
 
 

Journal of Mining and Environment (JME), Vol. 12, No. 2, 2021, 339-350 

 Corresponding author: farzanehkhorram@ut.ac.ir (F. Khorram). 
 

Shahrood 
University of 
Technology 

Iranian Society 
of Mining 

Engineering 
(IRSME) 

 
 

Journal of Mining and Environment (JME) 
 

journal homepage: www.jme.shahroodut.ac.ir 
 

 
 
Adaptive Multi-Size Block Modeling for Mineral Resources and Ore Reserves 
Evaluation 
 
Farzaneh Khorram1*, Omid Asghari1, Hossein Memarian1, Amin Hossein Morshedy2, and Xavier M. Emery3 

1. School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran 
2. Faculty of Mining and Metallurgical Engineering, University of Yazd, Yazd, Iran 
3. Department of Mining Engineering, University of Chile, Advanced Mining Technology Center, Chile 
 

Article Info  Abstract 

Received 26 February 2021 
Received in Revised form 15 
March 2021 
Accepted 14 April 2021 
Published online 14 April 2021 
 
 
 
 
DOI:10.22044/jme.2021.10596.2010 

 The key input parameters for mine planning and all subsequent mining activities is 
based on the block models. The block size should take into account for the geological 
heterogeneity and the grade variability across the deposit. Providing grade models of 
smaller blocks is more complex and costly than larger blocks, but larger sizes cannot 
represent areas with high spatial variability accurately. Hence, a unique block size is 
not an optimal solution for modeling a mine site. This paper presented a novel 
algorithm to create an adaptive block model with locally varying block sizes aiming 
to control dilution and ore loss in Sungun porphyry copper deposit of Iran with a 
complex geometry characterized by multiple dikes. Three grade block models with 
different block sizes and simulated by direct block simulation are the inputs of 
algorithm. The output is a merged block model, assigning the smaller blocks to the 
complex zones, such as ore-waste boundaries, and larger blocks to the continuous and 
homogeneous zones of the ore body. The presented algorithm is capable to provide an 
accurate spatial distribution model with a fewer number of blocks in comparison to the 
traditional block modeling concepts. 
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1. Introduction 

Designing and planning mining activities are 
complex processes that rely on a 3D representation 
of a mineral deposit referred to as a block model. 
The block geometry and size have different 
definitions depending on the stages of mining 
operations [1]. An extraction block or selective 
mining unit (SMU) is the smallest block that will 
be selected as the ore or waste [2, 3]. The dilution 
and ore loss, described as the waste mixed with ore 
or ore mixed with waste, resulting from the 
extraction of materials from different geological 
domains [4]. Ilyas and Madani showed that these 
problems depend on the parameters such as the 
extraction block size, geometry of the ore-waste 
boundaries, geological contacts, and grade spatial 
variability [5]. The size of blocks in the mineral 
deposit models dictates the geometry of the 
geological contacts, and as the block size 

decreases, the grade variability (measured, for 
instance, by a dispersion variance) increases. 
Nevertheless, creating a grade model using small 
blocks can enhance the resolution of the ore-waste 
boundary and decrease the potential dilution [6-8]. 
Mineral deposit modeling with improper block 
sizes and using inappropriate spatial prediction 
methods can also cause spatial variability 
smoothing, an incorrect determination of ore-waste 
boundary, and a misleading forecast of the 
economic potential of the ore [8]. 

At present, many researches exist on the 
optimum block size selection. These studies show 
that the 3D array of mining blocks is the basis of 
the feasibility study, and depends on the probable 
spacing of drill holes, scale of operation, extraction 
limitation, equipment size, cut-off, and average 
grades of metals [5]. Hekmat believed that 
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variogram ranges and anisotropy ratios of the metal 
grade, as well as the drill hole data spacing are 
important parameters for selection of proper block 
dimension [9]. As a general rule, small block 
dimensions create a high-resolution image of the 
deposit, and the final mine model can be closer to 
reality, especially in the deposits with complicated 
geometries, provided that the drill hole spacing is 
not too loose [7, 8]. 

The distribution of ore over the entire deposit is 
often heterogeneous, and the model creation using 
small blocks increases the computational cost and 
the prediction error variance. In mining software, 
sub-cells often model the ore-waste boundaries, 
geological contacts, and wireframe edges: a set of 
sub-blocks create a large block, and if the 
percentage of waste sub-blocks within the 
considered block is more than 50%, the entire 
block is waste, and vice-versa is ore [10,11]. In this 
case, assigning the average grade value of small 
blocks to the block containing them provides a 
smooth model that does not sufficiently the 
deposits reality and fails at predicting the 
recoverable resources [9, 12]. In order to solve this 
problem, a model with different block sizes (i.e., 
with an adaptive geometry) is needed: in such a 
model, the small and large blocks should be 
inserted in structurally complex and simple areas of 
the ore deposit, respectively, a topic that has not 
been systematically studied in the literature so far.  

In the current paper, an optimization algorithm 
simulates the grade and delineates the ore-waste 
boundaries of Iranian Sungun porphyry copper 
deposit using different block sizes, in which the ore 
is intersected by several barren dikes as waste. The 
mentioned algorithm finds areas with high and 
low-grade variability and areas with high and low 
spatial complexity and inserts a proper block size 
accordingly [13]. A direct block simulation method 
(DBSIM) with the high ability of ore feature 
simulation in small blocks, predicted the copper 
grade. DBSIM methods generates multiple 
realizations, reproduces the true grade variability, 
and prevents the smoothing of the block model, 
therefore the risk of ore-waste misclassification 
reduces. The block sizes used in this algorithm are 
compatible with the production plan in the case 
study deposit and meet the requirements of all 
mining stages.  The following sections are, the 
preliminary concepts, proposed method, geology 
of the deposit, and evaluation of the resulted 
models. The details of the DBSIM method are out 
of the scope of this paper, and interested readers 
can refer to mentioned references [14, 15]. 

2. Relationships of block size and mining 
operation parameters 

The block dimensions relate with the error 
variance of grade predictions, profitability, the 
efficiency of machinery, machinery capacity, 
operating costs, and geometric constraints of the 
mine design such as the slope and width of the 
roads and the height of the benches, so it is 
necessary to consider all these parameters in 
determining the block dimensions [9, 16]. There is 
an association between the block sizes and some 
essential parameters of mining activities such as 
prediction error variance, dilution, calculation 
time, pit geometrical features, size of extraction 
equipment, operation costs and efficiency, tailing 
ratio, processing plant capacity, the outcome of 
selling, geotechnical features, size of extraction 
equipment, mineralogical and geological 
variations, ore deposit type and information effect 
[6, 16]. The subsequent paragraphs provide brief 
descriptions of some of these parameters. 

2.1. Dilution and ore loss 
Mining selectivity is the process of separating ore 

from waste (materials with higher or lower grades 
than a considered cut-off grade) based on the 
selective mining units [11]. To visualize the effect 
of dilution in ore evaluation, Figure 1b illustrates 
an area around the boundary of ore and waste 
(Figure 1b, area delimited by red dash lines). If we 
suppose all of this area is waste, the tonnage of part 
1 (which is ore) will be subtracted from the ore 
tonnage and transferred to the waste dump (ore 
loss). If we suppose all this area is ore, the tonnage 
of part 2 (which is waste) will be transferred to the 
mineral processing cycle (ore-waste dilution) [6, 
17]. In order to avoid this event and its economic 
consequences, an algorithm should model the ore-
waste boundary precisely. In deposits with simple 
geometry, the mentioned boundary is identifiable, 
and large blocks can model it. For complex 
structured deposits, small blocks separate the ore 
from the waste more accurately (Figures 1c and 1d) 
[7, 8]. 

2.2. Cut-off grade 
In ore reserve evaluation, if the cut-off grade of 

the considered metal is less than its average grade, 
a small block size selection will result in less 
dilution and less ore tonnage estimation. If the cut-
off grade of the considered metal is higher than its 
average grade, the result will be contrariwise [18]. 
In this way, the recoverable metal grade in a model 
with small blocks will be greater than the 
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recoverable metal grade in a model created with 
large blocks. Therefore, the cut-off grade relative 
to the average grade is an effective parameter on 
block size selection [19]. Also, the cut-off grade is 
highly dependent on the ore continuity: as the cut-

off grade increases, the ore continuity and 
exploitable volumes tend to decrease. In ore bodies 
with a disconnected geometry, the cut-off grade is 
an effective parameter in selecting the appropriate 
block dimensions [16]. 

    

(a) (b) (c) (d) 
Figure 1. The effect of block size on ore-waste separation. Ore blocks are white, waste blocks are brown. 

2.3. Support and information effects  
The volume covering the modelled or deposit 

feature is the support [18]. The change of support 
(e.g., from the drill hole sample support to block 
support) alters the frequency distributions of ore 
attributes, in particular their shapes and variances, 
and consequently the number of recoverable 
resources, a feature known as the support effect 
[20].  

Prediction methods rely on sampling data to 
assign a metal grade or any other parameter to a 
block model. As predictions differ from reality, 
misclassifications are likely to occur, which causes 
the so-called information effect. This effect is less 
pronounced when the block size is large or when 
the sampling data are abundant, implying a higher 
prediction accuracy [19, 21]. 

2.4. Type of deposit 
In bedded or layered deposits, the block 

dimension along the height should be limited to the 
layer thickness. In expanded tabular deposits, the 
increase in block dimensions results in an increased 
dilution [6]. Pyramid shape or honeycomb blocks 
can be useful, but they will create many 
computational problems to design the final pit [22]. 

3. Case study: Sungun copper deposit 
3.1. Geological description 

The Sungun porphyry copper deposit is in the 
northwestern Iran, on the Urmia-Dokhtar 
magmatic arc. The magmatic activities of this arc 
created most of the Iranian porphyry copper 
deposits [23]. The positioning of alterations and 
mineralization domains of Sungun does not follow 
the simple models of porphyry systems [24]. Early 

hydrothermal alterations were generally potassic 
and propylitic, which were accompanied by later 
phyllic and argillic alterations. Skarn-type 
mineralization and its related alterations appear in 
the eastern and northern sides of the stock. Late-
injected dikes are located in the northern and 
eastern parts of the deposit. The dikes do not bear 
any economic mineralization (0.08% copper on 
average), and their thicknesses range from a 
centimeter to several meters [23, 24]. 

Three main rock types control the copper grade 
distribution: skarn (SK), Sungun porphyry (SP) 
stock, and dikes (DK). In our case study, DK 
corresponding to waste and SP mainly to ore. Also, 
three mineralization zones of the porphyry stock 
are: leached, supergene, and hypogene. The copper 
mineralization in the hypogene zone comes with 
potassic, and phyllic alterations. In the potassic 
alteration, the main minerals are chalcopyrite and 
bornite. These minerals were dissolved during the 
supergene activity and substituted by secondary 
minerals, such as cuprite, malachite and chalcocite 
[24]. 

3.2. Presentation of the data set 

Geological domaining divides the estimation 
area into homogeneous regions, and part of the 
phyllic and potassic alteration is the case study 
area. This domain covers an area with 0.6 km 
longitude distance, 1 km latitude distance, and with 
depths up to 0.3 km below the surface. Fig. 2 
illustrates the location map of drill holes and blast 
holes of the case study area, 48 drill holes are 
available in this area, and the composition length 
for grade assays is 2-meter for all drill holes. 
Furthermore, 4591 blast-hole samples are true data 
for validation of results.  
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(a) 

 
(b) 

Figure 2. Location maps of the available data, colored according to copper grades: (a) drill holes, (b) 
blast holes. 

4. The proposed solution to define a block 
model with an adaptive geometry 

As explained before, mining selectivity is the 
ore-waste separation based on the smallest 
exploited block (selective mining unit). Carrying 
out mining activities near ore-waste boundaries 
makes a problem in selectivity, resulting in the 
extraction of materials with different inherent 
characteristics and leading to the mixing of ore and 
waste during operation (dilution and ore loss). This 
issue plays an essential role in structurally complex 
deposits, and sub-blocks or partial blocks near the 
geological boundaries control it. The sub-blocking 
procedure can improve the resolution of geological 
contacts, provide more accurate predictions, and 
reduce ore-waste dilution. Subdividing the blocks 
into other parts of the ore deposit with low 
complexity (i.e., low spatial variability or areas 
within a single geological domain) is unnecessary 
and only increases computational cost.  

Current algorithm creates an adaptive model; in 
this model the size of blocks relates to the spatial 
variability of the modeled area. The largest 
assumed size of blocks (parent blocks) is 
30×30×15 m3, and sub blocks are 15×15×7.5 m3 or 
10×10×5 m3 that adjusts with the mine production 
planning. The average grade values of blast hole 
samples in a block volume is the true grade of that 
block. The steps of the algorithm are as follows: 

1. Input the grade values of the drill hole samples. 

2. Classify the spatially heterogeneous mine area 
into different homogeneous domains, and run the 
algorithm in each domain. 

3. Execute the direct block simulation method 
(DBSIM) on the 30×30×15 m3, 15×15×7.5 m3, and 
10×10×5 m3 block sizes. 

4. Scan all the large (30×30×15 m3) blocks 
throughout the simulated model to find blocks that 
are more likely to be entirely ore or entirely waste. 
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For this purpose, in each realization, algorithm will 
assign 1 to the large size block if the following two 
conditions are true (otherwise 0): 

a. The eight medium sub-blocks contained 
in it are all waste or all ore.  

b. The 27 small sub-blocks contained in it 
are all waste or all ore. 

If across the set of realizations, the large size 
block is one more often than 0, then this block will 
more likely contain only ore or only waste, and a 
division into sub-blocks is not necessary. 
Otherwise (0 more often than one), a subdivision is 
preferable.  

5. For every large size block, the decision of using 
small size or medium size sub-blocks relies on which 
subdivision provides a more stable ore-waste 
classification across the realizations, indicating a 
lower risk of dilution or ore loss: 

a. for each of the eight medium sub-blocks 
(i=1… 8), define the indicator M(i,r) = 1 
if the ith sub-block is ore in realization r, 
0 if it is waste; calculate the variance of 
this indicator over all the realizations, 
then the average variance over the eight 
sub-blocks; 

b. to each of the 27 small sub-blocks 
(j=1… 27), define S(j,r) = 1 if the jth sub-
block is ore in realization r, 0 if it is 
waste; again, calculate the variance of 
this indicator over the realizations, then 
the average variance over the 27 sub-
blocks; 

c. if the average variance of M is less than 
that of S, then the ore-waste 
classification into medium sub-blocks is 
less variable across the realizations (the 
medium block size is more effective in 
delineating the ore-waste boundary), 
and the subdivision into medium sub-
blocks is preferred; otherwise, a 
subdivision into small sub-blocks.  

Figure 3 is a schematic diagram of the 
relationship between the intersection of medium 
and small blocks with a hole and the resulted 
simulation uncertainty. The resulting adaptive 
block models are validated with the average blast-
hole data in the large, medium, and small blocks, 
and also by local visual matching with the true data.  

 

  
Figure 3: Simulation uncertainty in different blocks, red highlighted blocks are not intersected with hole and do 

not include any true data, top) medium blocks; bellow) small blocks. 

Figure 4 shows the result of running the 
algorithm in a small area, with a hypothetical cut-
off grade of 0.4. As can be seen, the segmented 
blocks are mainly near the predicted ore-waste 
boundary, and the blocks that are completely in ore 
or waste zone do not need division.  

5. Results and discussion 

Based on the variograms of the metal grades 
along with the directions with 0°, 45°, 90°, 135° 
azimuths and 0°, 45°, 90° dips with 22.5° tolerance, 

the major anisotropy axis has azimuth 0° and dip 
45°. The direct block simulation algorithm models 
the grades on 303015 m3 (large), 15157.5 
m3 (medium) and 10105 m3 (small) blocks 
(Figure 5a, b, c). The proposed algorithm creates 
adaptive block models for different cut-off grades 
(Figure 5d); as it is clear, large blocks are in the 
high-grade (hypothetical ore) and low-grade 
(hypothetical waste) areas, indicating that the large 
block dimensions are sufficient to represent these 
areas without much ore-waste dilution. 
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Figure 4. Predicted block model of copper grade (average of DBSIM realizations) with adaptive block size 

algorithm (cut-off grade 0.4). 

  
30 × 30 × 15 m3 15 × 15 × 7.5 m3 

  
10 × 10 × 5 m3 Adaptive block size (cut-off 0.3) 

Figure 5. 3D representation of copper grade at different supports. Only the block centroids are represented 
and colored according to the average of DBSIM realizations. 

Figure 6 shows the adaptive block model that 
results from implementing the proposed algorithm 
for a cut-off grade of 0.15 together with the 
exploration drill holes. The segmented blocks 
located in the low-grade areas correspond to the 
areas close to the ore-waste boundary, and the 

high-grade areas are not segmented at all. Also, in 
this figure, the matching between the areas with the 
high aggregation of dikes (especially in a drill hole 
and a column of signed blocks with the red stars) 
and the smaller blocks are evident. As the 
dimensions of the block decrease, the resolution of 
the model increases. 
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Figure 6. Adaptive block model and ore and waste in core samples (top); a section of the geological map (bellow) 

[13]. 
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A plan view of the adaptive block model at an 
elevation of 2000 m is shown in Figure 7, and 
related geological map. The areas intersected by 
dikes correspond to the sub-divided blocks. The 
mentioned comparisons are only for a visual 
validation of the results. Figure 8 shows a mining 
level of our adaptive model. To extract every one 
of these blocks, its special machines must be 
applied. For example, for the parts of the marked 
model in red, yellow, and green, the machines A, 
B, and C are used, respectively. The order of ore 
and waste block extraction depends on the 
restriction of access to the desired block. For 
example, in medium and large-size block 

extraction, that small-size blocks surrounded them, 
it is practically not economical to use machines B 
and A, and the machines dedicated to extract small 
blocks will be used. Therefore, the mentioned 
results are presented without considering the 
economic and operational parameters, and only 
have a computational aspect. 

The simulated grades of the large (30×30×15 
m3), medium (15×15×7.5 m3), small (10×10×5 m3), 
and adaptive block models accurately reproduce 
the statistical variability (histogram) of the true 
grades at the same support. Figure 9 illustrates its 
Q-Q plots. 

 
Figure 7. Plan view of the adaptive block model at an elevation of 2000 m. Sub-divided blocks occur in areas 

intersected by dykes and leach as well as hypogene and supergene contact areas (Figure 6) [13]. 
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Figure 8. Application of different exploitation machinery for this level of mine. 

  
30 × 30 × 15 m3 15 × 15 × 7.5 m3 

  
10 × 10 × 5 m3 Adaptive block size 

Figure 9. Q-Q plots between simulated and true grades for different block sizes.  

All in all, the proposed algorithm finds the 
geologically complex areas in the deposit, and 
selects the appropriate block size to display these 
areas. The best block size for an area is a size that 
minimize the ore loss and the dilution in that area. 
All the used block sizes in this algorithm are 
compatible with the production program of the case 
study mine. The algorithm allows minimizing the 
risk of ore-waste misclassification by improving 
the resolution of the ore-waste boundary. 

6. Conclusions 

Mine planning and designing are based on a 
block model. A key parameter of this model is the 
block size, which affects the mining operation costs 
and has been a topic of interest in the recent 
decades. We proposed a multi-resolution approach 
to create an adaptive block model, rather than 
traditional unique-sized block models. The 
presented algorithm will partition some large 
blocks near the ore-waste boundary into the smaller 
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sub-blocks to reduce the dilution or ore loss, if 
sufficient conditions of algorithm are met. Direct 
block simulation (DBSIM) has modeled the grades 
at all the blocks and sub-blocks. The most apparent 
finding of this study was the high conformity of 
sub-blocks with some areas that include dikes 
(waste), and uncertain and anisotropic areas (the 
mineralization and dike zones). 
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  farzanehkhorram@ut.ac.ir* نویسنده مسئول مکاتبات: 

  

  چکیده:

 یدگیچیو پ یناهمگن دی. اندازه بلوك باشوندیبرآورد م یبلوک هايبر اساس مدل یاستخراج هايتیفعال هیمعدن و کل يزریبرنامه يبرا يورود يدیکل يپارامترها
است، اما  نهیو پرهز تردهیچیبزرگ پ هايکوچکتر نسبت به بلوك هايدر بلوك ياریع هاي. ارائه مدلردیموجود در کانسار را در نظر بگ ياریو تنوع ع شناسینیزم
در سراسر معدن راه حل  کسانیرو، استفاده از اندازه بلوك  نینشان دهند. از ا قیبالا را به طور دق شناسینیزم یدگیچیمناطق با پ توانندیبزرگتر نم هايكبلو

در کانسار  و هدررفت کانه قیبا هدف کنترل ترق یقیبلوك با ابعاد متنوع و تطب لمد کی جادیا يبرا دیجد تمیالگور کیمقاله  نی. در استین سازيمدل يبرا یمطلوب
 کیآن  یو خروج میبلوك مستق يساز هیمختلف، برآورد شده توسط شب يبا اندازه ها یسه مدل بلوک تمیالگور يارائه شده است. ورود رانیسونگون ا يریمس پورف

به طور مثال  کنواختیبزرگتر را به مناطق  هايکانه و باطله و بلوك يمانند مرزها دهیچیکوچکتر را به مناطق پ هايبلوك تم،یمدل بلوك ادغام شده است. الگور
با روش سهیبلوك در مقا يو با استفاده از تعداد کمتر ترقیرا دق اریع ییفضا عیارائه شده قادر است مدل توز تمی. الگوردهدیبدنه باطله اختصاص م ایبدنه کانسار 

  ارائه دهد.  یبلوک سازيمدل یسنت هاي

  هدررفت کانه. ،قیبا ابعاد متنوع، مرز کانه و باطله، ترق یکانسار، مدل بلوک سازيمدل کلمات کلیدي:
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