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 The distribution of stream sediments is usually considered as an important and very 
useful tool for the early-stage exploration of mineralization at the regional scale. The 
collection of stream samples is not only time-consuming but also very costly. 
However, the advancements in space remote sensing has made it a suitable alternative 
for mapping of the geochemical elements using satellite spectral reflectance. In this 
research work, 407 surface stream sediment samples of the zinc (Zn) and lead (Pb) 
elements are collected from Central Wales. Five machine learning models, namely the 
Support Vector Regression (SVR), Generalized Linear Model (GLM), Deep Neural 
Network (DNN), Decision Tree (DT), and Random Forest (RF) regression, are applied 
for prediction of the Zn and Pb concentrations using the Sentinel-2 satellite multi-
spectral images. The results obtained based on the 10 m spatial resolution show that 
Zn is best predicted with RF with significant R2 values of 0.74 (p < 0.01) and 0.7 (p < 
0.01) during training and testing. However, for Pb, the best prediction is made by SVR 
with significant R2 values of 0.72 (p < 0.01) and 0.64 (p < 0.01) for training and 
testing, respectively. Overall, the performance of SVR and RF outperforms the other 
machine learning models with the highest testing R2 values. 
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1. Introduction 

The identification and mapping of potential 
mineralization through the geochemical 
exploration of stream sediments has been 
successfully done over the past several decades [1, 
2]. These geochemical observations at the surface 
of earth usually represent the diverse effects of the 
primary and secondary geological processes inside 
the earth [3]. The field-based sampling of stream 
sedimentation is not only time-consuming but also 
expensive; usually the samples are only collected 
from the downstream areas with less slope and easy 
accessibility. However, reflectance spectroscopy 
of satellite-based remote sensing data provides a 
unique edge to map the geochemically enriched 
areas using stream sedimentation not only at a 

larger scale but is also time- and cost-effective [4-
6]. In the research work conducted by Martinez et 
al. [7], the MODIS satellite data was used in order 
to quantify the Amazon River sedimentation. It 
was concluded that sedimentation was assessed 
through satellite, and the field datasets showed a 
very good agreement with a mean difference lower 
than 1%. Another research work conducted by 
Abedi and Norouzi [8] tested the ASTER and 
LANDSAT satellite datasets along with the 
geochemical and geological data for mineral 
exploration using the TOPSIS method. The 
research work concluded that the proposed 
methodology based on satellite and field data was 
satisfactory for mapping of the porphyry copper 
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deposit. The research work conducted by Afzal et 
al. [9] also used the ASTER satellite data for 
exploration and mapping of Cu mineralization in 
Iran using the stream sedimentation data. A good 
correlation was found between the satellite 
reflectance data and field-based sedimentation 
values, and concluded that the satellite 
multispectral data could be used for mineral 
exploration using stream estimations. However, 
one of the key components in using the satellite 
data is the spatial auto-correlation of satellite data 
and the field measurements [10], a phenomenon 
usually used to map the features in a region based 
on the systematic spatial similarities between the 
satellite reflectance and laboratory measurements. 
Usually the spatial interpolation models like 
inverse distance weighted and kriging are used in 
order to predict the presence or absence of a 
geochemical value of a variable at the non-
surveyed regions using the surveyed datasets. 
However, these interpolation models usually 
incorporate the estimation errors such as the 
smoothing effects in the prediction of geochemical 
variables [11]. Besides the smoothing effects, the 
complexity, non-linearity, and spatial variability in 
the geochemical datasets makes it challenging to 
predict the values at unknown locations based on 
the known location datasets.  

The advancements in machine learning (ML) 
have made it a strong alternative choice to 
overcome the classical interpolation challenges and 
to develop the predictive models by analysing and 
learning from the data by incorporating the spatial 
autocorrelation. Several researchers [12-14] have 
applied ML as a tool for modelling the geospatial 
phenomenon by building the models capable of 
identifying the patterns in geospatial data and 
predicting from these models. The applications of 
ML in geochemical modelling are very limited, and 
there are very few publications on this topic. 
However, the ML-based predictive models are 
potentially powerful for geochemical mapping and 
mineral explorations [15-18]. This research work 
aims to construct and compare the ML models for 
prediction of the Pb and Zn concentrations 

associated with the potential mineralization and 
mining activities at Central Wales (in the United 
Kingdom) using the satellite-based remotely-
sensed spectral reflectance data. 

2. Materials and methods 
2.1. Geology setting 

The studied area for this research work is in 
Central Wales of Great Britain (Fig. 1). It has a 
prolonged history of gold mining, with the main 
centre of activity being the "Dolgellau Gold Belt", 
where the Clogau and Gwynfynydd mines are very 
active gold mines, particularly towards the South, 
in the Welsh Basin, where gold has been mined 
since the Roman times. Besides gold, several other 
secondary products such as lead, copper, zinc, iron, 
and nickel sulphides are present throughout the 
Wales area. The general geology of Central Wales 
is consisted of Ordovician and Silurian marine 
sedimentary rocks. The rocks settled at the bottom 
of the Welsh Basin are dominated by series of 
sandstone, siltstone, and mudstone. Many of these 
classifications are referred to as turbidites because 
they were settled from violent, sediment-laden 
undersea flows, which flooded off the shallower 
shelf areas onto the deep floor of the basin [19]. 
There has been extensive mining of Pb and Zn as 
Ball and TK; [20] has reported that the area is 
enriched with these two minerals, and they are 
most commonly found within the interbedded 
sequences of sandstone, siltstone, and mudstone.  

3. Machine learning models 
Machine learning models have been applied, 

tested, and proved in several real-world 
applications. The main objective of this research 
work is to predict Pb and Zn in Central Wales using 
satellite spectral reflectance data through following 
machine learning models and their comparative 
evaluation in terms of predictions. Regardless of 
the machine learning model type applied, the data 
was split into the training and testing purposes at 
70% and 30%, respectively [22].  
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Figure 1. Geographical map of the studied area highlighting the major towns and locations of the collected 

samples [21] 

3.1. Support Vector Regression (SVR) 
SVR was initially introduced by Drucker et al. 

[23], and has been successfully applied for hidden 
pattern identifications in the data due to its strong 
predictive capability, flexibility, and robustness 
[24]. SVR is more suitable and applicable to the 
classification problems; however the SVR 
concepts can be generalized to become applicable 
to the regression problems. Several researchers 
have applied SVR for urban land cover mapping 
[25], hotspot detection [26], predication of organic 
carbon content in soils [27], landslide modelling 
and mapping [28], and in mining applications [29, 
30]. In the SVR algorithm, all the data is plotted as 
points in an n-dimensional space (where n is the 
total of features in the data), and then the 
classification is performed on the n-dimensional 
space with the main objective to find the hyper-
plane that can differentiate the two feature classes 
distinctively. 

For the regression problems, rather than finding 
a hyperplane that can mainly distinguish the 
training points, SVR uses an ε-insensitive loss 
function for the computation of the hyperplane so 
that the predicted response values of the training 
points have at least an ε deviation from their actual 

response values. The hyperplane along with ε will 
define an ε-insensitive band (decision boundary) 
for the regression. For a set of training 
data {(xଵ, yଵ), . . . (x୧, y୧)}, where x୧ is the input data 
and y୧ is the target output, following Equation 1 
can be considered for general SVR. 

y = f(x) =  w, x + b =  w  x + b (1) 

where w, x denotes the dot product of the input 
data x and the weight vector w. The function f can 
be calculated through an ε-insensitive band as flat 
as possible, which is usually mentioned as flatness 
in order to seek a small w. The approximation of f 
can be described as Equations 2 and 3. 

min୵  
1
2

 ||w||ଶ (2) 

subject to ቊy୧ −  w x୧ − b ≤  ε
w x୧ + b −  y୧  ≤  ε

 (3) 

For the above equation, it can be seen that SVR 
is to perform a linear regression with an ε-
insensitive loss function that can be linear or 
quadratic, as given in Equations 4 and 5, 
respectively: 
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for linear  

(4) 
L ൫y, f (x)൯ =  ൜ 0           if |y − f(x)|  ≤  ε

|y− f(x)|−  ε           otherwise 

for quadratic  

(5) 
L ൫y, f (x)൯ =  ൜

0           if |y − f(x)|  ≤  ε
(|y− f(x)|−  ε)ଶ       otherwise 

3.2. Generalized Linear Model (GLM) 
GLM is used to focus on the arbitrary 

distributions (non-normal) response of the linear 
regression models. The main aim of a GLM is not 
to model-dependent factor as a linear combination 
of independent factors but to model a function of 
dependent factors as a linear combination of 
dependent factors. Many research studies have 
applied GLM for predictive modelling, e.g. 
Youssef et al. [31] have applied different machine 
learning models including GLM for landslides 
prediction, concluding that GLM could be used 
efficiently for landslide susceptibility mapping 
with a reasonable accuracy of 76.9%. Another 
research work conducted by Miller and Franklin 
[32] has applied GLM along with other 
classification trees for an effective mapping of 
vegetation alliances. For a GLM model, the three 
main components are a family function f, link 
function k, and parameters required to train the 
model. The family function can be Gaussian, 

binomial, fractional-binomial, ordinal, quasi-
binomial, multinomial, Poisson, gamma, Tweedie, 
and negative-binomial. In this research work, the 
Tweedie family function has been applied, which 
further consist of gamma, normal, poisson, and 
their combinations, also because it is highly 
recommended, if the dataset has the positive 
continuous and exact zero responses. The variation 
in the Tweedie function is directly proportional to 
the p୲୦ power of the mean-variance var (y୧) =
 δε୧

୮, where δ is the distribution factor and p is the 
power of variation. The Tweedie distribution is the 
characterized by power of variation p, while δ is an 
unknown constant. The values of p will be defined 
as per Equation 6:  

 
p = 0: for Normal case 

(6) 

p = 1: for Poisson case 

p ∈  (1,2): for Compound Poisson, 
 non − negetive with zeros case 

p = 2: for Gamma case 

p = 3: for Inverse − Gaussian case 

p > 2: for positive reals case 
 

The following maximum likelihood equation (7) 
is used to fit the model: 

 

 log൫α(y୧, δ)൯ + 


୧ୀଵ

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 1

δ
ቆy୧  log(ε୧)  −

ε୧
ଶି୮

2− p
ቇ , p = 1 

1
δ
ቆy୧  

ε୧
ଵି୮

1− p
 − log(ε୧)ቇ , p = 2

1
δ
ቆy୧  

ε୧
ଵି୮

1− p −
ε୧
ଶି୮

2− p
ቇ , p ≠ 1,   p ≠ 2

 (7) 

 
where the function α(y୧, δ) is assessed using an 

unbounded sequence increase, and will not have a 
logical explanation. However, because δ is an 
unknown constant, ∑ log൫α(y୧, δ)൯

୧ୀଵ  can be 

considered as a constant as well and can be ignored. 
Therefore, the final function to minimize with the 
penalty will be as per the following Equation 8: 

 

min
ɑ,బ

 μ ൬βห|α|ห
ଵ +

1
2

 (1 −  β) ห|α|ห
ଶ
൰

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ቆy୧  log(ε୧)  −

ε୧
ଶି୮

2 − p
ቇ , p = 1 

ቆy୧  
ε୧
ଵି୮

1 − p  − log(ε୧)ቇ , p = 2

ቆy୧  
ε୧
ଵି୮

1 − p
 −

ε୧
ଶି୮

2 − p
ቇ , p ≠ 1,   p ≠ 2

 (8) 
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Usually, the following function (Equation 9) is 
always used in the GLM model for the Tweedie 
function:  

g (ε) =  ቐ
ε୯ =  ω = Xα, q ≠ 0

log(ε) =  ω = Xα, q = 0
q = 1− p

 (9) 

The link power q can also be set to some other 
values as per the value of p. The resultant deviation 
will be as per the following Equation 10:  

 

D = 2 ×

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧  y୧  log ൬

y୧
ε୧
൰ −  

൫y୧
ଶି୮ −  ε୧

ଶି୮൯
2− p  , p = 1



୧ୀଵ


y୧

1 − p ൫y୧
ଵି୮ −  ε୧

ଵି୮൯ − 


୧ୀଵ

log ൬
y୧
ε୧
൰  , p = 2


y୧൫y୧

ଵି୮ −  ε୧
ଵି୮൯

1− p  


୧ୀଵ

−  
൫y୧

ଶି୮ −  ε୧
ଶି୮൯

2 − p  , p ≠ 1,   p ≠ 2

 (10) 

 
3.3. Deep Neural Network (DNN) 

Multi-layer Feedforward Artificial Neural 
Network, also known as DNN, is used in deep 
learning, and is trained with stochastic gradient 
descent using back-propagation. DNN comprises 
multiple levels of non-linear processes like neural 
nets with many hidden layers, as shown in Figure 
2, and is also suitable for tabular datasets like the 
geochemical samples.  

 
Figure 2. General architecture of deep neural 

network. 

A classical DNN with a single hidden layer can 
be mathematically stated with these equations (11): 

ݑ =   ܺ ܹ +  ܹ

ே

ୀଵ

 

ܪ (11) =  (ݑ)݂

ܸ =   ܮ ݉ +  ݉

ே

ୀଵ

 

ܱ = ݃( ܸ) 

The results of the hidden layer (ܪ) will be 
acquired by summing the products of the inputs 
( ܺ) and the weight vectors ܹ  in addition to a 
hidden layer’s bias term ܹ , and then translating 
this sum using a transfer function ݂. The 
commonly used transfer functions are logistic and 
hyperbolic tangent [33]. Similarly, the outcome of 
the output layer ܱ  is obtained by summing the 
products of hidden layer’s outputs ܮ  and weight 
vectors ݉  and output layer’s bias term (݉), 
and converting the sum using the transfer function 
݂. 

3.4. Decision Tree (DT) 
DTs or regression trees are non-parametric 

techniques that can explain the response of a 
dependent variable. The algorithm maps the whole 
dataset by representing different variables as 
internal nodes as the inputs and the leaf nodes as 
the outputs. Usually the decision trees do not 
require the data normalization and other data 
preparation requirements before its application, 
and can be applied to the data with outliers, and this 
algorithm is also known as a white-box algorithm 
so the behavior of the model along with the 
structure of predictions can be analyzed through 
the visual and instinctive interpretation of the 
results. 

3.5. Random Forest (RF) Regression  

The RF regression algorithm can be the improved 
form of the decision tree algorithm, and was first 
introduced by Breiman in 2001 [34]. In RF, several 
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small decision trees are generated from the random 
subsets of the dataset. Usually it categorizes each 
input vector into the random trees in order to build 
a forest and decide the output of each class based 
on the vote majority [35]. The final model is a 
voting model of all the generated random trees. 
Each random tree predicts each subset of the 
dataset by following the branches of the tree in line 
with the splitting rules and assessing the leaf. The 
importance of each effective factor can be 
estimated based on the mean decrease accuracy 
received at the end of the model. As all single 
predictions are taken with the same importance, 
and are based on the subsets of the dataset, the final 
prediction inclines to show a less variability than 
the single predictions. The concept of pruning can 
reduce the complexity of the model by replacing 
sub-trees that provide little predictive power only 
with leaves.  

4. Preparation of input datasets 
The dataset used in this work was obtained from 

the British Geological Survey (BGS). The stream 

sediment baseline geochemistry data was estimated 
from the samples collected across the central Wales 
region during the late 90s by BGS in Figure 1. The 
concentration values of the stream sediments are 
usually the representation of the parent geological 
material in the region and is developed over 
millions of years. Sampling was based on the 
collection of heavy minerals accumulated from the 
1st and 2nd order streams. An active stream 
sediment was moved through a 2 mm sieve, 
collected in a wooden pan (about 3-4 kg), and 
condensed by panning to about 60 g. This process 
was repeated using an additional sediment from the 
same site, and the two concentrates combined were 
inspected on-site for heavy minerals and collected 
in a Kraft bag. A total of 407 samples were 
collected and analyzed each for Zn and Pb. The 
geochemical sample points were split into the 
training and the testing group with 80% (325 
samples) and 20% (82 samples), respectively. The 
criterion to split the data was that the sample points 
located in the homogenous geological group and on 
the same streams should be selected and separated 
from the training data as the test data (Fig. 3). 

 
Figure 3. Splitting of geochemical sample points into train (black dots) and test (red dots) group (N = 407). 

Prediction of Pb and Zn in the stream sediments 
was made using the five machine learning 
algorithms at stream levels using the MultiSpectral 
Instrument (MSI) Sentinel-2 satellite data of 2015. 
Although there is a time difference between the 
filed sampling and the satellite data, it will take a 
very long for the parent material to be changed. The 
time required for developing a geological profile is 

usually altered by the significant tectonic activities 
(earthquakes, tsunami, landslides), earth’s inner 
temperature, gravity, climate, and weathering. 
Hence, the time difference between the collection 
of samples and the satellite data cannot be 
significant compared to the geological timelines, 
and therefore, the spectral profiles of the region 
will merely be changed. The Sentinel-2 satellite 
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has thirteen spectral bands, which range from the 
Visible and Near Infrared (NIR) to the Short-Wave 
Infrared (SWIR) of the electromagnetic spectrum. 
The spectral and spatial profile of Sentinal-2 
satellite is given in Table 1. 

Sentinel-2 has a 12-bit radiometric resolution, 
which means that the sensor can differentiate 4096 
grey-levels in each spectral band. Due to its high 
spatial, spectral, and radiometric resolutions, the 
Sentinel-2 data is usually called the super-spectral 
satellite data. Many research works have applied, 
tested, and validated the Sentinel-2 dataset for 
several applications, i.e. geology [36], hydrology 
and hydrogeology [37], mining [38], and mineral 

exploration [39]. Similarly, the dataset has also 
been successfully used for stream sedimentation 
mapping [40] and geochemical mapping [41]. 
Usually the stream sediments have a huge capacity 
to hold the traces of different elements along with 
their chemical compositions that can be a good 
indicator of related mineralization. The Sentinel-2 
satellite data was divided into four input subsets 
(Table 2) based on the spatial resolution of each 
band; however, the topographic elevation extracted 
from the ASTER Global Digital Elevation Model 
(GDEM) and the slope was also considered a part 
of each subset. 

Table 1. Data characteristics of Sentinel-2 satellite. 

Band No Spectral 
band 

Central 
wavelength (nm) 

Bandwidth 
(nm) 

Spatial 
resolution 

Satellite image of spectral 
band of the studied area 

B1 Coastal 
aerosol 442.7 21 60 

 

B2 Blue 492.4 66 10 

 

B3 Green 559.8 36 10 

 

B4 Red 664.6 31 10 

 

B5 Red edge–1 704.1 15 20 
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Table 1. Continuous of Table 1. 

B6 Red edge–2 740.5 15 20 

 

B7 Red edge–2 782.8 20 20 

 

B8 NIR 832.8 106 10 

 

B8A Narrow NIR 864.7 21 20 

 

B9 Water vapour 945.1 20 60 

 

B10 SWIR–Cirrus 1373.5 31 60 

 

B11 SWIR–1 1613.7 91 20 

 

B12 SWIR–2 2202.4 175 20 

 



Mahboob et al. Journal of Mining & Environment, Vol. 12, No. 4, 2021 
 

995 

 

Table 2. Input datasets composed of Sentinel-2 satellite and topographic variables. 

Input subset Parameters Properties 

DS-1 B2, B3, B4, B8, elevation, and slope All the spectral bands of Sentinel-2 satellite with 10 m 
spatial resolution along with topographic elevation and slope 

DS-2 B5, B6, B7, B8A, B11, B12, elevation, 
and slope 

All the spectral bands of Sentinel-2 satellite with 20 m 
spatial resolution along with topographic elevation and slope 

DS-3 B1, B9, B10, elevation, and slope All the spectral bands of Sentinel-2 satellite with 60 m 
spatial resolution along with topographic elevation and slope 

DS-4 
B1, B2, B3, B4, B5, B6, B7, B8, B8A, 

B9, B10, B11, B12, elevation, and 
slope 

All the spectral bands of Sentinel-2 satellite along with 
topographic elevation and slope 

 
All the five machine learning models were 

trained and validated on the input subsets of DS-1 
to DS-4 for prediction of the Zn and Pb stream 
sediments, as shown in summary Figure 4. 

 
Figure 4. Summary of the four input sets and machine learning models used for predictions of Pb and Zn. 

Performing the models were evaluated based on 
the coefficient of determination (R2) as per 
Equation 12, which represents the total variation in 
the predictions made by the model as given in the 
following equation, and its value ranges between 0 
(poor) and 1 (perfect) [42]:  

ܴଶ =   1−  
∑ ݕ) −  ŷ)ଶே
ୀଵ

∑ ݕ) −  ȳ)ଶே
ୀଵ

 (12) 

where ݕ in the equation is an estimation of the 
average predictions, and ܰ is the number of stream 
sample points. 

5. Results and discussion 
The results obtained on the prediction of Pb and 

Zn by applying through various machine learning 
applications are given in this section. The satellite 
image of the studied area was overlaid with stream 
sampling locations, and the value of each spectral 
band was extracted against each sample location 
and prepared in a separate database to be further 
used in the machine learning models. 

The results based on DS-1 showed that Zn was 
best predicted with the RF model with the R2 
values of 0.74 and 0.7 during training and testing. 
However, for Pb, the best prediction was made by 
SVR with the R2 values of 0.72 and 0.64 for 
training and testing, respectively. In RF, the model 
determined the highest and the lowest weight, and 
was assigned to the near-infrared (NIR) spectral 
band slope, respectively. The research work 
conducted by Cozzolino and Moron [43] also 
concluded that the Zn mineral ore could be 
separated with waste and other materials using the 
NIR reflectance spectroscopy. Pb also showed a 
good correlation with the NIR region along with 
SWIR due to its high reflectance in these two 
spectral bands, as also discussed by Hauff [44]. 
Using the DS-2 subset of the input dataset, Zn was 
best predicted through the SVR model with the R2 
values of 0.73 and 0.63 during training and testing. 
However, for Pb, the best prediction was made by 
DNN with the R2 values of 0.72 and 0.61 for 
training and testing, respectively. DS-2 has eight 
input parameters with six Sentinel-2 satellite 
spectral bands including the NIR edge and SWIR. 
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These spectral bands are highly suitable for the 
mapping of Zn and Pb on the surface of the earth 
and in the outcrops regions [44-46]. The third input 
subset DS-3 showed that Zn and Pb both were best 
predicted through the SVR model with the R2 
values of 0.61 and 0.55 for Zn and 0.49 and 0.39 
for Pb during training and testing, respectively. 
DS-3 has five input parameters with three Sentinel-
2 satellite spectral bands and the R2 value for DS-3 
was less than the first two input subsets. This might 
be related to the spectral bands of DS-3, which are 
usually suitable for monitoring the atmospheric 
conditions and are less suitable for the mapping of 
features on the surface of the earth [47]. The other 
main reason could be the spatial resolution of the 
spectral bands, which is 60 m, and is coarser than 
DS-1 and DS-2. The fourth input subset DS-4 
showed that Zn and Pb both were best predicted 
through the RF model with the R2 values of 0.74 

and 0.64 for Zn and 0.73 and 0.63 for Pb during 
training and testing, respectively. DS-4 was 
composed on 15 parameters including all the 
spectral bands of Sentinel-2 satellite ranged from 
visible, NIR, and SWIR along with topographic 
elevation and slope. 

Overall, the performance of SVR and RF 
outperformed the other machine learning models 
(i.e. GLM, DNN, and DT) with the highest testing 
R2 value. Similarly, the input subset DN-1 can be 
categorized as the most suitable for prediction of 
Zn and Pb consisting of visible and near-infrared 
spectral bands along with topographic elevation 
and slope of the studied area. The second-best input 
subset was DS-4, which consisted of all the spectral 
bands, the topographic elevation, and the slope of 
the studied area. The R2 values of all the ML 
models were significant at p < 0.01, both for testing 
and training, as given in Table 3. 

Table 3. Coefficients of determination as obtained for Zn and Pb prediction using machine learning models. 
   SVR GLM DNN DT RF 

DS-1 
Zn Training 0.71 0.52 0.73 0.67 0.74 

Testing 0.69 0.5 0.69 0.63 0.7 

Pb Training 0.72 0.6 0.64 0.44 0.64 
Testing 0.64 0.51 0.55 0.35 0.54 

DS-2 
Zn Training 0.73 0.7 0.72 0.56 0.7 

Testing 0.63 0.59 0.6 0.46 0.59 

Pb Training 0.7 0.7 0.72 0.52 0.71 
Testing 0.58 0.59 0.61 0.42 0.62 

DS-3 
Zn Training 0.61 0.59 0.6 0.41 0.57 

Testing 0.55 0.52 0.52 0.34 0.47 

Pb Training 0.49 0.47 0.48 0.25 0.41 
Testing 0.39 0.35 0.36 0.16 0.28 

DS-4 
Zn Training 0.56 0.54 0.72 0.72 0.74 

Testing 0.44 0.44 0.59 0.59 0.64 

Pb Training 0.6 0.6 0.62 0.52 0.73 
Testing 0.48 0.49 0.52 0.4 0.63 

 
The research work conducted by Perez et al. [48] 

and Abbaszadeh et al. [49] also concluded that 
SVR was better for mineral resource exploration 
and estimations, and Sheng et al. [50] concluded 
that RF was better for mineral resource exploration 
and estimations. The spatial distribution of the 
original and predicted Zn and Pb stream sediment 

contents (Fig. 5) shows significant degrees of 
association. 

The predicted Zn and Pb geochemical surfaces 
are also under the bedrock permeability and 
geological fault line map of the region as well (Fig. 
6). Permeability is the porosity of a rock; a higher 
permeability means a higher movement of liquid 
through the bed rock geology, and vice versa. 
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Figure 5. Spatial distribution of original and predicted Zn and Pb concentrations in the study area. 

 
Figure 6. Bedrock permeability and geological fault 

line map of the Central Wales. 

There are only two, i.e. low and moderate, zones 
of bedrock permeability present in the studied area, 
and high concentration pockets of Zn and Pb are 
present in the low zones. The research work 
conducted by Freedman [51], Bouabdellah and 
Sangster [52], and Gao et al. [53] also concluded 
that the higher concentrations of Zn and Pb were 
associated with the lower permeability of the 
bedrock. The other important observation is that 
the predicted high concentration values of Zn and 
Pb are in a close vicinity of the geological fault 
lines, which also indicate this mineralization in the 
studied area. 

Although the values of the predicted stream 
sediment concentrations are higher than the 
original, overall, it is under the spatial location of 
the original dataset. The higher Zn and Pb content 
distribution can also be related to the ongoing 
mining activities of the same elements in the 
studied area. However, other areas in the central 
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Wales are enriched in these elements as well, and 
could be the future exploitation zones. 

6. Conclusions 

Five machine learning algorithms including 
support vector regression, generalized linear 
model, deep neural network, decision tree, and 
random forest regression were trained and tested 
for prediction of the Zn and Pb stream sediments 
using the reflectance spectroscopy of Sentinel-2 
satellite data along with topographic elevation and 
slope. For a better prediction and in order to check 
the impacts of different spectral channels and 
spatial resolution of the data, the input datasets 
were divided into four subsets, and the accuracy 
was measured using the coefficient of 
determination (R2). The prediction of stream 
sediments based on the DS-1 input dataset was the 
best with the SVR for Zn and RF for Pb as 
compared to the other models and input datasets 
with the measured R2 values of 0.69 (for Zn) and 
0.64 (for Pb). This could be related to the NIR band 
in the dataset in association with the high spatial 
resolution of 10 m. The input dataset DS-4 could 
be concluded as the second-best for the predictions 
of the Zn and Pb stream sediments using the RF 
machine learning model with the R2 values of 0.64 
(for Zn) and 0.63 (for Pb). DS-4 consisted of 15 
input parameters including 13 Sentinel-2 spectral 
bands, the topographic elevation, and the slope of 
the area. The spatial locations of the predicted 
concentration values are not only under the original 
dataset but also with the existing mines present in 
the studied area. The proposed methodology for the 
prediction of the concentration of the stream 
sediments is useful for the mapping of the mineral 
enriched zones and future mineral resource 
exploration in the studied area. However, applying 
this methodology to the new studied area requires 
the new training and testing of the models so that 
the model can adapt to the new data for predictions 
of particular stream sediments. In the future 
research works, the field-based reflectance 
spectroscopy, topographic factor (aspect, surface 
curvature), and hydro-meteorological factors 
(streams flow, rainfall) can be added to the 
machine learning models along with the hyper-
spectral satellite-based reflectance datasets for 
more accurate concentration predictions of the 
stream sediments. 

Conflict of Interest 

The authors ensure that there are no conflicts of 
interest. 

Acknowledgements 
The work presented here is part of a PhD research 

work in the School of Mining Engineering at the 
University of the Witwatersrand. The authors wish 
to acknowledge the administrative and financial 
support provided by the Sibanye-Stillwater Digital 
Mining Laboratory (DigiMine), Wits Mining 
Institute (WMI), University of the Witwatersrand, 
Johannesburg, South Africa. 

References 
[1]. Yousefi, M., Kamkar-Rouhani, A. and Carranza, 
E.J.M. (2012). Geochemical mineralization probability 
index (GMPI): a new approach to generate enhanced 
stream sediment geochemical evidential map for 
increasing probability of success in mineral potential 
mapping. Journal of Geochemical Exploration. 115: 24-
35. 

[2]. Lin, X., Hu, Y., Meng, G. and Zhang, M. (2020). 
Geochemical patterns of Cu, Au, Pb and Zn in stream 
sediments from Tongling of East China: Compositional 
and geostatistical insights. Journal of Geochemical 
Exploration, 210, 106457. 

[3]. Kirkwood, C., Everett, P., Ferreira, A. and Lister, B. 
(2016). Stream sediment geochemistry as a tool for 
enhancing geological understanding: An overview of 
new data from south west England. Journal of 
Geochemical Exploration, 163, 28-40. 

[4]. Choe, E., van der Meer, F., van Ruitenbeek, F., van 
der Werff, H., de Smeth, B. and Kim, K.W. (2008). 
Mapping of heavy metal pollution in stream sediments 
using combined geochemistry, field spectroscopy, and 
hyperspectral remote sensing: A case study of the 
Rodalquilar mining area, SE Spain. Remote Sensing of 
Environment. 112 (7): 3222-3233. 

[5]. Cyples, N.N., Ielpi, A. and Dirszowsky, R.W. 
(2020). Planform and stratigraphic signature of 
proximal braided streams: remote-sensing and ground-
penetrating-radar analysis of the Kicking Horse River, 
Canadian Rocky Mountains. Journal of Sedimentary 
Research, 90(1), 131-149. 

[6]. Wang, Q., Li, F., Jiang, X., Wu, S. and Xu, M. 
(2020). On-stream mineral identification of tailing 
slurries of tungsten via NIR and XRF data fusion 
measurement techniques. Analytical Methods, 12(25), 
3296-3307. 

[7]. Martinez, J.M., Guyot, J.L., Filizola, N. and Sondag, 
F. (2009). Increase in suspended sediment discharge of 
the Amazon River assessed by monitoring network and 
satellite data. Catena, 79(3), 257-264. 

[8]. Abedi, M. and Norouzi, G.H. (2016). A general 
framework of TOPSIS method for integration of 
airborne geophysics, satellite imagery, geochemical and 
geological data. International journal of applied earth 
observation and geoinformation. 46: 31-44. 



Mahboob et al. Journal of Mining & Environment, Vol. 12, No. 4, 2021 
 

999 

[9]. Afzal, P., Asl, R.A., Adib, A. and Yasrebi, A.B. 
(2015). Application of fractal modelling for Cu 
mineralisation reconnaissance by ASTER multispectral 
and stream sediment data in Khoshname area, NW Iran. 
Journal of the Indian Society of Remote Sensing. 43 (1): 
121-132. 

[10]. Mondini, A.C. (2017). Measures of spatial 
autocorrelation changes in multitemporal SAR images 
for event landslides detection. Remote Sensing. 9 (6): 
554. 

[11]. Yousefi, M. (2017). Analysis of zoning pattern of 
geochemical indicators for targeting of porphyry-Cu 
mineralization: a pixel-based mapping approach. 
Natural Resources Research. 26 (4): 429-441. 

[12]. Tehrany, M.S., Jones, S., Shabani, F., Martínez-
Álvarez, F. and Bui, D.T. (2019). A novel ensemble 
modeling approach for the spatial prediction of tropical 
forest fire susceptibility using LogitBoost machine 
learning classifier and multi-source geospatial data. 
Theoretical and Applied Climatology. 137 (1): 637-653. 

[13]. Ahmed, N., Firoze, A. and Rahman, R.M. (2020). 
Machine learning for predicting landslide risk of 
Rohingya refugee camp infrastructure. Journal of 
Information and Telecommunication. 4 (2): 175-198. 

[14]. Dornan, T., O'Sullivan, G., O'Riain, N., Stueeken, 
E. and Goodhue, R. (2020). The application of machine 
learning methods to aggregate geochemistry predicts 
quarry source location: an example from Ireland. 
Computers & Geosciences, 140, 104495. 

[15]. Coimbra, R., Rodriguez-Galiano, V., Olóriz, F. 
and Chica-Olmo, M. (2014). Regression trees for 
modeling geochemical data An application to Late 
Jurassic carbonates (Ammonitico Rosso). Computers & 
Geosciences. 73: 198-207. 

[16]. Zuo, R. and Xiong, Y. (2018). Big data analytics 
of identifying geochemical anomalies supported by 
machine learning methods. Natural Resources Research. 
27 (1): 5-13. 

[17]. Chen, Y. and Wu, W. (2017). Application of one-
class support vector machine to quickly identify 
multivariate anomalies from geochemical exploration 
data. Geochemistry: Exploration, Environment, 
Analysis. 17 (3): 231-238. 

[18]. Wang, Z., Zuo, R. and Dong, Y. (2019). Mapping 
geochemical anomalies through integrating random 
forest and metric learning methods. Natural Resources 
Research. 28 (4): 1285-1298. 

[19]. Toghill, P. (2011). The geology of Britain: an 
introduction. Crowood. 

[20]. Ball, T.K. and TK, B. (1976). PRELIMINARY 
MINERAL RECONNAISSANCE OF CENTRAL 
WALES. 

[21]. Mahboob, M.A., Celik, T. and Genc, B. (2020). 
Predictive modeling and comparative evaluation of 

geostatistical models for geochemical exploration 
through stream sediments. Arabian Journal of 
Geosciences. 13 (20): 1-21.  

[22]. Chen, W., Pourghasemi, H.R., Kornejady, A. and 
Zhang, N. (2017). Landslide spatial modeling: 
Introducing new ensembles of ANN, MaxEnt, and SVM 
machine learning techniques. Geoderma. 305: 314-327. 

[23]. Drucker, H., Burges, C.J., Kaufman, L., Smola, A. 
and Vapnik, V. (1997). Support vector regression 
machines. Advances in neural information processing 
systems. 9: 155-161. 

[24]. Lim, E.P., Foo, S., Khoo, C., Chen, H., Fox, E., 
Shalini, U. and Thanos, C. (Eds.). (2002). Digital 
Libraries: People, Knowledge, and Technology: 5th 
International Conference on Asian Digital Libraries, 
ICADL 2002, Singapore, December 11-14, 2002, 
Proceedings (Vol. 2555). Springer Science & Business 
Media. 

[25]. Okujeni, A., van der Linden, S., Tits, L., Somers, 
B. and Hostert, P. (2013). Support vector regression and 
synthetically mixed training data for quantifying urban 
land cover. Remote Sensing of Environment. 137: 184-
197. 

[26]. Pozdnoukhov, A. and Kanevski, M. (2007). Multi-
scale support vector regression for hotspot detection and 
modeling.  

[27]. Tan, M., Song, X., Yang, X. and Wu, Q. (2015). 
Support-vector-regression machine technology for total 
organic carbon content prediction from wireline logs in 
organic shale: A comparative study. Journal of Natural 
Gas Science and Engineering. 26: 792-802. 

[28]. Miao, F., Wu, Y., Xie, Y. and Li, Y. (2018). 
Prediction of landslide displacement with step-like 
behavior based on multialgorithm optimization and a 
support vector regression model. Landslides. 15 (3): 
475-488. 

[29]. Nourali, H. and Osanloo, M. (2019). Mining 
capital cost estimation using Support Vector Regression 
(SVR). Resources Policy. 62: 527-540. 

[30]. X. Ding, M. Hasanipanah, H. N. Rad, and W. 
Zhou. (2020). "Predicting the blast-induced vibration 
velocity using a bagged support vector regression 
optimized with firefly algorithm," Engineering with 
Computers, pp. 1-12. 

[31]. Youssef, A.M., Pourghasemi, H.R., Pourtaghi, 
Z.S. and Al-Katheeri, M.M. (2016). Landslide 
susceptibility mapping using random forest, boosted 
regression tree, classification and regression tree, and 
general linear models and comparison of their 
performance at Wadi Tayyah Basin, Asir Region, Saudi 
Arabia. Landslides. 13 (5): 839-856. 

[32]. Miller, J. and Franklin, J. (2002). Modeling the 
distribution of four vegetation alliances using 
generalized linear models and classification trees with 



Mahboob et al. Journal of Mining & Environment, Vol. 12, No. 4, 2021 
 

1000 

spatial dependence. Ecological Modelling. 157 (2-3): 
227-247. 

[33]. Hussain, F. and Jeong, J. (2015, March). 
Exploiting deep neural networks for digital image 
compression. In 2015 2nd world symposium on web 
applications and networking (WSWAN) (pp. 1-6). 
IEEE. 

[34]. Gislason, P.O., Benediktsson, J.A. and Sveinsson, 
J.R. (2006). Random forests for land cover 
classification. Pattern recognition letters. 27 (4): 294-
300. 

[35]. K. Fawagreh, M.M. Gaber, and E. Elyan. (2014). 
"Random forests: from early developments to recent 
advancements," Systems Science Control Engineering: 
An Open Access Journal, Vol. 2, No. 1, pp. 602-609. 

[36]. Van der Meer, F.D., Van der Werff, H. M.A. and 
Van Ruitenbeek, F.J.A. (2014). Potential of ESA's 
Sentinel-2 for geological applications. Remote sensing 
of environment. 148: 124-133. 

[37]. M. Karaman, E. Özelkan, and S. Tasdelen. (2018) 
"Influence of basin hydrogeology in the detectability of 
narrow rivers by Sentinel2-A satellite images: A case 
study in Karamenderes (Çanakkale)," Journal of Natural 
Hazards Environment, Vol. 4, pp. 140-155. 

[38]. Lobo, F.D.L., Souza-Filho, P.W.M., Novo, 
E.M.L.D.M., Carlos, F.M. and Barbosa, C.C.F. (2018). 
Mapping mining areas in the brazilian amazon using 
msi/sentinel-2 imagery (2017). Remote Sensing. 10 (8): 
1178. 

[39]. Mielke, C., Boesche, N.K., Rogass, C., Segl, K. 
and Kaufmann, H. (2014, June). Multi-and 
hyperspectral satellite sensors for mineral exploration, 
new applications to the sentinel-2 and enmap mission. 
In Proceedings of the 34th EARSeL Symposium, 
Poland, Warsaw (pp. 16-20). 

[40]. Karim, M., Maanan, M., Maanan, M., Rhinane, H., 
Rueff, H. and Baidder, L. (2019). Assessment of water 
body change and sedimentation rate in Moulay 
Bousselham wetland, Morocco, using geospatial 
technologies. International journal of sediment research. 
34 (1): 65-72. 

[41]. Cardoso-Fernandes, J., Lima, A. and Teodoro, 
A.C. (2018). Potential of Sentinel-2 data in the detection 
of lithium (Li)-bearing pegmatites: a study case. In 
Earth resources and environmental remote sensing/GIS 
applications IX (Vol. 10790, p. 107900T). International 
Society for Optics and Photonics. 

[42]. Piepho, H.P. (2019). A coefficient of 
determination (R2) for generalized linear mixed models. 
Biometrical Journal. 61 (4): 860-872. 

[43]. Cozzolino, D. and Moron, A. (2004). Exploring the 
use of near infrared reflectance spectroscopy (NIRS) to 

predict trace minerals in legumes. Animal Feed Science 
and Technology. 111 (1-4): 161-173. 

[44]. Hauff, P. (2008). An overview of VIS-NIR-SWIR 
field spectroscopy as applied to precious metals 
exploration. Spectral International Inc, 80001, 303-403. 

[45]. Hunt, G. R. (1977). Spectral signatures of 
particulate minerals in the visible and near infrared. 
Geophysics. 42 (3): 501-513. 

[46]. Chattoraj, S.L., Sharma, R.U., Kumar, C. and 
Sengar, V. (2020). Identification and characterization of 
hydrothermally altered minerals using surface and 
space-based reflectance spectroscopy, in parts of south-
eastern Rajasthan, India. SN Applied Sciences. 2 (4): 1-
9. 

[47]. Vanhellemont, Q. (2019). Adaptation of the dark 
spectrum fitting atmospheric correction for aquatic 
applications of the Landsat and Sentinel-2 archives. 
Remote Sensing of Environment. 225: 175-192. 

[48]. Perez, C.A., Estévez, P.A., Vera, P.A., Castillo, 
L.E., Aravena, C.M., Schulz, D.A. and Medina, L.E. 
(2011). Ore grade estimation by feature selection and 
voting using boundary detection in digital image 
analysis. International Journal of Mineral Processing. 
101 (1-4): 28-36. 

[49]. Abbaszadeh, M., Hezarkhani, A. and Soltani-
Mohammadi, S. (2013). An SVM-based machine 
learning method for the separation of alteration zones in 
Sungun porphyry copper deposit. Geochemistry. 73 (4): 
545-554. 

[50]. Sheng, L., Zhang, T., Niu, G., Wang, K., Tang, H., 
Duan, Y. and Li, H. (2015). Classification of iron ores 
by laser-induced breakdown spectroscopy (LIBS) 
combined with random forest (RF). Journal of 
Analytical Atomic Spectrometry. 30 (2): 453-458. 

[51]. Freedman, J. (1972). Geochemical prospecting for 
zinc, lead, copper, and silver, Lancaster Valley, 
southeastern Pennsylvania (No. 1314). US Government 
Printing Office. 

[52]. Bouabdellah, M. and Sangster, D.F. (2016). 
Geology, geochemistry, and current genetic models for 
major Mississippi valley-type Pb–Zn deposits of 
Morocco. In Mineral Deposits of North Africa (pp. 463-
495). Springer, Cham. 

[53]. Gao, R., Xue, C., Zhao, X., Chen, X., Li, Z. and 
Symons, D. (2019). Source and possible leaching 
process of ore metals in the Uragen sandstone-hosted 
Zn-Pb deposit, Xinjiang, China: Constraints from lead 
isotopes and rare earth elements geochemistry. Ore 
Geology Reviews. 106: 56-78. 



  1400، دوره دوازدهم، شماره چهارم، سال زیستپژوهشی معدن و محیط -نشریه علمی  سرفرازي و عسگري
  

 

  

 یبازتاب یسنجفیبا استفاده از ط ییایمیژئوش ینیبشیپ يبرا نیماش يریادگی يهاتمیالگور یقیمطالعه تطب
Sentinel-2 

  

  1گِنج ریبکو  3،4کیچل يتورگا، *1،2محمد احسن محبوب

  یجنوب يقای، ژوهانسبورگ، آفرواترزراندویت  معدن، دانشگاه یدانشکده مهندس -1
  یجنوب يقای، ژوهانسبورگ، آفرویت واترزراند ، دانشگاهWits (WMI) ی، موسسه معدنSibanye-Stillwater (DigiMine) تالیجیمعدن د شگاهیآزما -2

  یجنوب يقای، ژوهانسبورگ، آفرویت واترزراند برق و اطلاعات، دانشگاه یدانشکده مهندس -3
  یجنوب يقای، ژوهانسبورگ، آفر ویت واترزراند، دانشگاه Witsمؤسسه علوم داده  -4

  16/11/2021پذیرش  29/06/2021ارسال 

 Mahsan.Mahboob@wits.ac.za* نویسنده مسئول مکاتبات: 

  

  چکیده:

 يآورجمع شود.یدر نظر گرفته م يامنطقه اسیدر مق هایاکتشاف کان يبرا هیمراحل اولدر  دیمف اریابزار مهم و بس کیرسوبات رودخانه معمولاً به عنوان  عیتوز
از  ينقشه بردار يمناسب برا نیگزیجا کیسنجش از دور آن را به روش در  شرفتیحال، پ نیبا ا است. نهیپرهز اریبس و نبودهتنها زمان بر  ايرودخانه يهانمونه

) Pb) و سرب (Zn( يعناصر رو یسطح انینمونه رسوب جر 407 ،یقاتیکار تحق نیدر ا کرده است. لیتبد ياماهواره یفیبا استفاده از بازتاب ط ییایمیعناصر ژئوش
)، DNN( قیعم ی)، شبکه عصبGLM( افتهی میتعم ی)، مدل خطSVR( بانیبردار پشت ونیرگرس یعنی ن،یماش يریادگیپنج مدل  شد. يآورجمع ياز ولز مرکز
اعمال  Sentinel-2 يماهواره ا یفیچند ط ریبا استفاده از تصاو و روي سرب و تمرکز غلظتی نیبشیپ ي) براRF( یجنگل تصادف ونی) و رگرسDT( میدرخت تصم

) p <0.01( 7/0) و p <0.01( 74/0 قبول قابل R2 ریبا مقاد RF استفاده از روش با يکه رو دهدیمتر نشان م 10 ییفضا کیآمده بر اساس تفکدستبه جینتاشد. 
 64/0) و p <0.01( 72/0 قبولقابل  R2 ریبا مقاد SVR روش توسط ینیبشیپ نیسرب، بهتر يحال برا نیبا ا .شودیم ینیبشیبهتر پ شیدر طول آموزش و آزما

)p <0.01هايروش عملکرد ،یبه طور کل .شدانجام  شیآموزش و آزما هايي داده) برا SVR  وRF تست شده  ریمقاد نیبا بالاتر نیماش يریادگی يهامدل ریاز سا
R2 بهتر است . 

  .ايماهواره یفیسنجش از دور، بازتاب ط ،ايرودخانه ییایمیژئوشرسوبات  ن،یماش يریادگی، یمعدن ماده سنجیامکان کلمات کلیدي:
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