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The mechanical characteristics of rocks and rock masses are considered as the
determining factors in making plans in the mining and civil engineering projects.
Two factors that determine how rocks responds in varying stress conditions are P-
wave velocity (PWV) and its isotropic properties. Therefore, achieving a high-
accurate method to estimate PWV is a very important task. This work investigates the
use of different intelligent models such as multivariate adaptive regression splines
(MARS), classification and regression tree (CART), group method of data handling
(GMDH), and gene expression programming (GEP) for the prediction of PWV. The
proposed models are then evaluated using several error statistics, i.e. squared
correlation coefficient (R2) and root mean squared error (RMSE). The values of R2
obtained from the CART, MARS, GMDH, and GEP models are 0.983, 0.999, 0.995,
and 0.998, respectively. Furthermore, the CART, MARS, GMDH, and GEP models
predict PWV with the RMSE values of 0.037, 0.007, 0.023, and 0.020, respectively.
According to the aforementioned amounts, the models presented in this work predict
PWV with a good performance. Nevertheless, the results obtained reveal that the
MARS model yields a better prediction in comparison to the GEP, GMDH, and
CART models. Accordingly, MARS can be offered as an accurate model for
predicting the aims in other rock mechanics and geotechnical fields.

1 Introduction

Mechanical characteristics of rock masses is a
significantly effective in petroleum engineering,

statistically-significant  relationship  exists
amongst different examined properties. His

geological mining, geotechnical studies, etc. [1,2].
These features are considered as a significant
indication for planning in the long-term and
designing the programs provided for exploring
and exploiting natural resources. The anisotropy
of rock masses has an adverse effect on the rock
strength. The primary wave velocity (PWV) is
affected by many variables, i.e. chemical
composition, hardness, and density. The dynamic
features of rocks are typically determined using
the seismic methods. These techniques are
incrementally applied at different levels of
constructions because they are not damaging, and
their implementation is relatively easy [3,4].
Szlavin [5] has conducted a study to find whether
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findings showed that a high correlation exists
amongst the rock mechanical features.
Determining PWYV in the field and laboratory is
monotonous. Extracting much information related
to the rocks and minerals that are likely to occur
in various deeper layer of earth is possible if the
field and laboratory geophysical and geological
and geochemical data are regarded together.
Therefore, estimating the physical features of the
rocks and PWV seems appropriate [4]. Many
laboratory data related to the mechanical features
are required in order to characterize the site. It is
not much easy to directly get all the studied
parameters considering the discontinuity and
anisotropy 1in the rocks. The analytical or
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empirical ~ relationship  between  different
mechanical strength features of the interested
materials are applied by the rock engineers [6].
Numerous investigators have suggested that a
significant relationship exists between the rock
properties and PWV. In order to estimate PWV
and the anisotropic characteristics of rocks, some
variables such as the uniaxial compressive
strength (UCS), density, hardness, and rocks’
chemical formation can be used [7,8]. Karakus,
Tutmez [9] have used the fuzzy and regression
methods in order to assess the intact rock strength
on the basis of a point load strength index and
sonic velocity. According to their findings, the
proposed method had a relatively good flexibility
in order to determine the uncertainties in the rock
features. An adaptive neuro-fuzzy inference
system (ANFIS) has been implemented by
Zoveidavianpoor et al. [10] to predict PWV in a
carbonate reservoir. Ansari [11] has employed the
ANFIS model to predict the porosity, and
subsequently, mixed through a power law
committee machine. In another study conducted
by Golsanami et al. [12], the application of the
fuzzy logic (FL), artificial neural network (ANN),
and ANFIS models have been investigated to
estimate capillary pressure. The studies with the
highest similarity with this research work were
conducted by some researchers [13-15]; however,
they used various input and output parameters.
Rajabi et al. [13] have predicted PWV, shear and
Stoneley wave velocities from conventional well
log data through FL, genetic algorithm (GA), and
ANFIS models. The aforementioned models were
also  successfully applied by  Asoodeh,
Bagheripour [14] to predict the same purpose. In
another study, FL, ANN, ANFIS, and support
vector regression (SVR) were employed by
Labani, Sabzekar [16] to predict the sonic shear
and stoneley velocities. With the same purpose,
Miah et al. [17] have used a least-squares support
vector machine (LSSVM) optimized by a global
optimization technique. Their results indicated the
effectiveness of the proposed model in this field.
A long short term memory (LSTM) recurrent
neutral network optimized by particle swarm
optimization (PSO) was proposed for predicting
the shear wave velocity (SWV) in the study
conducted by Wang et al. [18]. They also used the
empirical and multiple linear regression models
for the comparison aims. Their results obtained
showed a satisfactory achievement between the
observed and predicted values by the proposed
model to predict SWV. An ANFIS optimized with
PSO and GA was presented by Anemangely et al.
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[19] in order to predict SWV. The multivariate
regression analysis (MVRA) and empirical
models were also used in their study. Based on the
results obtained, ANFIS-PSO exhibited a higher
performance than the other models in predicting
SWV. A LSSVM model implemented by a
Cuckoo Optimization Algorithm (COA) was
developed to predict SWV using petrophysical
logs [20]. They also combined the LSSVM model
with PSO and GA, and compared the performance
of the proposed models. According to the results
obtained, LSSVM-COA was found a superior
predictive model in comparison to the LSSVM-
PSO and LSSVM-GA models in predicting SWV.
Modeling of SWV in limestone was investigated
by Behnia et al. [21] using the ANFIS, gene
expression programming (GEP), and neuro-
genetic models. They revealed that GEP was more
accurate than the other models in the studied case
and had the capacity to generalize.

The use of machine learning and non-linear
methods in different rock mechanics and
geotechnical fields have been expanded but its
application in the PWV prediction is limited. To
this view, the present work develops several
practical models in this field. Multivariate
adaptive regression splines (MARS) is a powerful
method for predicting the aims, and has been used
in different fields but its application in the rock
mechanic field is limited. In other words, the
present research work presents a practical
application of MARS to predict PWV. Apart from
that, a group method of data handling (GMDH),
gene expression programming (GEP), and
classification and regression tree (CART) are also
employed. To the best of our knowledge, it is the
first work that predicts PWV through the MARS
model. The rest of this paper is organized as what
follows. The background of aforementioned
models is briefly explained in part 2. Then the
modeling processes are explained in part 3.
Finally, the comparison of the models, their
results, and the conclusions are presented in parts
4 and 5, respectively.

2. Considered intelligent models
2.1. CART

The CART algorithm is a subset of the decision
tree (DT) method, and is one of the data mining
techniques [22]. Though the CART algorithm has
been developed for measurable variables, it is
enforceable to any variable. The CART algorithm
does not take into account the initial assumption
of the connections between the variables [23]. As
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stated earlier, when the output is set as real value,
tree regression (TR) should be used. Thus
considering the output results, TR should be
applied. The starting point is known as the root
node that covers the data in the recursive
partitioning.  Thereafter, every node is
consequently split into two subsets, and this
process is replicated in each node till the leaf and
the system can be calculated for the target. For the
CART method, several termination criteria can be
established, out of which three key criteria include
the maximum depth of tree, a minimum
observations number in a node split, and the
interval number. A comprehensive explanation of
the CART algorithm can be found in Breiman et
al. [22]. The use of the CART method in different
engineering fields has been investigated by many
researchers. Ebrahimy et al. [24] have offered the
CART method in the field of land subsidence. In
another study, Naghibi et al. [25] have evaluated
the maps of groundwater using the CART
method. In addition, the use of CART method to
predict the performance of tunnel boring machine
has been examined by Salimi et al. [26]. In the
field of mine blasting, Khandelwal et al. [27] have
predicted the ground vibration through the CART
method. Furthermore, in order to determine
heavy-metals pollution, Cheng et al. [28] have
used the CART method. The aforementioned
studies have confirmed the acceptability of the
CART method for the prediction and
classification aims.

2.2. MARS

MARS offers a flexible modeling technique for
a high-dimensional data [29]. The regression
function of the MARS model is defined as:

n M
.)9 :fM (x ) :CO +ZcmBm (‘x ) =

m=1

M K,
CO + Zcm kum (xv(k,m))
k=1

m=1

(D

where ¢ is a constant, y* is a variable vector
estimated using MARS, and

km
Bm(x)zl_[bkm (xv(k,m)) is the product of
k=1

splines b,,, (xv(k ’m)). The splines b is defined

as:
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by, (x ) =[x i ]‘i =

I (G 0 I /et )
0 others
and
bk,)n+l (x ) = [tkm —X ]i =
3)

_ (tkm —-X )i’ lf‘ X <t/<m’
0 others

The bases functions are selected according to

Eq. (1) in the forward process. In the backward

process, based on the generalized cross-validation

(GCV) criteria, the unsuccessful basis functions
are discarded. The GCV criterion is defined as:

n

LY (A )

nm[]lc (M)/nj2

where n is the object number, and C(M) is
described as:

C(M)=(M +1)+dM

GCV =

4)

)

d is the penalty (in this paper, d = 3), and M is
the term number in Eq. (2). A comprehensive
explanation of the MARS theory can be found in
[29]. The MARS method has been widely used in
different fields. Zheng et al. [30] have used the
MARS method in tunnel displacement. In another
research work, Kang et al. [31] have evaluated the
behavior of concrete dam by the MARS method.
The above researches indicated the effectiveness
of the MARS method in the studied fields.

2.3. GMDH

The GMDH neural network was proposed by
Ivakhnenko [32]. The GMDH neural network
has been employed in a numerous varieties of
fields such as rock/soil mechanics for
optimization and forecasting [33]. In the GMDH
neural network, it is now possible to train the
network for any given input vector,

X =(x,,,x,,,%,5,...x,, ) to estimate the output

il

values ( ¥, ), that is:

A

v, =f (x“,xiz,...,xm)i =12,...M (©)

It should be possible for the GMDH neural
network to decrease the error square between the
measured and estimated values:
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()

Mo )
Z[f (xilaxizaxisa---ax,-n)—y,-:| — min

i=1

It is possible to define the relation between the
output and inputs as follows:

1 1 1
y=a,+).ax, +p, Y a,xx, +
n n n
1 1 1
+D DY agx x X, o
n n n

The two variables and the quadratic form are
utilized in several applications, as follows:

®)

)9=G(xl.,xj)=a0+a1xl.+a2xj+ o

2 2
+ax X +ax; +agx;

By the regression methods, a. in Eq. (9) is
determined.
In the GMDH neural network, all neurons are

built from » input variables, thus:

i

The neurons are constructed as follows in the
second layer:

(10)

i=12,...M
)| &
p,gqel,2,. .M

(y,0x,.%, (11)

For each M triple row, a form of the function
described in Eq. (9) is utilized. These equations
can be described as follows:
Aa=Y (12)

where A is the unknown coefficient vector of
the equation presented in Eq. (9).
a={ay,a,,a,,a;,a,,d;} (13)

T

Y ={y1,y2,y3,...,yM} (14)

The observation vector is the output values,
thus:

2 2
1 ‘xlp ‘xlq Xl[)'xlq xl[} xlq

2 2
1 XZ[) XZ(/ XZ[)'XZ(/ xZ[) qu

A= (15)
1 ‘XM[) ‘XM(/ ‘xM[)'qu 'xﬂz/lp 'xAz/Iq
and
-1
a=(4"4) 4’y (16)
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A detailed explanations of the GMDH neural
network can be found in [34-36]. Many
researchers have used the GMDH method in
different areas of studies. Koopialipoor et al. [37]
have predicted the performance of tunnel boring
machine through the GMDH method. In the field
of rock mechanic, Chen et al. [38] have offered
GMDH for the prediction of the cohesion of
rocks. The mentioned studies show the ability of
the GMDH method for the prediction aims.

2.4. GEP

GEP is achieved from genetic programming and
genetic algorithm improvement proposed by
Ferreira [39]. In GEP, the solutions are known as
chromosomes like genetic algorithm. However, in
the GEP algorithm, the chromosomes are
described in the Karva language [40]. In this
algorithm, each chromosome consists of two
parts, tail and head. There are all terminals and
functions for the tails, although there are only
constant and input variables for the heads. The
GEP algorithm consist of five key components:
operator(s), stop condition, fitness function,
terminal set, and function set. The main steps and
the flow chart of the GEP algorithm is presented
in Figure 1. Also a comprehensive explanation of
the GEP algorithm can be found in [39]. The
application of GEP has been highlighted by some
scholars. Faradonbeh et al. [40] have offered the
GEP model for the fly-rock estimation in mine
blasting. In another study, the performance of
road-header in tunneling has been approximated
by Faradonbeh et al. [41]. Additionally, Ince et al.
[42] have estimated the uniaxial compressive
strength of rocks using the GEP model. The
aforementioned research works confirmed the
reliability of the GEP model in the mining and
geotechnical fields.

2.5. Database

In order to construct the predictive models, the
required datasets were borrowed from a
comprehensive research work carried out by
Verma, Singh [43]. In the database used, some
variables such as the hardness and porosity were
assigned as the input parameters; also PWV was
assigned as the output parameter. In total, 36 data
samples were applied in the modeling process,
and categorized into the training and testing
phases. More details regarding the database are
mentioned in Table 1.
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Figure 1. A flow chart of GEP algorithm.

Table 1- Descriptive statistics of the database [43].

Parameters
Descriptive Input Output
statistics Hardness Porosity  Absorption Compressive Density ~ Fracture roughness PWV
(%) (%) strength (MPa) (g/cc) coefficient (cm/s)
Standard error 0.179 0.058 0.014 6.673 0.017 0.170 21.547
Median 5.43 0.91 0.367 177 2.7115 2.244 498.828
Séi‘lfé‘gi 1.079 0351 0.089 40.039 0.106 1.021 129.287
Kurtosis -0.983 -0.765 -1.191 -1.310 -0.943 -1.054 -1.074
Skewness -0.437 0.312 -0.030 0.032 -0.127 -0.129 -0.399
Minimum 3.28 0.43 0.215 104.98 2.51 0.236 239.59
Maximum 6.93 1.81 0.54 244 2.889 3.905 671.094
2.6. Model performance evaluation Y —x
In order to improve the stability of the training Xy = (17)
X max X min

of the proposed models (CART, GMDH neural
network, MARS, and GEP), the data of both the
output and inputs should be normalized. In this
work, all data was converted into the values
between [0, 1] by the following expression:
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where X, Xu, Xmin, and x... are before being
normalized, after being normalized, minimum
value, and maximum value, respectively.

Also in order to evaluate the performance of the
models, squared correlation coefficient (R?) and
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root mean squared error (RMSE) were selected as
the error statistics. RMSE and R’ are formulated
[44-52]:

I3 A
RMSE = /—Z(fk £ ) (18)
n =
Z(tk _fk)z
RZ =1- k=1
37 (19)
n k
Z f,f _ =l
k=1 n
where ,tAk, and n are the actual value,
predicted values, and observation numbers,
respectively.

3. Results and discussion

About prediction of PWV using CART, the
MATLAB software was applied in this work.
Using the training data, the CART model aims to

Journal of Mining & Environment, Vol. 12, No. 3, 2021

learn the relationships between the output and
input parameters to obtain a low prediction error.
The testing data was also utilized to measure the
efficiency of the built method. Firstly, all data was
divided randomly into testing (20%) and training
(80%). In order to obtain the best CART, the
range of interval numbers and maximum depth of
tree was chosen [1-9 and 2-9], respectively.
Different approaches were tested (based on the
trial-and-error) in order to evaluate these two
parameters. After numerous trials and errors, five
CART models were established. In order to
analyze the model performance, R’ and RMSE
were calculated.

Based on the two error statistics (see Table 2),
model 5 (with maximum tree depth = 4) was the
best model. Figure 2 shows the tree structure that
starts with the hardness parameter as the root
node, and has 13 nodes.

Table 2- Error statistics for assessment of CART models.

No. Maximum tree Rz. R? RMSE RMSE
depth (Train) (Test) (Train) (Test)

1 5 0.97231 0.91287 0.04845 0.05321

2 6 0.94281 0.92521 0.02372 0.05334
3 7 0.96523 0.93215 0.03924 0.05725

4 6 0.95222 0.93521 0.02452 0.05114
5 4 0.99557 0.98387 0.01967 0.03753

Hardness <= 0.67

y

Porosity <= 0.70 Vo 0 \ Porosity > 0.70

y |

| \
Hardness <= 0,39/ " \ Hardness > 0.39 5

\ Absorption > 0.78

1 \ Hardness > 0.67

7 ‘

Compressive Strength <= 0.65 /_3 \ Compressive Strength > 0.65

J |

| \

\_— /4

Density <= a0/ 0\ Density > 0.40

legend

Absorption<= 0.78 /-
6

0
\ 4

& -

Root node

Prediction node

<> Terminal node

¢
¢

¢

Figure 2. Tree structure of the best CART.

About prediction of PWV using MARS, in this
work, the MARS model was constructed by the
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MATLAB software. Also this work adopts R’ and
RMSE to evaluate the MARS's performance. 15
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basic functions were utilized to develop the
MARS model. Finally, 6 basis functions were
utilized for the optimum MARS model. The
optimum equation for estimation of P-wave
velocity is given by:

6
P —wave =0.665 + ZaiB,.

i=l1

(20)
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The a; and B; values are presented Table 3. In
addition, the performance of both the training and
testing phases is listed in Table 4. The mentioned
results in this table show that the developed
MARS is a powerful method for the estimation of
PWV.

Table 3- The a; and B; values of the MARS model.

Bi Equation ai
B1 Max (0, Hardness - 0.558904) 0.6117
B: Max (0, 0.558904 - Hardness) 0.9855-
B3 Max (0, 0.525248 — Compressive strength) 0.1682
Bs Max (0, Density - 0.422164) 0.1153
Bs Max (0, 0.422164 - Density) 0.3247-
Bs Max (0, Fracture roughness coefficient - 0.51867)  0.6409-
Table 4- Error measurement by MARS model.
Train Test
MARS model RMSE R? RMSE R?
0.00381 0.99983 0.00798 0.99927

About prediction of PWV using the GMDH
neural network, in this work, the professional
ANN software was utilized to develop the GMDH
neural network, namely GMDH Shell. This
software does not require initial data
normalization and noticeably reducing processing
time. A data collection containing 36 data points
was used, while 80% of the data was applied for
training (approximate equation), and the

nputs

£
1€
7

remaining data was applied for calculation of the
accuracy degree. A schematic presentation of the
proposed GMDH neural network is shown in
Figure 3. After modeling, the equation given by
the GMDH shell program is given in Table 5.
Also the error measurement given by the GMDH
shell and a comparison of the measured data with
the estimated data are presented in Table 6 and
Figure 4.

Figure 3. A view of the proposed GMDH.
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Table 5- Given equation by software.

Proposed Model: P-wave = 0.000596132 - N12*0.168554 + N12"2*0.0831675 + N2*1.1666 - N2"2*0.0817804

Nodes
N2= 2.40644e-05 - N6*0.232669 + N672%0.0227659 + N3*1.23259 - N3/2*(.0227148
N3= 0.00230702 - FractureRoughnessCoefficient*2*0.00451408 + N4*1.00179 - N4°2*0.00378364
N4= -0.000687493 + N8*1.00327 - N82*0.741414 + N6°2*0.738464
N6= -0.00581691 - N13*0.290212 + N1372*0.199494 + N7*1.30897 - N7"2*0.209071
N7= -0.147936 + N12*1.37108 - N1272*0.467611 + N16*0.164835 + N16"2*0.0650832
N8= 0.00217457 + N12*1.01064 + N1272*0.0452028 - N1572*0.0654248
N12= -0.0758137 + Hardness*0.732606 + Hardness"2*0.240665 + CompressiveStrength*0.73875 -
CompressiveStrength”2*0.665822
N13= 1.04956 - Porosity*3.03513 + Absorption*1.84419
N15= -4.80563 + CompressiveStrength*11.0636 - CompressiveStrength”2*5.58128 +
FractureRoughnessCoefficient"2*4.23617
N16= 0.417828 + Density*0.820534 - Density"2*0.163054 - FractureRoughnessCoefficient*2*0.394987
Table 6- Error measurement by GMDH neural network model.
Train Test
GMDH neural network model RMSE R’ RMSE R?
0.003667  0.999835  0.023325  0.995024
1.5 T T T
—@—Measured Data
—-B-—GMDH-Type ANN Predicted Data | |
| Train Data 1 Test Data |
@ | — 3
zo1F | .
Z |
o |
E |
£ |
o5 : T
|
|
I
0 | | | | | | 1| L %

0 5 10 15

20 25 30 35

Data Number

Figure 4. Comparison of measured values with those estimated by GMDH neural network.

About prediction of PWV using the GEP
algorithm, this section aims to find a function in
the template of PWV =f(fracture roughness,
porosity, absorption, density, compressive
strength) to estimate PWV, where the fracture
roughness, porosity, absorption, density, and
compressive strength are the independent factors,
and PWYV is the dependent factor. The GeneXpro
Tools 4.0 is a powerful flexible modeling
software for the classification, logic synthesis
aims, and function finding. Therefore, in this
work, GeneXpro Tools 4.0 was selected and
utilized. First of all, 80% of the data was applied
randomly for training, and 20% of the dataset was
applied for testing. Note that since there is no
definite procedure to evaluate the general setting
values, a trial-and-error method was employed to
obtain this aim, and finally, considering Table 7,
the best solution was achieved. In addition, the

870

tree structure of the GEP model for predicting the
PWYV is shown in Figure 5.

Table 7- Parameter values for the developed GEP.

GEP algorithm parameters Parameter settings

Number of generation 1000
Chromosomes 30
Head size 8
Fitness function RMSE
Linking function Addition (+)
Number of genes 3
Mutation rate 0.00138
Inversion rate 0.00546
One-point recombination rate 0.00277
Two-point recombination rate 0.00277
Gene recombination rate 0.00277
Gene transposition rate 0.00277




Fattahi et al

Journal of Mining & Environment, Vol. 12, No. 3, 2021

+
[ Ls d
¥ — . |zegend
i @
d0: Hardness
| .’—I—‘ d1: Porosity
z 5 d2: Absorption
d5 * d3: Compressive Strength
< d4: Density
v x d5: Fracture Roughness
@ 9 % d3 Coefficient
s wes ety by w0 @

Figure 5. Tree structure of the GEP model for predicting PWV.

In order to determine the GEP model
performance, R’ and RMSE were measured. In the
training, the calculated values of 0.008 and
0.999413 were achieved for RMSE and R’
respectively, while the values of 0.998676 and
0.0204 were achieved for the two performance

indices, respectively. The results obtained showed
that the GEP model was able to estimate PWV
with a good precision. A better view between the
estimated and measured PWV by GEP for all data
is presented in Figure 6.

15

—&—Measured Data
—-B-=GEP Predicted Data

Train Data

Oberved P-Wave

0 5 10 15

At the end, we compared our results of the
proposed models (CART, GMDH neural network,
MARS, and GEP); this comparison is shown in
Figure 7. As it can be seen, all the models offered
in the current research work were able to
effectively estimate PWYV; however, MARS
reveals a better accuracy level to other models.

4. Conclusions

The physical and mechanical characteristics of
rocks play an important role in the whole
operational segments in the activities related to
mining and ranges from exploration to dispatch of
material. There are two characteristics, i.e. PWV
and the rocks’ anisotropic behavior, which help us
to understand the rock behavior in the conditions
of stress. Further, the breakage mechanism of
rocks is affected by the two above-noted
characteristics. The literature consists of a number
of methods used to determine PWV and

20 25 30 35

Data Number
Figure 6. Comparison of measured values with those estimated by GEP model.
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anisotropy in the in situ and laboratory conditions.
However, such techniques are burdensome, and
take a lot of time. This work employed different
artificial intelligence methods including CART,
MARS, GMDH, and GEP in order to predict
PWYV. Then the proposed models were evaluated
through statistical functions, i.e. R’ and RMSE.
Some conclusions can be drawn as what follows.
(1) Reviewing the results, the proposed models
provided good predictions of PWV. The values of
the statistical functions (R’ and RMSE) obtained
from the CART, MARS, GMDH, and GEP
models were (0.983, 0.037), (0.999, 0.007),
(0.995, 0.023), and (0.998, 0.020), respectively.
According to the aforementioned results, the
MARS model produced better results than the
other models. (2) As a conclusion, the ability of
the MARS model can be confirmed, and it has the
capacity to generalize in other rock mechanic
fields
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Figure 7. Comparison of performance of the proposed models for a) training, b) testing.
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