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 Drillability is one of the significant issues in rock engineering. The drilling 
rate index (DRI) is an important tool in analyzing the drillability of rocks. 
Several efforts have been made by the researchers to correlate and evaluate 
DRI of rocks. The ensemble learning methods including the decision tree (DT), 
adaptive boosting (AdaBoost), and random forest (RF) are employed in this 
research work in order to predict DRI of rocks. A drillability database with 
four parameters is compiled in this work. A relationship between the input 
parameters and DRI is established using the simple regression analysis. In 
order to train the model, different mechanical properties of rocks incorporating 
the uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), 
brittleness test (S20), and sievers’ J-miniature drill value (Sj) are taken as the 
input variables. The original DRI database is randomly divided into the 
training and test sets with an 80/20 sampling method. Various algorithms are 
developed, and consequently, several approaches are followed in order to 
predict DRI of the rock samples. The model performance has revealed that RF 
predicts DRI with a high accuracy rate. Besides, the Monte Carlo simulations 
exhibit that this approach is more reliable in predicting the probability 
distribution of DRI. Therefore, the proposed model can be practiced for the 
stability risk management and the investigative design of DRI. 
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1. Introduction 
Drillability of rocks is defined as the speed at 

which a drill bit penetrates a rock mass. The 
drilling rate index (DRI) is an important tool in 
approximating the drillability of various rock 
samples [1]. DRI is influenced by the multiple 
uncertain attributes, which are classified into the 
controllable and uncontrollable attributes [2]. The 
rotation speed, pumping rate, weight-on-bit, 
torque, and standpipe pressure are considered as 
the controllable attributes. In contrast, the drill bit 
size, fluid nature, density, and physico-chemical 
properties are considered as the uncontrollable 
attributes [3-5]. The deep drillability analysis can 
assist in providing a good description of the rock 
attributes encountered during a field [6]. The fluid 

properties and reservoir features have been 
examined from several rock specimens from target 
formation during the well performance 
optimization [7]. The structural parameters of rock 
mass play an important role in the evaluation of 
drilling rate [8]. DRI greatly influences the mine 
project design and budget of the mining industry 
[9]. The impact of rock hardness on the penetration 
rate of pneumatics percussive drills in the 
experimental laboratory has been utilized using the 
Mohs hardness, indentation hardness index, and L-
type Schmidt hammer [10]. The researchers have 
made several efforts to evaluate and correlate DRI 
of rocks [11-14]. The empirical methods are not an 
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excellent approach to handle the non-linear and 
multivariable equations [15]. 

Most recently, the application of machine 
learning techniques has been utilized to predict the 
drillability of rocks. A DRI evaluation model has 
been suggested based on the fuzzy Delphi analytic 
hierarchy method. Based on the drillability 
classification, the rocks are labeled into five groups 
varying from very poor to very good [16]. A Fuzzy 
system computing approach has been proposed that 
predicts the drilling rate with an acceptable range 
of accuracy [17-19]. A novel artificial neural 
network (ANN) model shows that it can be 
executed well in predicting DRI examined for 
auxiliary renovated frameworks [20-24]. A 
regression model based on weak learners has been 
proposed using the improved machine learning 
algorithm, enhancing the model’s prediction 
performance [25-26]. The advancement of 
intelligent predictive models has made it possible 
to select the drill bit. Different machine learning 
algorithms, e.g. support vector machine, K-nearest 
neighbors, naïve Bayes, and multilayer perceptron 
have been assessed to understand the allowable 
declining causes of the disproportion drilling data 
[27]. In order to reduce the drilling engineering 
costs, the interaction of machine learning 
algorithms and drilling engineering technology 
may allow up-to-date techniques for raising the rate 
of penetration (ROP) [28]. The Artificial Bee 
Colony (ABC) algorithm has been utilized to 
systemize ROP by employing a unique robust high-
level meta-heuristic algorithm and self-organizing 
map as one of the authentic technological 
mechanisms [29]. The diamond bit drilling has 
been extensively operated in different rock 
engineering operations considering high ROP, core 
recovery, and its capacity to penetrate the rock 
mass with a minor variance deviation. The 
establishment of multiple regression models and an 
adaptive neuro-fuzzy inference system for 
forecasting ROP of diamond drilling has been 
suggested [30]. Monte Carlo simulation is a 
suitable method for modeling and evaluating the 
irregularity in the penetration parameters of rock 
mass [31]. 

However, the premonitory characteristics for the 
DRI prediction are not perpetually consistent in 
numerous geologic conditions. Although various 
promising results have been achieved in the 
multiple aspects of the DRI analysis, the 
probabilistic DRI prediction remains problematic. 
Presently, there is no steady approach in the 
engineering practice. 

In this research work, a comparative analysis of 
ensemble learning is proposed for predicting DRI.  
The ensemble learning is a machine learning 
approach that consists of different models in order 
to realize the problem where a discrete model 
inaccuracy is possibly re-compensated by the other 
models [32]. The standard ensemble learning 
methods consist of the regression tree [33], random 
forest (RF) [34], and adaptive boosting (AdaBoost) 
[35]. The Monte Carlo (MC) simulation method 
has been proposed for the direct calculation of the 
expanded ensemble [36-37]. To the best of our 
knowledge, this is the first work to predict DRI by 
the comparative analysis of the ensemble learning 
algorithms. 

The work`s primary objective is to develop a 
probabilistic model for DRI prediction based on the 
ensemble learning method. Firstly, the mechanical 
properties of the rock samples are extracted from 
the published literature. Secondly, three ensemble 
learning algorithms are employed in order to 
predict the model. Lastly, the comparative 
predictive performance indicator of every model is 
thoroughly examined. 

Moreover, in this research work, the author 
discusses four aspects of DRI, summarized as 
follow: 

i) Statistical analysis is performed on the DRI 
database in order to obtain their average, standard 
deviation, and minimum and maximum values. 

ii) Establishing the relationships between the 
physical and mechanical properties of DRI.  

iii) Construction of various ensemble learning 
approaches by checking its performance using the 
input and output datasets.  

iv) Selection of the best model for the DRI 
prediction.  

v) Monte Carlo simulation in order to predict the 
range of uncertainty in the DRI phenomenon.  

2. Methodology 
2.1. Set range of input database  

A quick and convenient approach to a large 
number of output values is the inferiority of 
artificial intelligence. An excellent database 
always requires a high-quality data closely 
resembling the real-world problems. Several types 
of rocks collected from the standard laboratory 
samples ranging from weak to very strong rocks 
including the metamorphic, magmatic, and 
sedimentary types were compiled in this work. 
From the previous literature, 57 datasets [38-39] 
were collected to predict DRI of various rock 
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samples, as shown in appendix 1. There are four 
specific input attributes, i.e. the Uniaxial 
Compressive Strength (UCS), Brazilian Tensile 
Strength (BTS), Brittleness test (S20), and Sievers’ 
J-miniature drill value (Sj). Additionally, DRI is 

taken as an output parameter. The descriptive 
statistics of the mechanical properties for the rock 
samples datasets analyzed during the work are 
outlined in Table 1. 

Table 1. Descriptive statistics of mechanical properties of rock sample datasets. 
 UCS 

(MPa) 
BTS 

(MPa) 
Brittleness value 

(S20) 
Sievers’ J value 

(Sj) DRI 

Average 102.6602 8.114035 51.38947 41.64807 56.91228 
Standard 
deviation 47.10728 2.592484 12.02135 25.5928 12.65374 

Maximum 206.4 13.82 82.83 87 89 
Minimum 23.43 3.28 30.02 3.6 25 

 
2.2 Application of simple regression analysis in 
DRI phenomenon 

Simple Regression Analysis (SRA) is a tool to 
determine a relation between two or more 
independent indicators and one dependent 
indicator in statistics and machine learning. This 
approach is employed in numerous models in order 
to identify how well a set of variables explain a 
phenomenon [40]. SRA was employed in the 
drilling data, showing the highest coefficient of 
correlation [10]. This technique is widely used to 
approximate various issues associated with rock 
engineering by getting the best-fit mathematical 
equation. In order to predict DRI of rocks 
employing an SRA technique, the measured DRI 
values are calculated as the product of the four 
input indicators, namely UCS, BTS, (S20), and (Sj). 
The developed simple regression equation for the 
prediction of DRI is shown in Equation 1. 

DRI =  −0.013 UCS −  0.13 BTS + 0.97 Sଶ (1) 
+0.14 S +  3.19 

2.3. Overview of box plot from DRI database 
Box plot is a graphical technique that is applied 

to correlate and summarize the data groups. The 
box plot utilizes the median, estimated quartiles, 
and smallest and highest data points to measure the 
magnitude and consistency of data dissemination. 
The data examined by a box plot mechanism has 
superiority over a data table. It is a technique that 
enhances and refines the reasoning behind the 
quantitative knowledge [41].  

The box plot of each indicator for DRI is 
provided in Figure 1. DRI is positively correlated 
with UCS and S20, and negatively correlated with 
BTS and Sj. The indicator values depend upon the 
DRI value. The higher the indicator values, the 
larger the DRI value. However, some outliers stay 
in all parameters under every indicator, which 
shows the entanglement of the DRI development 

mechanism. Furthermore, for the identical 
parameters, the distance between the larger and the 
smaller quartiles (box' height) varies. The 
alignment of the parameter values also has some 
overlapping segments. Hence, the impact of all 
parameters is assimilated to perceive a higher 
accuracy of DRI. 

 
Figure 1. Input parameters of the box plot from 

DRI database. 

3. A brief introduction of machine learning 
algorithms 

This section concisely explains the theoretical 
framework of DT, AdaBoost, and RF employed in 
this work. 

3.1. Decision tree modeling 
A decision tree (DT) is among the most famous 

ensemble techniques that represent a systemic 
sample of features as the tree origination. DT 
assists in explaining the features and sorting out the 
predictions based on the features [42]. DT 
manipulates the data measured on several model 
distributions, build on a simple non-linear 
relationship [43-44]. The ensemble learning 
models typically require an excessive numeration. 
Consequently, the fast machine learning 
algorithms, namely DT, are accustomed to develop 
the ensemble models [45]. 
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3.2. Adaboost algorithm 
AdaBoost is one of the most major ensemble 

methods in machine learning. This algorithm was 
initially developed on the weak classifier models in 
order to reinforce their accuracy [46]. The 
Adaboost algorithm can be used for both the 
classification and regression problems [47]. The 
machine learning algorithm has its desirability 
resulting in more convenience for several types of 
models, and there are ordinarily various attributes, 
configurations, and parameters that are required to 
be changed before attaining the most compelling 
interpretation of a model [48]. 

3.3. Random forest approach 
RF is a widely used ensemble learning to predict 

different categories based on various databases 
[49]. RF permits an unprecedented collaboration of 
model illustration and prediction accuracy among 
the alternative prominent machine learning 
algorithms. The ensemble learning used in RF 
allows it to attain a higher generalization and 
correct the model prediction [50]. Furthermore, RF 
focuses on three critical aspects, described as 
follow: 

i) It provides decent information for 
prediction purposes. 

ii) It can compute the significance of every 
parameter with the training of various models. 

iii) Nodesets proximity among different 
samples can be calculated by the model 
training. 

4. Model performance indicators 

In order to accurately and effectively evaluate the 
DT, AdaBoost, and RF models, three different 
evaluation analysis indicators are employed to 
explain the correlation between the predictive 
values and the measured values, namely the 
Pearson correlation coefficient (PCC), root mean 
square error (RMSE), and mean absolute error 
(MAE). PCC is a quantity index used to calculate 
how strong the correlation is between two 
variables, as shown in Equation 2, RMSE is a 
customary applied statistical metric that shows the 
fitted standard deviation of the error between the 
predictive values and the actual value, given in 
Equation 3.  MAE is another helpful measure 
widely employed in the model evaluations, 
showing the mean of the absolute error, which can 
well reflect the exact condition of the predictive 

value error. The MAE value can be calculated 
using Equation 4. 

PCCଶ =   1−  
∑ (X − Xᇱ)ଶ୬
୧ୀଵ

∑ (X − X")ଶ୬
୧ୀଵ

 (2) 

ܧܵܯܴ =  ඩ
1
ܰ  (X − X")ଶ



ୀଵ

 (3) 

ܧܣܯ =  ∑ ⎸X′′ − X
ୀଵ ⎸  (4) 

where, n is the total number of databases, X is the 
actual value, X′ indicates the predicted value, and 
X′′ represent the mean values. 

5. Structure of work 
In this approach, DT, AdaBoost, and RF are 

employed in order to predict DRI, and their 
prognostic interpretation is thoroughly compared 
from different aspects. First, the DRI database is 
randomly divided into a training dataset (80% of 
the total database) and the testing dataset (20% of 
the database). It should be noticed that the 
distribution of the DRI samples with various 
indictors in the training and test sets is maintained 
consistently during the database partitioning. 
Secondly, a three-fold cross-validation (CV) 
methodology is followed in order to get the best 
hyper-parameter values of the three ensemble 
learning algorithms (DT, AdaBoost, and RF). 
Thirdly, every algorithm with adjusted hyper-
parameters is then determined by the performance 
of the training set. Fourthly, the test set is acquired 
in order to examine the model performance using 
the performance analysis indicators, namely, PCC, 
root mean square error (RMSE), and mean absolute 
error (MAE). Fifthly, after all, the models are 
evaluated, one of them is selected for deployment. 
Finally, the Monte Carlo simulation is applied in 
order to predict the best simulation range of the 
model. The detailed framework of the work is 
shown in Figure 2.  

6. Ensemble learning  
In keeping with the dependencies among the base 

learners, bagging is a significant type of ensemble 
learning method [51]. The base learners are usually 
weak, having no dependencies, which permits 
them to be implemented in a parallel pattern in 
bagging ensemble learning [52]. First, a bootstrap 
illustration method is modeled in order to create the 
trail sets from the preliminary database. Then, the 
base learners are independently trained using each 
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trail set. Finally, the predicted value is achieved 
using the integration rules. A voting technique is 
formed for the prediction of the model. RF is the 
conventional representation of the bagging 
approach. However, in the selection of the features, 
RF varies from a bagging ensemble learning. The 

features are randomly taken from the original 
features within the RF, enhancing the model 
logical reasoning capacity. Figure 3. Indicates the 
structure of the bagging ensemble learning applied 
in the work. 

 
Figure 2. A flow chart of the work. 

 
Figure 3. Diagram of bagging ensemble learning. 

7. Discussion 
Various architectures were employed in order to 

obtain the best prediction of DRI in this work. To 
demonstrate that the proposed prediction ensemble 
learning model has a greater predictive capacity, 
the predictive results of the three models are 
compared with each other.  

Figures 4 and 5 indicate the predictive results of 
the training and testing datasets, respectively. It is 
clear that the PCC squared value of the RF model 

is near to 1 than that of the AdaBoost and DT 
models, which shows that the predictive values of 
DRI by the RF model are more correlated with the 
measured values. Simultaneously, the RMSE, and 
MAE values of the RF predictive model are lower 
than those of AdaBoost and DT, indicating that the 
RF model has a smaller prediction error. Hence it 
can be concluded that the performance rank of the 
ensemble learning in the descending order is RF > 
AdaBoost > DT. 

 
Figure 4. Predictive results of the training datasets.  

Figure 5. Predictive results of the testing datasets. 

8. Monte Carlo simulation method 
8.1. General overview 

The Monte Carlo (MC) simulation is applied as a 
probability distribution simulation in various real-
world problems [53-54]. This technique is 
employed as a computerized computation in order 
to identify different issues such as the uncertainty 
quantification and risk prediction in various 
models, such as assessment, prediction, and 

evaluation in various engineering areas including 
the finance, project management, decision making, 
etc. In order to obtain the probabilistic estimation, 
the MC simulation is manipulated on the repetitive 
random sampling [55-56]. Each model that predicts 
the outcomes requires an investigative set of 
hypotheses associated with the real-world issues 
and evaluation of the expected values build on the 
data [55]. 
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Table 2. Spearman’s correlation coefficient for the input datasets. 

 
UCS  

(MPa) 
BTS 

 (MPa) 
Brittleness value 

(S20) 
Sievers’ J value 

(Sj) 
UCS (MPa) 1    
BTS (MPa) 0.575853 1   

Brittleness value (S20) -0.13256 -0.38822 1  
Sievers’ J value (Sj) -0.53985 -0.57547 -0.04251 1 

 
The MC simulation has two important purposes: 

first, is the quantitative testing of variation and 
uncertainty, and the second one is the parameter 
investigation influencing the uncertainty, variation, 
and their proportion. In contrast to the traditional 
method, the MC simulation uses an extent of the 
estimated indicators as an input indicator, and then 
the system returns an extent of the output indicator 
for a comprehensive data. Hence, the MC 
simulation generates a more pragmatic sketch of 
the probabilistic distribution prediction models. In 
this technique, a random value is taken for every 

input indicator contingent on the range of the 
output indicator, and subsequently, the output 
datasets are estimated based on these random 
values. At last, the outcome of the MC simulation 
is noted. This process is continuously repeated 
using different random numbers. The mechanism 
is reproduced by 10000 times. Later on, in the 
assessment and evaluation of the simulation 
process, several consequences are generated as an 
output, which can be used to express the product 
[57-61]. 

 

 
Figure 6. Statistical summary of the DRI histogram 

obtained from the MC simulation. 

 
Figure 7. Comparison of the measured, Adaboost 

predicted, and MC simulated DRI. 

8.2. MC Modelling 

In this work, an approach of MC was established 
in order to find a good relationship between the 
best RF model and the MC simulation. The simple 
random sampling and Latin hypercube are the two 
main types of the MC simulation. In order to assure 
that all the possible combinations are arranged in a 
stochastic manner, 10000 repetitions were 
considered during the work meaning that 10000*3-
dimension simulations between the input 
parameters were employed during the MC 
approach. The correlation between different input 
parameters could be taken from Table 2. Different 
simulations are made in order to obtain a statistical 
representation in this work. The likelihood of 
occurrence is a criterion function set in the 
evaluation of the probabilistic model. Figure 6 
shows the statistical summary of DRI histogram to 
the probability of occurrences obtained from the 
10000 iteration MC simulation. Figure 7 shows 
that the measured values of DRI are in the range of 

25–89, and the RF predicted values are in the range 
of 32–89, whereas the MC simulation gives a DRI 
output of 21.42–93.64, indicating the acceptable 
measure level of the DRI simulation. A simulation 
probability of 0.000005 was tied up to recognize 
the range of DRI. Therefore, all the possible 
various situations were investigated by the MC 
simulation. This stochastic approach can be 
considered as a corner stone for the risk 
management and probabilistic investigative design 
of DRI. 

9. Conclusions 
From the above discussion, the ensemble 

methods have a great potential for DRI prediction. 
This work included the performance of three 
ensemble methods including DT, Adaboost, and 
RF. Moreover, three different performance 
indicators were selected in this work in order to 
check the accuracy of each model. The execution 
of the ensemble learning method improves its 
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reliability. The proposed ensemble models do not 
have any well-known specific limitations. 
However, these models are required to be tested on 
the field with the real-time drilling data in order to 
achieve more insight into their performance in the 
practical scenarios. With the speedy advancement 
in the sensor-based knowledge acquisition, new 
measurements could also be available in the future 
mining, civil, geological, petroleum, and 
geotechnical engineering projects. This will 
require re-training of the proposed models with 
newer training datasets. More research work is 
required in order to understand DRI with the real-
time economic evaluation scenarios.  

In short, the following consequences/outcome 
can be taken from this research work:  

i) The constructed simple linear equation showed 
its ability to measure the value of DRI with 98% 
accuracy in the training datasets and 95% accuracy 
in the testing datasets. 

ii) The RF model shows a good predictive result 
for both the training and testing databases among the 
other ensemble learning models. The RF model has 
the lowest error rate than the AdaBoost and DT 
methods.  

iii) The range of DRI values simulated by the MC 
simulation was 25–89 and the RF predicted values 
were in the range of 32–89, whereas the MC 

simulation gave a DRI output of 21.42–93.64, 
demonstrating that the proposed MC simulation 
could simulate the value of DRI very well by 
different types of rock databases.  

iv) It is highly recommended that the drilling field 
should be properly investigated before making any 
decision. Also, it is noteworthy that the equations 
and models proposed during the work to predict DRI 
are only related to the current rock engineering issue, 
and cannot be applied directly to any other rock 
engineering problem. However, in order to tackle the 
alternative rock designing and planning projects, the 
presented developed techniques should be 
considered a foundation and should be re-evaluated, 
re-analyzed, and even re-addressed. 
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Appendix 1. Drillability database 

S. NO UCS 
(MPa) 

BTS 
(MPa) 

Brittleness value 
(S20) 

Sievers’ J value 
(Sj) DRI 

1 99.19 7.42 43.86 85.7 54 
2 177.8 7.66 50.32 7.2 48 
3 206.4 13.82 30.02 3.8 25 
4 112 10.5 55.87 10.8 57 
5 131.5 11.2 64.93 10.7 67 
6 156 9.5 61.97 9 62 
7 121 11 70.13 14.2 73 
8 182 13.5 52.16 3.6 47 
9 118 8 69.23 5.6 68 
10 52.74 8.69 44.91 82.6 55 
11 57.66 6.57 54.38 85.2 65 
12 23.43 3.61 82.83 52.3 89 
13 45.67 5.4 58.44 52.5 67 
14 110.39 10.06 46.85 41 54 
15 134.72 5.87 50.43 50.2 59 
16 149.87 6.22 53.64 55.4 62 
17 169.89 6.75 51.52 48.1 60 
18 82 9.1 37.2 41 45 
19 83.2 11.8 37.86 41 45 
20 75.5 9.3 35.36 30.8 42 
21 64.61 5.43 50.76 59.8 59 
22 59.25 4.26 60.05 80.1 71 
23 61.6 7.2 50.86 52.1 58 
24 69.2 6.95 41.25 40.5 47 
25 77.8 8.6 37.52 35.1 43 
26 73.4 7.7 40.11 42.5 47 
27 59.25 4.26 60 80 71 
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Continuous of Appendix 1  
28 61.6 7.2 50.86 52.1 58 
29 64.61 5.43 50.76 59.8 59 
30 69.2 6.95 41.25 40.5 47 
31 77.8 8.6 37.52 35.1 43 
32 73.4 7.7 40.11 42.5 47 
33 91.55 5.5 36.7 81 47 
34 116 9.1 60 53 69 
35 128.91 8.67 55.32 87 66 
36 151.07 9.26 52.76 63 63 
37 88.33 7.08 48.2 51 56 
38 23.43 3.61 82.83 52.3 89 
39 45.67 5.4 58.44 52.5 67 
40 52.74 8.69 44.91 82.6 55 
41 57.66 6.57 54.38 85.2 65 
42 82 9.1 37.2 41 45 
43 83.2 11.8 37.86 41 45 
44 75.5 9.3 35.36 30.8 42 
45 110.39 10.06 46.85 41 54 
46 134.72 5.72 50.43 50.2 59 
47 149.87 6.22 53.64 55.4 62 
48 169.89 6.75 51.52 48.1 60 
49 51 3.28 77.15 41.23 83 
50 55.32 5.96 48.19 16.11 49 
51 118 8 69.23 5.6 68 
52 131.5 11.2 64.93 10.7 67 
53 156 9.5 61.97 9 62 
54 177.8 7.66 50.32 7.2 48 
55 112 10.5 55.87 10.8 57 
56 182 13.5 52.16 3.6 47 
57 206.4 13.82 30.02 3.8 25 
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  چکیده:

ها است. محققان سنگ يحفار تیقابل لیو تحل هیمهم در تجز يابزار )DRI( يسنگ است. شاخص سرعت حفار یاز موضوعات مهم مهندس یکی يحفار تیقابل
و  )AdaBoost( یانطباق تی، تقو)DT( میشامل درخت تصم یگروه يریادگی يهااند. روشسنگها انجام داده DRI یابیو ارز یهمبستگ يبرا يادیز يهاتلاش

کار وارد شده  نیبا چهار پارامتر در ا نیتمر تیداده با قابل گاهیپا کیها به کار رفته است. سنگ DRI ینیب شیبه منظور پ قیتحق نیدر ا )RF( یجنگل تصادف
 مختلف سنگها شامل یکیمکان اتیخصوص ل،ساده برقرار شده است. به منظور آموزش مد ونیرگرس لیبا استفاده از تحل DRIو  يورود يپارامترها نیاست. رابطه ب
در نظر گرفته شده است.  يبه عنوان ورود )Sj(و اندازه سرمته  )S20( ی، آزمون شکنندگ)BTS( یلیبرز ی، مقاومت کشش)UCS( يتک محور يمقاومت فشار

توسعه داده  یمختلف يهاتمی. الگورشودیم میتقس 20 به 80به نسبت  يریبه مجموعه آموزش و آزمون با روش نمونه گ یبه طور تصادف DRI یداده اصل گاهیپا
 شیپ ییرا با دقت بالا RF ،DRIسنگ ارائه شد. عملکرد مدل نشان داده است که روش  يهانمونه DRI ینیب شیپ يروش برا نیچند جه،یشده است، و در نت

 يشنهادیمدل پ ن،یاست. بنابرا ترنانیقابل اطم DRIاحتمال  عیتوز ینیب شیدر پ وشر نیکه ا دهدیمونت کارلو نشان م يهايساز هیشب ن،ی.علاوه بر اکندیم ینیب
  بکار گرفت. DRI یقاتیتحق یو طراح يردایپا سکیر تیریمد يبرا توانیرا م
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