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There are different exploration methods, each of which may introduce a number of
promising exploration targets. However, due to the financial and time constraints, only
a few of them are selected as the exploration priorities. Instead of the individual use of
any exploration method, it is common to integrate the results of different methods in
an interdependent framework in order to recognize the best targets for further
exploration programs. In this work, the continuously-weighted evidence maps of
proximity to intrusive contacts, faults density, and stream sediment geochemical
anomalies of a set of porphyry copper deposits in the Jiroft region of the Kerman
Province in Iran are first generated using the logistic functions. The weighted evidence
maps are then integrated using the union score integration function in order to model
the deposit type in the studied area. The weighting and integration approaches applied
avoid the disadvantages of the traditional methods in terms of carrying the bias and
error resulting from the weighting procedure. Evaluation of the ensuing prospectivity
model generated demonstrate that the prediction rate of the model is acceptable, and
the targets generated are reliable to follow up the exploration program in the studied
area.

1. Introduction

Due to the fact that most of the outcropping
mineralizations have been explored, it is necessary
to explore deep targets. For this, some techniques
have been developed according to the diversity of
mineral resources and their characteristics, and the
diversity of natural conditions prevailing in
complex geological environments. They include
geology, geochemical exploration, geophysical
exploration, and remote sensing, in general.
According to the high cost of exploration, efforts
have always been made to develop the methods
that minimize the error of detecting the promising
areas. Since the late 20" century, attempts have
been made to compare and integrate the results of
various exploration methods, under the heading of
mineral potential modeling, in order to identify the
areas that are required to be further explored [1].
Mineral potential modeling is a step-by-step
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process in which the conceptual model of the
prospected reserve is studied and examined, and
the criteria for identifying the reserve are
determined. After that and based on these criteria,
the control maps that predict the mineralization are
made from various exploratory methods [1, 2].
After defining the control maps, the most important
step of the mineral potential modeling process is to
weight these control maps using different
knowledge-based, data-driven, combined methods,
and experimental, continuous, and logistic
functions. The knowledge-based methods can be
used in the areas that are geologically suitable but
where there are no known reserves or their
numbers are very small (green areas). Since in
these methods, the weighting of the control classes
and maps is carried out by an expert based on the
expertise, the results obtained have the uncertainty
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and random errors. The data-driven methods are
suitable for the areas with moderate-to-good
exploration operations (brown areas). Since the
weighting is carried out based on the existing data
and in a quantitative way in these methods,
weighting is given a high score to the places where
the data exists and a low score to the places where
the data is not there. In other words, these methods
have a systematic error and some uncertainty in the
results [3-5]. In combined methods, which are, in
fact, a combination of the data-driven and
knowledge-based methods, the generally assigned
weights and the studied results in the data-driven
method are used in order to allocate weight in the
knowledge-based method or vice versa, which has
both above the mentioned systematic and random
errors [1, 2]. In the method of using the
experimental functions, different functions are
used in order to assign weight to the classes
(patterns) of control maps in which the numerical
values of the two parameters of turning point and
slope of the function are determined by trial-and-
error by an expert. Therefore, these methods have
the uncertainty and random errors in determining
the values of the slope and the turning point
parameters of the function [4]. In the continuous
method, using the logistic functions, similar to the
method before, the sigmoid (S-shaped) logistic
function is used in order to weight the fuzzy control
map classes (between 0 and 1). The difference is
that the values of the slope and the turning point
parameters of the function are obtained without the
intervention of an expert by solving the
mathematical equations and calculation, and do not
have any of the disadvantages mentioned in the
previous methods as a new and efficient method for
weighting the classes and control maps. Thus the
results obtained have a very high certainty [5].
Therefore, in the present work, this method was
used to weight the control maps. In this work, the
aim was to produce a model of mineral potential of
porphyry copper deposits in the Jiroft region of the
Kerman Province in Iran using the continuous and
fuzzy gamma methods in the stages of weighting
and integration of the control maps. In order to
build a model of mineral potential of metal deposits
including the porphyry copper deposits, some
research works have been carried out by various
researchers using the methods mentioned above:
At first, the knowledge-based methods have been
used in the weighting stage and integration of the
control maps [6, 7]. Then in order to eliminate the
uncertainty caused by the random error of the
knowledge-based methods, the data-driven
methods have been used to generate the mineral

744

Journal of Mining & Environment, Vol. 12, No. 3, 2021

potential model [1, 8, 9]. Later, the combined
methods have been used to construct the mineral
potential model of the porphyry copper deposits
[10]. Recently, some research works have been
conducted using the method of experimental
functions to build the models [4, 11]. Finally, the
logistic functions have been used for the
continuous weighting of control maps as a new and
efficient method in order to build the mineral
potential model of the reserves [5, 12, 13, 14, 15,
and 16]. In this work, using the logistic functions,
the control maps obtained from various data and
exploratory methods were continuously weighted
to reduce the uncertainties resulting from the other
weighting methods in the previous research works.
Then the mineral potential model of the porphyry
copper deposits in the studied area was constructed
to use in the next stages of exploration by
combining the weighted control maps using the
union score function. It should be noted that in the
present study, all the steps of weighting and
combining information layers and production of
mineral potential model were performed in the GIS
environment with a cell size of 100 x 100.

2. Geology of studied area

The Jiroft area is located in SE of Iran in the
Kerman Province. This area is a part of the
Urumieh-Dokhtar magmatic arc that forms the
Zagros Mountains in Iran. The Urumieh-Dokhtar
magmatic arc forms an elongated volcano-plutonic
belt, and is a subduction-related zone [11]. The
rocks and structural features of the area indicate the
operation of the Late Precambrian tectonic
activities. One of the important geological features
of this region is the existence of a huge volume of
the magmatic and metamorphic rocks with
Paleozoic and especially Mesozoic age. The
Paleozoic metamorphic rocks are the most exposed
and the oldest rock units in the studied area. Based
on the available fossils, the age of the Paleozoic
metamorphic assemblages is attributed to the Late
Devonian to the Early Carboniferous. These rocks
have an extension along the NE-SW and their slope
is to NW. The main outcrops of these units are in
the southeastern and southwestern parts of the
studied area [18]. Figure 1 shows the geological
map of the Jiroft region studied.

3. Deposit model and data used

The first step in the process of constructing a
mineral potential model is to define a conceptual or
descriptive model of the reserve or more precisely,
to define the conceptual genetic model of the



Bahri et al

prospected reserve. Prediction of the mineral
location is mostly based on the experimental
relationships obtained from the descriptive models
of the known reserves. A descriptive model of a
type of mineral resource based on the
characteristics of a number of similarly known
reserves is a guide to find new reserves of the same
type [3]. Defining a conceptual model for a type of
prospected reserve requires information and data
from different types of geological processes related
to the mineral deposits similar to the reserve being
explored. Therefore, it is very important to study
and review the discovered reservoir models, the
same type of reserves to be explored, in the studied
area and the related geological environments [13,
14]. According to the above explanations and
studies, the conceptual model of porphyry copper
deposits is defined as follows:

- The porphyry copper deposits are composed of
post-magmatic hydrothermal fluids associated
with the granitic porphyry intrusive rocks.
Therefore, in the porphyry copper deposits, the
primary mineral is under the structural control,
and is spatially and genetically related to the
felsic to intermediate porphyries. Thus a wide
range of intrusive rocks with granitic to diuretic
composition  including quartz  diorite,
monzonite, granodiorite, quartzmonzonite, and
diorite are spatially and genetically related to the
porphyry copper deposits or their host rock [15-
17].

- The porphyry copper deposits can be recognized
from other granite-related deposits according to
their large size and structural controls, which
primarily include stockworks, porphyry stocks,
veins, vein assemblies, fractures, and breccia. In
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the formation of the porphyry copper deposits,
when the magma stabilizes, liquids with a high
temperature are released and surrounded by the
host rock in the stabilized porphyry. The rich-
mineral fluids take the least resistant path and
move within the cracks and fractures that
expedite the passage of magma and the
hydrothermal fluid circulation. Generally, the
fault zones act as a major transit path for deep
melt sources and hydrothermal fluids.
Therefore, the faults are used to detect the
porphyry systems around the world [18, 19] and
also in Iran [20, 21].

- The porphyry copper deposits are associated
with the trace elements or mineralizing agents
Sb, As, Pb, Zn, Ag, Au, Mo, and Cu or their
halos in rocks, sediments, and soils [4].

Therefore, according to the conceptual model of
the porphyry copper deposits and their
investigations, the data required for the research
work was collected as follows:

- Location of the known copper mines in the
studied area.

- 1:100000 geological map of the studied area,
which was investigated, and the upper half of
the area was selected for modelling according
the presence of intrusive masses and known
copper mines in this part. From this map, the
faults and intrusive masses’ maps were
extracted.

- 485 geochemical samples of stream sediments
from the trace elements and reagents of
porphyry copper mineralization in the studied
area.

597402 m

3152999 m

548932 m

597867 m

4 8 12 Kilometers

Figure 1. Geological map of studied area along with location of the known copper mines.

745



Bahri et al

4. Control map preparation

Using the geological map, the maps of the faults
and the intrusive masses of the region were
obtained, and the control maps of the density of the
faults and the proximity to the intrusive masses
were made in the GIS environment. For the
analysis and processing of the geochemical data of
stream sediments to construct a geochemical
control layer, the step factor analysis method was
used, which was a statistical method for analyzing
the information in the dataset. This method was
first proposed by Carl Pearson (1901) and Charles
Spearman (1904) when measuring the intelligence,
and was used to determine the most influential
variables when the number of variables under study
were large and the relationships between them
were unknown. In this method, the variables should
be placed in factors so that the variance is reduced
from the first factor to the next factors. Hence, the
variables that are placed in the first factors are the
most influential [22] that by using this method and
also using the geochemical mineralization
probability index (GMPI), which is a new approach
to map geochemical anomalies of stream sediments
by step factor analysis and probability theory, the
weighted geochemical control map is made
according to Figure 2.

The GMPI value is obtained from Equation 1
[7].

Fs

— (1
1+ efs

GMPI =

5. Weighing control maps

Control maps of fault density and proximity to
intrusive masses were continuously weighted using
Equation 2 [14].

1

Y= e

2
where Fgv is a point between 0 and 1, EV is the
value of each cell of the control map, and i and s
are the inflection point and slope parameters of the
function, respectively. In order to find the values of
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i and s, we used the following equation system (3)
[14]:

. 1
FEV (min) = 11 o—sEVmin-0

. (3)
FEV (max) =

1+ e—S(EVmax—i)

where Fgv (min) and Fgv (max) are the lowest and
highest fuzzy scores in the range between 0 and 1,
and EV (min) and EV (max) are the highest and
lowest scores of the control map, respectively.

Solving the above system of the equations, the
values of i and s are obtained using Equations 4 and
5[14].

_ 9.2
" EVmax — EVmin

4)

. EVmax + EVmin
L=
2

In this method, as stated earlier, the values of i
and s are calculated through the function, and there
is no uncertainty due to the application of the
expert’s opinion in the selection of i and s. The
weighted control maps of fault density and
proximity to the intrusive contacts are shown in
Figures 3 and 4.

®)

6. Integrating weighted control maps

The weighted control maps were combined
integrated using the union score method and using
Equation 6 [5].

n
Us = Z Fxi
i=1

where US is the score of each cell of the final
map, Fx is the weight of each cell of the control
map (obtained from the logistic function), and n is
the number of weighted control maps.

The final model of mineral potential of porphyry
copper deposits in the studied area is shown in
Figure 4.

(6)
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Figure 4. Weighted control map of proximity to
intrusive masses.

7. Model evaluation

The mineral potential models made by different
methods should be evaluated in order to assess
their efficiency and accuracy of estimation. In the
mineral potential modeling, the weights assigned to
the evidence and spatial patterns should reflect the
actual spatial relationships between them and the
mineral deposits of the type sought. Therefore, the
known mineral deposits can be used in order to
evaluate the accuracy and realism of the weights
assigned to the evidence and spatial patterns, which
indicate  their  spatial  relationship  with
mineralization in the studied area. This is achieved
by overlapping the location of the known mineral
resources and a classified mineral potential map [7,
23]. We can use the weight division ratio of
different classes to the area occupied by that class
in order to determine the probability of the
presence of mineral reserves [24]. In this regard, in
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Figure 3. Weighted control map of fault density.
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Figure 5. Final model produced along with the

known copper indices in studied area.

2015, Yousefi and Caranza used both of the above
criteria to evaluate the models simultaneously, and
proposed the prediction-area (P-A) rate chart to
evaluate the models; the point of intersection of the
two curves is the evaluation criterion of the models
[4]. In evaluating the mineral potential models,
another criterion that should be considered is the
share of locations without any reserve in the
evaluation of models. Accordingly, the areas
identified as the mineral potential zones in the
models should have the least overlap with the non-
reserve sites, where there is no geological evidence
and desirable exploration criteria [3]. Therefore, in
order to consider all the above criteria in the form
of a single method for evaluating the mineral
potential models, a modified PA rate diagram with
the following three curves was used [25-28]:

A) The prediction rate of the known mineral reserves
in each class of the final model;
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B) The prediction rate of the unreserved locations in
each class of the final model;

C) The area occupied by each class of the final
model.

Therefore, this diagram has two intersection
points, as follow:

A) The intersection point of the known mineral
reserve prediction rate curve with the percentage
area of the occupied curve, the values of which are
displayed on the left and right of the Y axis, called
Pm and Om, respectively.

B) The intersection point of the prediction rate
curve of unreserved locations with the percentage
area of the occupied curve, the values of which are
displayed on the left and right of the Y axis, called
Pn and On, respectively.

The overall network performance (Oe) is
obtained from Equation 7 [28]:

Ao
B
©
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3208088 m
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B o7s-

1.22-
P 165

I 2os-

A Cuoccurrence

078
122
165
2.08
251

@® Non-deposits

Kil

Journal of Mining & Environment, Vol. 12, No. 3, 2021

Oe: Pm 'P n (7)

where Pm and Pn are the values of the known
reserve prediction rate curves and the prediction
rate of unreserved locations at the intersection with
the area occupied curve, expressed as a percentage,
respectively. The result of the above relation will
be a number in the range of -1 to 1; the larger this
number, the higher 1is the efficiency and
performance of the evaluated model. Also the
positive and negative values indicate the efficiency
and inefficiency of the evaluated model,
respectively, for use in the next stages of
exploration of the searched reserve in the studied
area. Finally, in order to evaluate the mineral
potential model of the porphyry copper deposits,
the prepared model was classified discretely by the
equal distance method, and then the model was
evaluated using the —P-A rate plot [29]. The results
of this evaluation are shown in Figures 6 and 7.

3208397 m

0 3 6 12 18

24

3152009 m

597867 m

Figure 6. Final classified model.

Examining the PA plot, it is observed that the
prediction rate of the known mineral reserves (Pm)
as a criterion for showing the degree of overlap of
high-grade mineral potential reserves in the model
with the location of mineral indices is 0.78 in the
final model. The larger this value, the more
desirable it is. This means that the performance of
this model in estimating the location of mineral
reserves and points with a high mineralization
potential is 78% correct and true. Also by
examining the P-A of unreserved locations (Pn),
which is, in fact, a criterion for showing the degree
of overlap of high-grade mineral potential reserves

748

in the model, with unreserved locations in the
studied area, the number 0.4 was obtained. The
smaller the number, the more desirable it is; here,
it means that the performance of this model is
correct in not estimating the places without reserve
as the points with a high potential for
mineralization of the reserve to the extent of 60%
(100-60). Finally, by examining the overall
performance (Oe) of the model, it can be concluded
that the model with a total performance of 38% is
a strong and efficient model and reliable for use in
the stage of detailed exploration in the studied area.
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Figure 7. P-A diagram of the fuzzy gamma model.
8. Conclusions [4]. Yousefi, M. and Carranza, M.J.M. (2015).

- Application of logistic functions to create the
weighted evidence layer modulates of the
exploration bias associated using the training
point for data-driven prospectivity analysis and
avoiding the systemic errors associated with the
expert judgments for prospectivity analysis.

- By creation of the continuous weighted
evidential layers instead of assigning the discrete
weights, using a logistic function, the bias caused
by simplification and classification of the
exploration data is avoided.

- Combining the continuous weighted evidence
maps using the union score function results in the
reliable exploration targeting models.
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