 Kd 14153 219778 18.80 0.18
4 Zuck_medium 29277 1271207 135.29 1.43
5 P4hd 40947 738609 65.67 0.61
6 Marvin 53271 650631 50.74 0.47
7 W23 74260 764786 75.87 0.71
8 Zuck_large 96821 1053105 145.95 0.97
9 Sm2 99014 96642 11.137 0.10
10 Mclaughlin_limit 112687 3035483 - 3.99

In addition, each case study was run 100 times to
check the effect of the random element in the HI-
PR algorithm on the solution times. The results
obtained are summarized in Table 3. As seen, the
maximum running time for the largest instance is
7.4 (worst case), which is still a reasonable time for
such a medium-size problem.

Figure 5. Solution time for HI-PR and CPLEX.

Talaie et al Journal of Mining & Environment, Vol. 12, No. 2, 2021

452

Table 3. Descriptive statistics of HI-PR solutions for 100 runs.
Instance Block model Average of run time (s) Std (s) Min (s) Max (s) #Blocks #Precedence

1 Newman1 0.00 0.00 0.00 0.00 1060 3922
2 Zuck_small 0.12 0.03 0.08 0.22 9400 145640
3 Kd 0.19 0.04 0.13 0.29 14153 219778
4 Zuck_medium 1.43 0.30 1.03 2.27 29277 1271207
5 P4hd 0.61 0.08 0.48 0.93 40947 738609
6 Marvin 0.47 0.07 0.37 0.72 53271 650631
7 W23 0.72 0.09 0.55 1.05 74260 761453
8 Zuch_large 0.98 0.13 0.78 1.40 96821 1053105
9 Sm2 0.11 0.02 0.08 0.23 99014 96642

10 Mclaughlin_limit 3.99 0.72 2.51 7.41 112687 3035483

If an engineer wishes to design a mine according
to a few possible scenarios, CPLEX or other
polynomial-time algorithms such as a generic
push–relabel algorithm can solve UPL for the
optimum solution. However, regarding different
sources of uncertainties in the mining industry, a
common practice would be running multiple
scenarios in order to evaluate the risk of the project,
understanding best- and worst-case scenarios, and
eventually, making the best decision. In a common
case, one may generate 100 possible realizations of
the orebody (due to grade uncertainty). In addition
to grade, variation in the commodity prices may
force the managers and designers to evaluate 100
simulations of the price. In such a situation, 10000
UPL problems must be solved. If the sensitivity
analysis on other parameters such as unit cost of
mining is also considered, then an even larger
number of scenarios must be evaluated. For
example, in another try-and-evaluate method, the
mine production rate is also achieved by analyzing
a range of production capacities to obtain the best
production rate. Therefore, adding 10 more
scenarios of production rate leads to 100000
possible scenarios. Solving UPL in such a situation
and for a medium-size deposit (such as Zuck_large
in Table 2 with 96821 blocks) by CPLEX takes
4054 h of computer running time, while the same
situation takes only 27 h using HI-PR. This
example clearly shows that the faster solution
techniques are required, although UPL can be
optimally solved by the other algorithms.
Considering that in some mines the block models
could be a few million blocks, a fast and reliable
technique such as the HI-PR algorithm is a must in
order to achieve a low-risk mine design and
planning.

6. Conclusions
The UPL problem is a basic optimization

problem in surface mining. UPL determines the
final shape of the mine. Indeed, UPL selects the

profitable area of mining, and all the other
planning, scheduling, design, and equipment
selection will be optimized based on the results of
solving UPL. The UPL problem is a discrete
optimization problem such that in large-size
instances, a few million decision variables must be
assigned values under several million constraints.
In this work, the HI-PR algorithm was
implemented in order to solve the UPL faster than
the previous algorithms. The computational time
was tested on several benchmark datasets and
compared with the results of the exact solution by
IMB ILOG CPLEX. The solution time for the
largest dataset, named mclaughlin_limit with
112,267 decision variables and 3,035,483
constraints, is 4 s on average. In addition, in order
to verify the robustness of the proposed algorithm,
each one of the case studies was solved 100 times.
The maximum solution time was 7.4 s for the most
extensive dataset. Thus the results clearly
demonstrate the strength of the HI-PR algorithm in
achieving the optimum solution in a short period of
time. This verifies that this algorithm would be
very useful when the solution of hundreds of
thousands of scenarios is required or when changes
are frequently happening in the input and technical
parameters. As the HI-PR algorithm is a
polynomial algorithm, a solution can be found in a
reasonable time period even if the size of the
problem is large. This is the strength of this
algorithm, which can be highly beneficial when the
ore deposit is very large or the block size is small
and sub-cells are included in the block model.
However, the same as the other exact algorithms
for the UPL problem, HI-PR is not flexible to
include extra constraints (other than the precedence
constraints). A future research work will focus on
implementing this algorithm in order to solve the
next steps of the long-term and short-term
production scheduling in a real-time manner.
Moreover, this algorithm can be implemented in
the simultaneous optimization of open-pit and

Talaie et al Journal of Mining & Environment, Vol. 12, No. 2, 2021

453

underground mine design and planning to optimize
the open-pit to the underground transition time.

References
[1]. Mousavi, A., Sayadi, A.R., and Fathianpour, N.
(2016). A comparative study of kriging and simulation-
based methods in classifying ore and waste blocks.
Arabian Journal of Geosciences, 9(17): p. 691-700.

[2]. Bakhtavar, E., Abdollahisharif, J., and Aminzadeh,
A. (2017). A stochastic mathematical model for
determination of transition time in the non-simultaneous
case of surface and underground mining. Journal of the
Southern African Institute of Mining and Metallurgy,
117 (12): p. 1145-1153.

[3]. Lerchs, H. and Grossmann, I. (1965). Optimum
design of open pit mines. Transaction on CIM, LX VIII:
p. 17-24.

[4]. Mousavi, A., (2015). Optimisation of open pit mine
block sequencing. Queensland University of
Technology: Australia.

[5]. Zhao, Y. and Kim, Y.C. (1992). A new optimum pit
limit design algorithm, in Proceedings of 23rd APCOP.
Society for Mining, Metallurgy and Exploration:
Littleton, Colorado. p. 423-434.

[6]. Khalokakaie, R., Dowd, P.A., and Fowell, R.J.
(2000). Lerchs–Grossmann algorithm with variable
slope angles. Mining Technology, 109 (2): p. 77-85.

[7]. Giannini, L., (1990). Optimum design of open pit
mines. Curtin University of Technology: Perth. p. 166.

[8]. Underwood, R. and Tolwinski, B. (1998). A
mathematical programming viewpoint for solving the
ultimate pit problem. European Journal of Operational
Research, 107 (1): p. 96-107.

[9]. Hochbaum, D.S. and Chen, A. (2000). Performance
analysis and best implementations of old and new
algorithms for the open pit mining problem. Operation
research, 48 (6): p. 894-914.

[10]. Koenigsberg, E., (1982). The Optimum Contours
of an Open Pit Mine: an Application of Dynamic
Programming, in Applications of Computers and
Operations Research in the Mineral Industry (17th
APCOM). New York. p. 274-287.

[11]. Erarslan, K. and Celebi, N. (2001). A simulative
model for optimum open pit design. CIM BULLETIN,
94(1055): p. 59-68.

[12]. Najafi, M., Rafiee, R., and Jalali, S.M.E. (2020).
Open pit limit optimization using dijkstra’s algorithm.
International Journal of Mining and Geo-Engineering,
54 (1): p. 39-43.

[13]. Pana, M.T., (1965). The simulation approach to
open pit design, in Proceedings of the 5th APCOM
Tucson, AZ. p. 139-144.

[14]. Wright, A. (1999). A simple algorithm for
optimum pit limits design, in Proceedings of the 28rd
APCOM, Dagdelen, K., et al., Editors. Colorado School
of Mines: Golden, Colorado. p. 367-374.

[15]. Achireko, P., (1998). Application of modified
conditional simulation and artificial neural networks to
open pit optimization. Dalhousie University: Nova
Scotia.

[16]. Frimpon, S. and Achireko, P. (1997). The
MCS/MFNN algorithm for open pit optimization.
International Journal of Surface Mining, Reclamation
and Environment, 11 (1): p. 45-52.

[17]. Sayadi, A.R., Fathianpour, N., and Mousavi, A.A.
(2011). Open pit optimization in 3D using a new
artificial neural network. Archives of Mining Sciences,
56 (3): p. 389–403.

[18]. Espejo, N., Nancel-Penard, P., and Morales, N.
(2020). A methodology for automatic ramp design in
open pit mines. Journal of Mining Engineering and
Research, 1 (2).

[19]. Bakhtavar, E., Shahriar, K., and Mirhassani, A.
(2012). Optimization of the transition from open-pit to
underground operation in combined mining using (0-1)
integer programming. Journal of the Southern African
Institute of Mining and Metallurgy, 112 (12): p. 1059-
1064.

[20]. Mergani, H., Osanloo, M., and Parichehp, M.,
(2019). Ultimate Pit Limit Determination Considering
Mining Royalty in Open-Pit Copper Mines, in
International Symposium on Mine Planning &
Equipment Selection. Springer. p. 346-358.

[21]. Hay, E., Nehring, M., Knights, P., and Kizil, M.
(2019). Ultimate pit limit determination for semi mobile
in-pit crushing and conveying system: a case study.
International Journal of Mining, Reclamation and
Environment: p. 1-21.

[22]. Hay, E., Nehring, M., Knights, P., and Kizil, M.S.
(2019). Ultimate pit limit determination for fully mobile
in-pit crushing and conveying systems. International
Journal of Mining and Mineral Engineering, 10 (2-4): p.
111-130.

[23]. Meyer, M. (1969). Applying linear programming
to the design of ultimate pit limits. Management
Science, 16(2): p. B-121-B-135.

[24]. Johnson, T.B. and Sharp, W.R., (1971). A Three-
dimensional dynamic programming method for optimal
ultimate open pit design. Vol. 7553. Bureau of Mines,
US Department of the Interior.

[25]. Frimpong, S. and Achireko, P.K. (1998).
Conditional LAS stochastic simulation of regionalized
variables in random fields. Computational Geosciences,
2 (1): p. 37-45.

Talaie et al Journal of Mining & Environment, Vol. 12, No. 2, 2021

454

[26]. Erarslan, K. and Celebi, N. (2001). A simulative
model for optimum open pit design. CIM Bulletin, 94:
p. 59–68.

[27]. Frimpong, S., Szymanski, J., and Narsing, A.
(2002). A computational intelligent algorithm for
surface mine layouts optimization. Simulation, 78(10):
p. 600-611.

[28]. Elahi, E., Kakaie, R., and Yusefi, A. (2012). A new
algorithm for optimum open pit design: Floating cone
method III. Journal of Mining and environment, 2 (2):
p. 118-125.

[29]. Wright, A., (1990). Open pit mine design model:
introduction with Fortran 77 programs. Clausthal-
Zellerfeld: Trans Tech Publications.

[30]. Ahuja, R.K., Magnanti, T.L., and Orlin, J.B.
(1993). Network flows : theory, algorithms, and
applications. Prentice Hall.

[31]. Cherkassky, B.V. and Goldberg, A.V. (1995). On
implementing push-relabel method for the maximum
flow problem, in International Conference on Integer
Programming and Combinatorial Optimization.
Springer. p. 157-171.

[32]. Goldberg, A.V. (2009). Two-level push-relabel
algorithm for the maximum flow problem, in
International Conference on Algorithmic Applications
in Management. Springer. p. 212-225.

[33]. Espinoza, D., Goycoolea, M., Moreno, E., and
Newman, A. (2013). MineLib: a library of open pit
mining problems. Annals of operations research, 206
(1): p. 93-114.

 1400دوازدهم، شماره دوم، سال ، دوره زیست، پژوهشی معدن و محیط -نشریه علمی و همکاران ییطلا

 برچسب براي حل مسئله محدوده نهایی معدن-سطح الگوریتم ارسال-پیاده سازي بالاترین

 احمد رضا صیادي و *مهدي طلایی، امین اله موسوي

 ایرانتهران، مهندسی، دانشگاه تربیت مدرس، ي گروه مهندسی معدن، انشکده

 15/03/2021، پذیرش 19/01/2021ارسال

 a_mousavi@modares.ac.ir* نویسنده مسئول مکاتبات:

 چکیده:

 روباز، ضروري استمحور در طراحی معادن -هاي اقتصادي و زمین شناسی و همچنین افزایش استفاده از روش ارزیابی سناریوامروزه و با در نظر گرفتن عدم قطعیت
 سازي مهم است که جواب آنتا الگوریتم دقیق و سریعی براي حل مسئله محدوده نهایی معدن استفاده شود. تعیین محدوده نهایی معادن روباز یک مسئله بهینه

 هاي معدنب ماشین آلات و موقعیت زیرساختهاي معدنکاري، درآمد، انتخاتعیین کننده میزان نهایی استخراج سنگ از معدن است و به طور مستقیم بر هزینه
 شود. در این مقاله، از پیاده سازيسازي سود غیرتنزیلی و تحت محدودیت پیش نیازي (محدودیت دسترسی) حل میگذارد. این مسئله با هدف بیشینهتاثیر می
ود. این الگوریتم از قواعد انتخاب بالاترین برچسب، به روز رسانی کلی شبرچسب براي حل مسئله محدوده نهایی معدن استفاده می-سطح الگوریتم ارسال-بالاترین

ها به صورت عمومی در هاي آنمطالعه موردي که داده 9کند. الگوریتم پیشنهادي، براي حل هاي ابتکاري براي کاهش زمان حل مسئله استفاده میو الگوریتم
ه موردي با ترین مطالعباشد. براي پیچیدههاي دیگر کمتر میان حل این الگوریتم نسبت به الگوریتمدسترس هستند، به کار گرفته شد. نتایج نشان داد که زم

 IBMباشد. این در حالی است که براي این مورد، نرم افزارثانیه می 4تکرار کمتر از 100محدودیت، متوسط زمان حل براي 3035483بلوك و 112687
CPLEX هاي برخط برطرف کند. ریزيتواند چالش زمان حل طولانی را در برنامهساعت پیدا نکرد. این بالا بردن سرعت می 24جوابی را در مدت

 .HI-PRبرچسب، جریان بیشینه، معدن روباز، -تئوري گراف، ارسال کلمات کلیدي:

mailto:a_mousavi@modares.ac.ir

