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 The mechanical characteristics of rocks and rock masses are considered as the 
determining factors in making plans in the mining and civil engineering projects. 
Two factors that determine how rocks responds in varying stress conditions are P-
wave velocity (PWV) and its isotropic properties. Therefore, achieving a high-
accurate method to estimate PWV is a very important task. This work investigates the 
use of different intelligent models such as multivariate adaptive regression splines 
(MARS), classification and regression tree (CART), group method of data handling 
(GMDH), and gene expression programming (GEP) for the prediction of PWV. The 
proposed models are then evaluated using several error statistics, i.e. squared 
correlation coefficient (R2) and root mean squared error (RMSE). The values of R2 
obtained from the CART, MARS, GMDH, and GEP models are 0.983, 0.999, 0.995, 
and 0.998, respectively. Furthermore, the CART, MARS, GMDH, and GEP models 
predict PWV with the RMSE values of 0.037, 0.007, 0.023, and 0.020, respectively. 
According to the aforementioned amounts, the models presented in this work predict 
PWV with a good performance. Nevertheless, the results obtained reveal that the 
MARS model yields a better prediction in comparison to the GEP, GMDH, and 
CART models. Accordingly, MARS can be offered as an accurate model for 
predicting the aims in other rock mechanics and geotechnical fields. 
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1 Introduction 
Mechanical characteristics of rock masses is 

significantly effective in petroleum engineering, 
geological mining, geotechnical studies, etc. [1,2]. 
These features are considered as a significant 
indication for planning in the long-term and 
designing the programs provided for exploring 
and exploiting natural resources. The anisotropy 
of rock masses has an adverse effect on the rock 
strength. The primary wave velocity (PWV) is 
affected by many variables, i.e. chemical 
composition, hardness, and density. The dynamic 
features of rocks are typically determined using 
the seismic methods. These techniques are 
incrementally applied at different levels of 
constructions because they are not damaging, and 
their implementation is relatively easy [3,4]. 
Szlavin [5] has conducted a study to find whether 

a statistically-significant relationship exists 
amongst different examined properties. His 
findings showed that a high correlation exists 
amongst the rock mechanical features. 

Determining PWV in the field and laboratory is 
monotonous. Extracting much information related 
to the rocks and minerals that are likely to occur 
in various deeper layer of earth is possible if the 
field and laboratory geophysical and geological 
and geochemical data are regarded together. 
Therefore, estimating the physical features of the 
rocks and PWV seems appropriate [4]. Many 
laboratory data related to the mechanical features 
are required in order to characterize the site. It is 
not much easy to directly get all the studied 
parameters considering the discontinuity and 
anisotropy in the rocks. The analytical or 
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empirical relationship between different 
mechanical strength features of the interested 
materials are applied by the rock engineers [6]. 
Numerous investigators have suggested that a 
significant relationship exists between the rock 
properties and PWV. In order to estimate PWV 
and the anisotropic characteristics of rocks, some 
variables such as the uniaxial compressive 
strength (UCS), density, hardness, and rocks’ 
chemical formation can be used [7,8]. Karakus, 
Tutmez [9] have used the fuzzy and regression 
methods in order to assess the intact rock strength 
on the basis of a point load strength index and 
sonic velocity. According to their findings, the 
proposed method had a relatively good flexibility 
in order to determine the uncertainties in the rock 
features. An adaptive neuro-fuzzy inference 
system (ANFIS) has been implemented by 
Zoveidavianpoor et al. [10] to predict PWV in a 
carbonate reservoir. Ansari [11] has employed the 
ANFIS model to predict the porosity, and 
subsequently, mixed through a power law 
committee machine. In another study conducted 
by Golsanami et al. [12], the application of the 
fuzzy logic (FL), artificial neural network (ANN), 
and ANFIS models have been investigated to 
estimate capillary pressure. The studies with the 
highest similarity with this research work were 
conducted by some researchers [13-15]; however, 
they used various input and output parameters. 
Rajabi et al. [13] have predicted PWV, shear and 
Stoneley wave velocities from conventional well 
log data through FL, genetic algorithm (GA), and 
ANFIS models. The aforementioned models were 
also successfully applied by Asoodeh, 
Bagheripour [14] to predict the same purpose. In 
another study, FL, ANN, ANFIS, and support 
vector regression (SVR) were employed by 
Labani, Sabzekar [16] to predict the sonic shear 
and stoneley velocities. With the same purpose, 
Miah et al. [17] have used a least-squares support 
vector machine (LSSVM) optimized by a global 
optimization technique. Their results indicated the 
effectiveness of the proposed model in this field. 
A long short term memory (LSTM) recurrent 
neutral network optimized by particle swarm 
optimization (PSO) was proposed for predicting 
the shear wave velocity (SWV) in the study 
conducted by Wang et al. [18]. They also used the 
empirical and multiple linear regression models 
for the comparison aims. Their results obtained 
showed a satisfactory achievement between the 
observed and predicted values by the proposed 
model to predict SWV. An ANFIS optimized with 
PSO and GA was presented by Anemangely et al. 

[19] in order to predict SWV. The multivariate 
regression analysis (MVRA) and empirical 
models were also used in their study. Based on the 
results obtained, ANFIS-PSO exhibited a higher 
performance than the other models in predicting 
SWV. A LSSVM model implemented by a 
Cuckoo Optimization Algorithm (COA) was 
developed to predict SWV using petrophysical 
logs [20]. They also combined the LSSVM model 
with PSO and GA, and compared the performance 
of the proposed models. According to the results 
obtained, LSSVM-COA was found a superior 
predictive model in comparison to the LSSVM-
PSO and LSSVM-GA models in predicting SWV. 
Modeling of SWV in limestone was investigated 
by Behnia et al. [21] using the ANFIS, gene 
expression programming (GEP), and neuro-
genetic models. They revealed that GEP was more 
accurate than the other models in the studied case 
and had the capacity to generalize.   

The use of machine learning and non-linear 
methods in different rock mechanics and 
geotechnical fields have been expanded but its 
application in the PWV prediction is limited. To 
this view, the present work develops several 
practical models in this field. Multivariate 
adaptive regression splines (MARS) is a powerful 
method for predicting the aims, and has been used 
in different fields but its application in the rock 
mechanic field is limited. In other words, the 
present research work presents a practical 
application of MARS to predict PWV. Apart from 
that, a group method of data handling (GMDH), 
gene expression programming (GEP), and 
classification and regression tree (CART) are also 
employed. To the best of our knowledge, it is the 
first work that predicts PWV through the MARS 
model. The rest of this paper is organized as what 
follows. The background of aforementioned 
models is briefly explained in part 2. Then the 
modeling processes are explained in part 3. 
Finally, the comparison of the models, their 
results, and the conclusions are presented in parts 
4 and 5, respectively. 

2. Considered intelligent models  
2.1. CART  

The CART algorithm is a subset of the decision 
tree (DT) method, and is one of the data mining 
techniques [22]. Though the CART algorithm has 
been developed for measurable variables, it is 
enforceable to any variable. The CART algorithm 
does not take into account the initial assumption 
of the connections between the variables [23]. As 
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stated earlier, when the output is set as real value, 
tree regression (TR) should be used. Thus 
considering the output results, TR should be 
applied. The starting point is known as the root 
node that covers the data in the recursive 
partitioning. Thereafter, every node is 
consequently split into two subsets, and this 
process is replicated in each node till the leaf and 
the system can be calculated for the target. For the 
CART method, several termination criteria can be 
established, out of which three key criteria include 
the maximum depth of tree, a minimum 
observations number in a node split, and the 
interval number. A comprehensive explanation of 
the CART algorithm can be found in Breiman et 
al. [22]. The use of the CART method in different 
engineering fields has been investigated by many 
researchers. Ebrahimy et al. [24] have offered the 
CART method in the field of land subsidence. In 
another study, Naghibi et al. [25] have evaluated 
the maps of groundwater using the CART 
method. In addition, the use of CART method to 
predict the performance of tunnel boring machine 
has been examined by Salimi et al. [26]. In the 
field of mine blasting, Khandelwal et al. [27] have 
predicted the ground vibration through the CART 
method. Furthermore, in order to determine 
heavy-metals pollution, Cheng et al. [28] have 
used the CART method. The aforementioned 
studies have confirmed the acceptability of the 
CART method for the prediction and 
classification aims.  

2.2. MARS 
MARS offers a flexible modeling technique for 

a high-dimensional data [29]. The regression 
function of the MARS model is defined as: 
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The bases functions are selected according to 
Eq. (1) in the forward process. In the backward 
process, based on the generalized cross-validation 
(GCV) criteria, the unsuccessful basis functions 
are discarded. The GCV criterion is defined as: 
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where n is the object number, and C(M) is 
described as: 

   1C M M dM    (5) 

d is the penalty (in this paper, d = 3), and M is 
the term number in Eq. (2). A comprehensive 
explanation of the MARS theory can be found in 
[29]. The MARS method has been widely used in 
different fields. Zheng et al. [30] have used the 
MARS method in tunnel displacement. In another 
research work, Kang et al. [31] have evaluated the 
behavior of concrete dam by the MARS method. 
The above researches indicated the effectiveness 
of the MARS method in the studied fields.  

2.3. GMDH  

The GMDH neural network was proposed by 
Ivakhnenko [32].  The  GMDH neural network  
has been  employed  in  a  numerous varieties  of  
fields  such  as  rock/soil mechanics  for  
optimization and forecasting [33]. In the GMDH 
neural network, it is now possible to train the 
network for any given input vector, 

 1 2 3, , ,...,i i i inX x x x x  to estimate the output 

values ( ˆiy ), that is: 

 1 2
ˆˆ , ,..., 1,2,...,i i i iny f x x x i M   (6) 

It should be possible for the GMDH neural 
network to decrease the error square between the 
measured and estimated values: 
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It is possible to define the relation between the 
output and inputs as follows: 
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The two variables and the quadratic form are 
utilized in several applications, as follows: 
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By the regression methods, ia  in Eq.  (9) is 
determined. 
In the GMDH neural network, all neurons are 
built from n input variables, thus: 
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The neurons are constructed as follows in the 
second layer: 
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For each M triple row, a form of the function 
described in Eq. (9) is utilized. These equations 
can be described as follows: 
Aa Y  (12) 

where A is the unknown coefficient vector of 
the equation presented in Eq. (9). 
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and 

  1T Ta A A A Y


  (16) 

A detailed explanations of the GMDH neural 
network can be found in [34-36]. Many 
researchers have used the GMDH method in 
different areas of studies. Koopialipoor et al. [37] 
have predicted the performance of tunnel boring 
machine through the GMDH method. In the field 
of rock mechanic, Chen et al. [38] have offered 
GMDH for the prediction of the cohesion of 
rocks. The mentioned studies show the ability of 
the GMDH method for the prediction aims.  

2.4. GEP 

GEP is achieved from genetic programming and 
genetic algorithm improvement proposed by 
Ferreira [39]. In GEP, the solutions are known as 
chromosomes like genetic algorithm. However, in 
the GEP algorithm, the chromosomes are 
described in the Karva language [40]. In this 
algorithm, each chromosome consists of two 
parts, tail and head. There are all terminals and 
functions for the tails, although there are only 
constant and input variables for the heads. The 
GEP algorithm consist of five key components: 
operator(s), stop condition, fitness function, 
terminal set, and function set. The main steps and 
the flow chart of the GEP algorithm is presented 
in Figure 1. Also a comprehensive explanation of 
the GEP algorithm can be found in [39]. The 
application of GEP has been highlighted by some 
scholars. Faradonbeh et al. [40] have offered the 
GEP model for the fly-rock estimation in mine 
blasting. In another study, the performance of 
road-header in tunneling has been approximated 
by Faradonbeh et al. [41]. Additionally, İnce et al. 
[42] have estimated the uniaxial compressive 
strength of rocks using the GEP model. The 
aforementioned research works confirmed the 
reliability of the GEP model in the mining and 
geotechnical fields.  

2.5. Database 

In order to construct the predictive models, the 
required datasets were borrowed from a 
comprehensive research work carried out by 
Verma, Singh [43]. In the database used, some 
variables such as the hardness and porosity were 
assigned as the input parameters; also PWV was 
assigned as the output parameter. In total, 36 data 
samples were applied in the modeling process, 
and categorized into the training and testing 
phases. More details regarding the database are 
mentioned in Table 1. 
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Figure 1. A flow chart of GEP algorithm. 

Table 1- Descriptive statistics of the database [43]. 

Descriptive 
statistics 

Parameters 
Input Output 

Hardness Porosity 
(%) 

Absorption 
(%) 

Compressive 
strength (MPa) 

Density 
(g/cc) 

Fracture roughness 
coefficient 

PWV 
(cm/s) 

Standard error 0.179 0.058 0.014 6.673 0.017 0.170 21.547 
Median 5.43 0.91 0.367 177 2.7115 2.244 498.828 

Standard 
deviation 1.079 0.351 0.089 40.039 0.106 1.021 129.287 

Kurtosis -0.983 -0.765 -1.191 -1.310 -0.943 -1.054 -1.074 
Skewness -0.437 0.312 -0.030 0.032 -0.127 -0.129 -0.399 
Minimum 3.28 0.43 0.215 104.98 2.51 0.236 239.59 
Maximum 6.93 1.81 0.54 244 2.889 3.905 671.094 

 
2.6. Model performance evaluation 

In order to improve the stability of the training 
of the proposed models (CART, GMDH neural 
network, MARS, and GEP), the data of both the 
output and inputs should be normalized. In this 
work, all data was converted into the values 
between [0, 1] by the following expression: 

min

max min
M

x xx
x x





 (17) 

where x, xM, xmin, and xmax are before being 
normalized, after being normalized, minimum 
value, and maximum value, respectively. 

Also in order to evaluate the performance of the 
models, squared correlation coefficient (R2) and 
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root mean squared error (RMSE) were selected as 
the error statistics. RMSE and R2 are formulated 
[44-52]: 
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where tk , k̂t , and n are the actual value, 
predicted values, and observation numbers, 
respectively. 

3. Results and discussion 
About prediction of PWV using CART, the 

MATLAB software was applied in this work. 
Using the training data, the CART model aims to 

learn the relationships between the output and 
input parameters to obtain a low prediction error. 
The testing data was also utilized to measure the 
efficiency of the built method. Firstly, all data was 
divided randomly into testing (20%) and training 
(80%). In order to obtain the best CART, the 
range of interval numbers and maximum depth of 
tree was chosen [1–9 and 2–9], respectively. 
Different approaches were tested (based on the 
trial-and-error) in order to evaluate these two 
parameters. After numerous trials and errors, five 
CART models were established. In order to 
analyze the model performance, R2 and RMSE 
were calculated. 

Based on the two error statistics (see Table 2), 
model 5 (with maximum tree depth = 4) was the 
best model. Figure 2 shows the tree structure that 
starts with the hardness parameter as the root 
node, and has 13 nodes.  

Table 2- Error statistics for assessment of CART models. 

No. Maximum tree 
depth 

R2 
(Train) 

R2 
(Test) 

RMSE 
(Train) 

RMSE 
(Test) 

1 5 0.97231 0.91287 0.04845 0.05321 
2 6 0.94281 0.92521 0.02372 0.05334 
3 7 0.96523 0.93215 0.03924 0.05725 
4 6 0.95222 0.93521 0.02452 0.05114 
5 4 0.99557 0.98387 0.01967 0.03753 

 
Figure 2. Tree structure of the best CART.  

About prediction of PWV using MARS, in this 
work, the MARS model was constructed by the 

MATLAB software. Also this work adopts R2 and 
RMSE to evaluate the MARS's performance. 15 
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basic functions were utilized to develop the 
MARS model. Finally, 6 basis functions were 
utilized for the optimum MARS model. The 
optimum equation for estimation of P-wave 
velocity is given by:  

6

1
0.665 i i

i
P wave a B



    (20) 

The ai and Bi values are presented Table 3. In 
addition, the performance of both the training and 
testing phases is listed in Table 4. The mentioned 
results in this table show that the developed 
MARS is a powerful method for the estimation of 
PWV.  

Table 3- The ai and Bi values of the MARS model. 
Bi Equation ai 
B1 Max (0, Hardness - 0.558904) 0.6117 
B2 Max (0, 0.558904 - Hardness) 0.9855- 
B3 Max (0, 0.525248 – Compressive strength) 0.1682 
B4 Max (0, Density - 0.422164) 0.1153 
B5 Max (0, 0.422164 - Density) 0.3247- 
B6 Max (0, Fracture roughness coefficient - 0.51867) 0.6409- 

Table 4- Error measurement by MARS model. 

MARS model 
Train Test 

RMSE R2 RMSE R2 
0.00381 0.99983 0.00798 0.99927 

 
About prediction of PWV using the GMDH 

neural network, in this work, the professional 
ANN software was utilized to develop the GMDH 
neural network, namely GMDH Shell. This 
software does not require initial data 
normalization and noticeably reducing processing 
time. A data collection containing 36 data points 
was used, while 80% of the data was applied for 
training (approximate equation), and the 

remaining data was applied for calculation of the 
accuracy degree. A schematic presentation of the 
proposed GMDH neural network is shown in 
Figure 3. After modeling, the equation given by 
the GMDH shell program is given in Table 5. 
Also the error measurement given by the GMDH 
shell and a comparison of the measured data with 
the estimated data are presented in Table 6 and 
Figure 4.  

 
Figure 3. A view of the proposed GMDH.  
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Table 5- Given equation by software. 
Proposed Model: P-wave = 0.000596132 - N12*0.168554 + N12^2*0.0831675 + N2*1.1666 - N2^2*0.0817804 

Nodes 
N2= 2.40644e-05 - N6*0.232669 + N6^2*0.0227659 + N3*1.23259 - N3^2*0.0227148 
N3= 0.00230702 - FractureRoughnessCoefficient^2*0.00451408 + N4*1.00179 - N4^2*0.00378364 
N4= -0.000687493 + N8*1.00327 - N8^2*0.741414 + N6^2*0.738464 
N6= -0.00581691 - N13*0.290212 + N13^2*0.199494 + N7*1.30897 - N7^2*0.209071 
N7= -0.147936 + N12*1.37108 - N12^2*0.467611 + N16*0.164835 + N16^2*0.0650832 
N8= 0.00217457 + N12*1.01064 + N12^2*0.0452028 - N15^2*0.0654248 

N12= -0.0758137 + Hardness*0.732606 + Hardness^2*0.240665 + CompressiveStrength*0.73875 - 
CompressiveStrength^2*0.665822 

N13= 1.04956 - Porosity*3.03513 + Absorption*1.84419 

N15= -4.80563 + CompressiveStrength*11.0636 - CompressiveStrength^2*5.58128 + 
FractureRoughnessCoefficient^2*4.23617 

N16= 0.417828 + Density*0.820534 - Density^2*0.163054 - FractureRoughnessCoefficient^2*0.394987 

Table 6- Error measurement by GMDH neural network model. 

GMDH neural network model 
Train Test 

RMSE R2 RMSE R2 
0.003667 0.999835 0.023325 0.995024 

 
Figure 4. Comparison of measured values with those estimated by GMDH neural network. 

About prediction of PWV using the GEP 
algorithm, this section aims to find a function in 
the template of PWV =f(fracture roughness, 
porosity, absorption, density, compressive 
strength) to estimate PWV, where the fracture 
roughness, porosity, absorption, density, and 
compressive strength are the independent factors, 
and PWV is the dependent factor. The GeneXpro 
Tools 4.0 is a powerful flexible modeling 
software for the classification, logic synthesis 
aims, and function finding. Therefore, in this 
work, GeneXpro Tools 4.0 was selected and 
utilized. First of all, 80% of the data was applied 
randomly for training, and 20% of the dataset was 
applied for testing. Note that since there is no 
definite procedure to evaluate the general setting 
values, a trial-and-error method was employed to 
obtain this aim, and finally, considering Table 7, 
the best solution was achieved. In addition, the 

tree structure of the GEP model for predicting the 
PWV is shown in Figure 5.  

Table 7- Parameter values for the developed GEP.  
GEP algorithm parameters Parameter settings 
Number of generation 1000 
Chromosomes 30 
Head size 8 
Fitness function RMSE 
Linking function Addition (+) 
Number of genes 3 
Mutation rate 0.00138 
Inversion rate 0.00546 
One-point recombination rate 0.00277 
Two-point recombination rate 0.00277 
Gene recombination rate 0.00277 
Gene transposition rate 0.00277 
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Figure 5. Tree structure of the GEP model for predicting PWV.  

In order to determine the GEP model 
performance, R2 and RMSE were measured. In the 
training, the calculated values of 0.008 and 
0.999413 were achieved for RMSE and R2, 
respectively, while the values of 0.998676 and 
0.0204 were achieved for the two performance 

indices, respectively. The results obtained showed 
that the GEP model was able to estimate PWV 
with a good precision. A better view between the 
estimated and measured PWV by GEP for all data 
is presented in Figure 6. 

 
Figure 6. Comparison of measured values with those estimated by GEP model. 

At the end, we compared our results of the 
proposed models (CART, GMDH neural network, 
MARS, and GEP); this comparison is shown in 
Figure 7. As it can be seen, all the models offered 
in the current research work were able to 
effectively estimate PWV; however, MARS 
reveals a better accuracy level to other models.  

4. Conclusions 

The physical and mechanical characteristics of 
rocks play an important role in the whole 
operational segments in the activities related to 
mining and ranges from exploration to dispatch of 
material. There are two characteristics, i.e. PWV 
and the rocks’ anisotropic behavior, which help us 
to understand the rock behavior in the conditions 
of stress. Further, the breakage mechanism of 
rocks is affected by the two above-noted 
characteristics. The literature consists of a number 
of methods used to determine PWV and 

anisotropy in the in situ and laboratory conditions. 
However, such techniques are burdensome, and 
take a lot of time. This work employed different 
artificial intelligence methods including CART, 
MARS, GMDH, and GEP in order to predict 
PWV. Then the proposed models were evaluated 
through statistical functions, i.e. R2 and RMSE. 
Some conclusions can be drawn as what follows. 
(1) Reviewing the results, the proposed models 
provided good predictions of PWV. The values of 
the statistical functions (R2 and RMSE) obtained 
from the CART, MARS, GMDH, and GEP 
models were (0.983, 0.037), (0.999, 0.007), 
(0.995, 0.023), and (0.998, 0.020), respectively. 
According to the aforementioned results, the 
MARS model produced better results than the 
other models. (2) As a conclusion, the ability of 
the MARS model can be confirmed, and it has the 
capacity to generalize in other rock mechanic 
fields 
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Figure 7. Comparison of performance of the proposed models for a) training, b) testing. 
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  چکیده:

کننده  نییشوند. دو عامل تعیدر نظر گرفته م یو عمران یمعدن يهاپروژه طراحیکننده در  نییبه عنوان عوامل تع یسنگ يهاها و تودهسنگ یکیمکان يهایژگیو
برآورد  يبا دقت بالا برا یروشبه  یابی، دستنیآن است. بنابرا کیزوتروپیو خواص ا (PWV) فشاري مختلف تنش، سرعت موج طیها در شرانحوه واکنش سنگ

PWV رهمتغی چند یقیتطب ونیمختلف هوشمند مانند خطوط رگرس يهااستفاده از مدلدر این مقاله مهم است.  اریکار بس کی )MARSو  يبند) ، درخت طبقه
پس از . گرفته استقرار  یمورد بررس ار PWV ینیبشیپ ي) براGEPژن ( انیب يزی) و برنامه رGMDHها (داده تیریمد ی) ، روش گروهCART( ونیرگرس

بدست آمده  2R ریشوند. مقادیم یابی) ارزRMSE( نیانگیمربع م يخطامجذور ) و 2Rمربع ( یهمبستگ بیضر نظیر، چند شاخص آماريبا استفاده از  مدلسازي،
و  CART  ،MARS  ،GMDH ي، مدل هانیبر ا لاوهاست. ع 998/0و  995/0،  999/0،  983/0 بیبه ترت GEPو  CART  ،MARS  ،GMDH يهااز مدل
GEP بیبه ترت PWV ریرا با مقاد  RMSE 037/0 ،007/0  ،023/0  ارائه شده  يها، مدلفوق الذکر هايمقادیر شاخصکنند. با توجه به یم ینیبشیپ 020/0و

 يهامدلسایر با  سهیدر مقا MARSدهد که مدل یبدست آمده نشان م جینتادر نهایت وجود،  نیکنند. با ایم ینیبشیپ یرا با عملکرد خوب PWV مقاله نیدر ا
GEP  ،GMDH  وCART اساس،  نیدارد. بر ا يبهتر ینیبشیپMARS مسائل مختلف اهداف در سایر  ینیبشیپ يبرا قیمدل دق کیتواند به عنوان یم

  مورد استفاده قرار گیرد.  یسنگ يهاکیمکان

  .رهمتغی چند یقیتطب ونیخطوط رگرس ،ینیب شیپ يهامدل ،یهوش مصنوع ،فشاريسرعت موج  کلمات کلیدي:
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