Stochastic Stability Analysis of Tunnels Considering Randomness of Rock Mass Properties

Masoud Mazraehli1*, Shokroallah Zare1 and Musa Adebayo Idris2

1. Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
2. Division of Mining and Geotechnical Engineering, Luleå University of Technology, Luleå, Sweden

Abstract

The purpose of this work is to present an approach for the probabilistic stability analysis of tunnels considering the heterogeneity of geo-mechanical properties. A stochastic procedure is followed to account for the variability in the rock mass property characterization. The finite difference method is coupled with the Monte Carlo simulation technique to incorporate the randomness of rock mass properties. Moreover, a particular performance function is defined to investigate the excavation serviceability based on the permissible deformations. In order to validate the analysis, the probabilistic and the deterministic results are compared with the in-situ measurements. It can be observed that in both the probabilistic and deterministic analyses the largest displacements occur in the invert. In contrast, the smallest displacements are recorded in the sidewalls. Utilizing the performance function, the probability of failure for the invert, crown, left, and right wall is estimated as 100%, 68.8%, 16.2%, and 20.9%, respectively. Comparing the measured and calculated convergences, it is conjectured that the deterministic analysis underestimates the displacements, while the measured values are very close to the mean values predicted by the probabilistic analysis. The results obtained indicate that the presented approach could be a reliable technique compared to the conventional deterministic method.

Keywords

Underground excavations
Probabilistic stability analysis
Rock mass property variability
Finite difference method
Monte Carlo simulation

1. Introduction

Stability analysis of underground excavations has been a research issue with a great interest in the geotechnical engineering for a long time. There are a large number of research works related to this topic, which can be divided into the deterministic [1-4] and probabilistic studies [5-15]. The deterministic methods have been widely used but the probabilistic studies are restricted in quantity [16-20]. Despite the popularity of the deterministic techniques in practice, these methods are unable to reckon with the inherent randomness of the geo-mechanical properties. The inherent randomness is one of the principal uncertainty sources in rock engineering, the others being the measurement and transformation error [21-23]. Ignorance of these uncertainties can remarkably influence the analysis results so that it may lead to applying too conservative safety factors in the design.

The probabilistic methods have been established in order to capture a more realistic perspective on how an over or under-estimate of response variables can affect the remedial requirements [24]. The Monte Carlo simulation (MCS), first-order (FORM), and second-order (SORM) reliability methods, point estimate method (PEM), response surface method (RSM), and artificial neural networks (ANN) might be utilized as the general scheme for the probabilistic analysis, though there are some differences in their applications. For instance, the methods can be classified into two classes considering rock mass heterogeneity [11]. In contrast to the other methods, MCS is categorized into a group that
takes account of the rock mass property randomness.

In the recent years, MCS has started something like a scientific revolution. It is now practical to get an insight into how a problem solution is affected by the input parameter variation using the method [25]. In geotechnical engineering, MCS was first applied in many aspects such as the single random geo-mechanical variables (SRVs) [7, 13, 14]. Although these research works furthered the MCS applications in geotechnical engineering, they neglected the spatial randomness. Subsequently, some researchers have attempted to fill the gap by utilizing MCS coupled with the numerical software packages. Hsu and Nelson [26] have incorporated the distinct element method (DEM) and MCS in order to analyze the slope stability in a spatially variable weak rock mass. Idris and Nordlund [5] and Idris et al. [9-11] have used the finite difference method (FDM) to analyze the stability of underground mine slopes considering spatial variability. Yu et al. [24] have taken the advantage of stochastic numerical modeling in order to investigate the tunnel liner performance, concluding that the procedure could lead to a more equitable and economical design.

The above-mentioned studies established the MCS applications in modeling the inherent randomness of rock mass properties. There are, however, some aspects that still require more research works. Uncertainty in the distribution of the input parameters is one of these aspects that requires more surveillance. Tiwari et al. [13] have used PEM for the stability analysis of underground structures, while it is known that the implemented method only works with normally distributed functions. Analyzing a large number of geo-mechanical laboratory and field data, Mazraehli and Zare [27] have demonstrated that the distributions of rock mass properties do not necessarily follow the normal and log-normal distribution function rules. The stochastic numerical method was first adopted for the stability analysis of soil slopes. MCS was combined with the numerical analysis in order to introduce the spatially variable soil properties as the random field models [28-29]. Similar research works were carried out for rocks afterward [30-32]. Song et al. [31] have investigated the effect of spatial variability of rock mass properties on the ground deformation due to tunneling. Yu et al. [33] have evaluated the tunnel liner performance using the conditional and unconditional random field models. Zhang et al. [34] have compared the number of studies conducted in the field of spatial variability in different periods of time, stating that the topic has become more demanding over time. To the contrary, the main disadvantage of the random field method is that it requires the robust arithmetic capabilities to solve the matrices formed in each part of the modeling process.

Compared to the soil, a rock is a more complicated environment due to the effects of different parameters such as the strength properties (e.g. uniaxial compressive strength, elastic modulus, cohesion, friction, etc.), joint properties (e.g. roughness, spacing, and orientation), and weathering [8, 35-37]. This imposes some more computational difficulties on the probabilistic studies, which, in turn, suffer from time-consuming mathematical solutions. It is, therefore, necessary to present a stochastic modeling scheme, which necessitates a lower computational effort. This paper presents such a procedure for the probabilistic tunnel stability analysis, in which there is no need for intensive mathematical formulations. Based on the geological strength index (GSI), a probabilistic methodology is used to obtain the statistics of the rock mass strength and deformation parameters. Then a Fish function is applied to compose the MCS and the FDM methods in FLAC to take account of the spatial rock mass variability. Moreover, a particular performance function is defined based on the critical and permissible deformation of the tunnel in order to analyze the probability of failure (PoF).

2. Probabilistic numerical modeling

2.1. Random property assignment procedure

Since the random field method requires the cumbersome decomposition of matrix relations, it was tried to implement an approach that does not require to solve the problematic relationships. Accordingly, the MCS method was implemented in FLAC using a FISH function. FISH is a scripting language embedded within the software to define new variables and functions [38]. The scripted function involves an iterative process of assigning random variables to the numerical zones.

A schematic illustration of the property assignment process is shown in Figure 1. Having a dimension of 70*70 (l = 70 m), the model contains 78400 finite-difference zones (280 zones in both the x and y directions). It means that each zone has a side length of 0.25 m. As a result, it provides an acceptable resolution for a random
property mapping and also a reasonable numerical accuracy. Each model realization might be specified by a matrix in the form of \([z_{ij}]_{280 \times 280}\), where \(z_{ij}\) represents a zone located in the \(i\)th row and \(j\)th column whose centroid coordinates are distinguished by:

\[
x_i = l/(n + 1) + i.sl \\
i = 0,1,2,\ldots,279
\]

\[
y_j = l/(n + 1) + j.sl \\
j = 0,1,2,\ldots,279
\]

where \(sl\) is the side length of each zone, and \(n + 1\) represents the number of zones in the horizontal or vertical direction. After determination of the zone centroid, random properties are assigned to the corresponding zones denoted by \(z_{ij}\). To this end, the zones are selected randomly using the following equations:

\[
k = \text{int} \left((i).urand \right) + 1
\]

\[
l = \text{int} \left((j).urand \right) + 1
\]

where the pair \((k, l)\) shows a zone located in the \(k\)th row and \(l\)th column. The zone is selected randomly to assign its property variables based on a certain property class. The function \(\text{int}\) rounds the product of \(i\) and \(urand\) to its nearest integer, while \(urand\) is a stochastic uniform value between 0 and 1. The procedure continues until the number of the pairs \((kcount\) and \(lcount)\) approaches the class zone quantity (a-f in Figure 1).

![Figure 1. A schematic illustration of property assignment process.](image)

The process of random property realization can be summarized as follows:

1- Construction of the model grid with \(n + 2\) nodes in both the \(x\) and \(y\) directions.

2- Determination of the zone centroid coordinates \((x_i, y_j)\) using Equations (1) and (2).

3- Calculation of the proportional frequency for every property class of the variables.

4- Assigning the mean values of the properties based on their distribution functions to all numerical zones.

5- Allocating the random numerical zones using Equations (3) and (4).

6- Assigning the values that belong to the other classes (weaker or stronger than the mean) to the specified zones in the last step.

7- Repeating steps 5 and 6 to a point that all the zones are assigned.

8- Repeating steps 1 to 7 to a point that the quantity of simulations does not significantly affect the response required.
In this regard, each realization corresponds to a possible arrangement of the geo-mechanical properties of the ground. Moreover, the average values for the model parameters remain very close to the mean values using the procedure. Furthermore, analyzing a large number of realizations would result in a preferable perspective on the tunnel response.

This work is focused on the uncertainty of the geo-mechanical properties, while the discontinuities are the other aspects of uncertainty in rock engineering. The effect of discontinuities is implicitly considered in the GSI used for the rock mass classification purposes. On the other hand, it is also possible to take the discontinuity effect into account in an explicit way utilizing the stochastic modeling techniques such as discrete fracture network (DFN). Based on the literature, the discontinuities cause some irregularities in stress and displacement distribution so that the larger displacements occur adjacent to these structures [39-41].

2.2. Case study and modeling specifications

The Alborz twin tunnels include an essential part of the Tehran-North expressway with 6300 m length in each direction [42]. Figure 2 presents the longitudinal profile of the tunnel. According to the profile, the studied section is located in the Shemshak formation, close to the north portal (chainage 0 + 293.20 m). The formation mainly consists of the argillite and sandstone sequences with coal lenses and dacite dykes. The highest uniaxial strength values are associated with the dacite samples, while the median and the lowest are related to the sandstone and the argillite samples, respectively. Furthermore, the groundwater condition is in the form of dripping (e.g. 0.1 to 0.3 L/s) in this section. Table 1 summarizes the physical parameters (i.e. unit weight denoted by γ, and overburden denoted by H) of the studied section.

![Figure 2. Longitudinal profile of Alborz twin tunnels [42].](image)

<table>
<thead>
<tr>
<th>Geological unit</th>
<th>Symbol</th>
<th>Chainage (km)</th>
<th>γ (kN/m2)</th>
<th>H (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shemshak</td>
<td>Js</td>
<td>0 + 293.20</td>
<td>26.3</td>
<td>65</td>
</tr>
</tbody>
</table>

A square FDM model with a 70 m side length was built using FLAC. The roller and fixed boundary conditions were applied to different boundaries of the model. The upper boundary was fixed against the displacements in the y direction, while the displacements of the other sides of the model were fixed in both the x and y directions. The model geometry and boundary conditions are illustrated in Figure 3(a). Before modeling the tunnel excavation, the in-situ stress state was balanced.

The field stresses for the studied section were set, defining a constant hydrostatic in-situ stress field ($k = 1$) as follows:
\[\sigma_v = \sigma_h = \gamma H = 1.71 \text{ MPa} \]
\[(5)\]

where \(\gamma \) and \(H \) are the unit weight of rock and the overburden height, respectively. In the case of the plane-strain condition, the out of plane stress is calculated as (consider Poisson’s ratio \(\theta = 0.3 \)):

\[\sigma_z = \theta (\sigma_v + \sigma_h) = 1.03 \text{ MPa} \]
\[(6)\]

The sequential excavation method is being utilized in the construction phase through the top-heading and bench technique (i.e. two stages). The top-heading of the tunnel is in the form of an arc with a diameter of 13 m, and the square-shaped bench has a side length of 3.3 m with a total tunnel height of 9.8 m. Three numerical monitoring points were selected based on the predefined measurement points on the crown and sidewalls. Figure 3(b) shows the excavation sequences and measurement points.

Figure 4 demonstrates a sample of random realizations of the geo-mechanical properties. In order to achieve an acceptable level of accuracy, it is expected to run thousands of numerical simulations. It is, however, possible to determine the optimum number of simulations by comparing the calculated mean values and standard deviations.

3. Probabilistic rock mass properties calculation

In order to characterize the rock mass properties, the required geo-mechanical parameters were obtained based on the available information. The results of engineering geological field mapping were used to estimate the distribution functions of the rock mass properties. The implemented procedure for rock mass characterization (based on the statistical parameters of the intact rock and discontinuities) is presented in this section.

3.1. Formulation of rock mass property estimation

The perfectly elastic-plastic constitutive model was used to model the plastic behavior of rock mass. The rock mass obeys the Mohr-Coulomb failure criterion for which the cohesive strength and internal friction angle are derived based on the Hoek-Brown constants (\(m_B, s, \) and \(a \)). Hoek
et al. [43] and Hoek and Brown [44] have proposed Equations (7)-(9) based on GSI and intact rock constants:

\[m_b = m_i \exp \left(\frac{GSI - 100}{28 - 14D} \right) \]
\[s = \exp \left(\frac{GSI - 100}{9 - 3D} \right) \]
\[a = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/15} - e^{-20/3} \right) \]

The parameter D in Equations (7)-(9) denotes the factor of disturbance, which depends on the significance of blasting and stress relaxation experienced by the rock mass (a value between 0 for undisturbed rock mass and 1 for completely disturbed rock mass). In this project, a pilot tunnel was excavated utilizing an open gripper TBM for geological engineering mapping [42]. Hence, the parameter was considered as 0 due to the absence of blasting operation during the data collection process.

After calculating the constants, it is possible to determine the uniaxial compressive strength of the rock mass using the following relationship [43]:

\[\sigma_{cm} = \sigma_c s^a \]

The tensile strength of the rock mass could then be determined from Equation (11) as follows:

\[\sigma_{tm} = \frac{s \sigma_c}{m_b} \]

The deformation modulus of the rock mass might be specified using the following equation [35, 44]:

\[E_m = 10^5 \frac{1 - D/2}{1 + e^{(75 + 25D - GSI)/11}} \]

In the next step, it would be possible to calculate the strength parameters of the Mohr-Coulomb criterion (c and φ) using Equations (13) and (14) [43]:

\[\phi = \sin^{-1} \left[\frac{6am_b(s + m_b \sigma_{3n})^{a-1}}{2(1 + a)(2 + a) + 6am_b(s + m_b \sigma_{3n})^{a-1}} \right] \]

\[c = \frac{\sigma_{ci}(1 + 2a)s + (1 - a)m_b \sigma_{3n}(s + m_b \sigma_{3n})^{a-1}}{(1 + a)(2 + a)} \frac{1 + (6am_b(s + m_b \sigma_{3n})^{a-1})}{(1 + a)(2 + a)} \]

where φ and c are the friction angle and cohesion, respectively, and \(\sigma_{3n} = \sigma_{3max}/\sigma_{c1} \).

3.2. Determination of probability distribution functions

Many researchers have approved that the distributions of rock testing results might be well-described by the normal distribution functions [22, 46-52]. In this paper, since there is no adequate amount of data required for conducting the statistical analysis, PDFs were selected based on the suggestions made by Cai [8] for the intact rock. It was, therefore, decided to use the normal distribution functions for all of the intact rock variables.

Table 2 presents the statistical parameters of the intact rock properties, namely their mean values and standard deviations. Furthermore, the corresponding PDFs are shown in Figure 5. It is worth noting that the standard deviation values were determined based on the differences between the property values with the accumulative frequency of 49.9 (i.e. the mean value) and 15.8%.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoek-Brown constant (m_i)</td>
<td>Mean</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td>Normal</td>
</tr>
<tr>
<td>Uniaxial compressive strength (MPa)</td>
<td>Mean</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td>Normal</td>
</tr>
</tbody>
</table>
As mentioned above, Mazraehli and Zare [27] have proposed appropriate coefficients of variation and PDFs for the rock mass properties that were considered in the current study. Combining the above-mentioned formulation and MCS, it would be possible to characterize the rock mass (Table 3). Figure 6 presents the simulation results together with their probability distribution curves. Lognormal distribution was used for the Hoek-Brown constant \(a \), \(\sigma_{tm} \), and \(E_m \). On the other hand, it was shown that the Gamma distribution was the best-fitted probability function for \(m_b \), \(s \), and \(\sigma_{cm} \) [27]. The results obtained also indicate that both \(c \) and \(\phi \) (i.e. strength parameters) are related to the normal distribution functions. According to the figure, \(a \) has the lowest dispersion around its mean, for which the coefficient of variation equates to almost 2%. It should be noted that the algorithm is restricted not to generate negative parameters since the geo-mechanical properties are non-negative (see Figure 6(b)).

Table 3. PDFs and their statistical parameters of rock mass characteristics.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_b)</td>
<td>Mean</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td>Gamma</td>
</tr>
<tr>
<td>(s)</td>
<td>Mean</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td>Gamma</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Mean</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td>Lognormal</td>
</tr>
<tr>
<td>(\sigma_{cm}) (MPa)</td>
<td>Mean</td>
<td>2.332</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>1.612</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td>Gamma</td>
</tr>
<tr>
<td>(E_m) (GPa)</td>
<td>Mean</td>
<td>2.027</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>1.569</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td>Lognormal</td>
</tr>
<tr>
<td>(\sigma_{tm}) (MPa)</td>
<td>Mean</td>
<td>0.750</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>0.633</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td>Lognormal</td>
</tr>
<tr>
<td>(c) (MPa)</td>
<td>Mean</td>
<td>0.440</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td>Normal</td>
</tr>
<tr>
<td>(\phi) (°)</td>
<td>Mean</td>
<td>40.190</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>4.360</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td>Normal</td>
</tr>
<tr>
<td>GSI</td>
<td>Mean</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>8.300</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td>Normal</td>
</tr>
</tbody>
</table>
Figure 6. Distribution histograms for: a) m_b; b) s; c) a; d) σ_{cm}; e) E_m; f) σ_{tm}; g) c; h) ϕ.
4. Results and Discussion

Displacements of the tunnel walls were considered the deciding factors for analyzing the tunnel response to the in-situ ground condition rather than the yield zone depth. It was chosen because concrete was planned to be installed as the final support system instead of a systematic rock-bolt network. In the case of rock-bolts, an analysis based on the yield zone extent around the tunnel would be more efficient to decide their lengths and network density.

One thousand random realizations were run to represent the intrinsic randomness of the geomechanical properties. The total displacement vectors around the tunnel for one of the realizations are illustrated in Figure 7. The displacement vectors in the figure represent the values calculated after the complete excavation of the last stage in a stochastic numerical model. It can be seen that the displacement magnitudes are higher in the tunnel invert compared to the sidewalls and the crown. This issue can be related to the unit stress factor and the sharp corners of the tunnel in the invert part. The maximum displacement was recorded as 47.88 mm. The results obtained were integrated and interpreted to get distributions of displacements and their statistical parameters (i.e. mean value and standard deviation).

Moreover, their standard deviations were equal to 2 mm for the first three parameters and 3 mm for the latter. It would then be possible to calculate the coefficient of variation for the parameters using Equation (15).

\[
CV = \frac{\sigma}{\mu}
\]

where \(\sigma\) is the standard deviation, and \(\mu\) denotes the mean value. For the above-mentioned displacements, the coefficients of variation were calculated as 10%, 10%, 9%, and 7%, respectively.

4.1. Permissible strain limits

After estimating the statistical parameters, it is required to implement a criterion for analyzing the tunnel stability. Most of the published works utilize plastic zone thickness around the tunnel as the desired response parameter. It is, however, clear that the variable cannot be beneficial enough for a concrete support design. On the other hand, the critical strain concept [53] might be used as a control tool for the stability analysis of concrete tunnels. The concept was developed for tunnel design applications in order to estimate the rock mass deformation before failure [44]. Afterward, this method was revised by Li and Villaescusa [54]. The critical strain (\(\varepsilon_c\) in Equation (16)) is defined as the ratio of maximum compressive strength to initial tangent deformation modulus [55].

\[
\varepsilon_c = \frac{\sigma_{cm}}{E_m}
\]

where \(\sigma_{cm}\) and \(E_m\) are the rock mass strength and the deformation modulus, respectively. According to the values presented in Table 4, the average critical strain was obtained as 0.11%. The permissible strain (\(\varepsilon_a\)) might then be determined using Equation (17) [8]:

\[
\varepsilon_a = \frac{\varepsilon_c}{1-R_a}
\]

where \(R_a\) is a parameter representing the failure strength, and can be assumed to be 0.60, 0.65 or 0.70 based on the generalized crack initiation and propagation thresholds [8]. The permissible displacement (\(U\)) was determined using Equation (18) as follows:

\[
U = \varepsilon_a \cdot r
\]

where \(r\) is the equivalent radius of the tunnel, and can be calculated from the following relationship:
\[r = \frac{d}{2} = \frac{(H+W)}{4} \quad (19) \]

where \(d \), \(H \), and \(w \) denote the tunnel diameter, height, and width, respectively. Thus the equivalent tunnel radius or so-called normalization dimension was estimated as \((13 + 9.8)/4 = 5.7 \) m.

![Figure 8](image_url)

Figure 8. Probability density function of total displacement in: a) right wall; b) left wall; c) crown; d) invert.

4.2. Performance function

The tunnel excavation results in the disturbance of the in-situ stress state around the underground space [56]. The new stresses in the rock masses surrounding the tunnel are called the induced stresses. If these stresses exceed a certain level, they cause excavation failure and its loss of serviceability.

It is required to define a performance function to investigate the serviceability of the tunnel. This function was used here to determine PoF, and it was defined as follows:

\[g(x) = U - R(x) \quad (20) \]

where \(U \) and \(R(x) \) are the average permissible displacement and the model displacement variable, respectively. When the performance function becomes negative \((g(x) < 0) \), it implies that the corresponding model displacement exceeds the permissible limit, and a failure event is probable. Contrarily, when \(g(x) > 0 \), the tunnel would be stable, and its performance is desirable. The limit state surface is also defined by \(g(x) = 0 \), which is the boundary between the unstable and the stable conditions. Finally, PoF (i.e. instability of the tunnel) might be defined as:

\[P_f = P[g(x) < 0] = \int f(x)dx \quad (21) \]

for \(g(x) < 0 \)

The right-hand side of Equation (19) means that PoF can be estimated from the area below the PDF curve of displacement beyond a vertical line specified by the limit state (Figure 9).
4.3. Probability of failure (PoF)

The permissible strain values would be calculated as 0.27%, 0.31%, and 0.37%, while the allowable displacements were obtained as 15.39 mm, 17.67 mm, and 21.09 mm for different residual strength parameters ($U_{max} = 21.09$ mm). The obtained critical and permissible displacement values are presented and compared in Table 4. It can be observed that the mean value of displacement in the tunnel invert (i.e. maximum averaged model displacement) is more than two times the allowable displacement. There is, therefore, an immediate need for taking remedial actions in the floor part to maintain the tunnel stability. The estimated PoFs for different parts are presented in Figure 10. PoFs for the right and left walls are different due to the slight variation in their mean and standard deviation. Since the modeled invert displacements are higher than the permissible limit, its PoF is 100%.

Furthermore, PoF for the crown is ranked second with 68.8%. Table 5 presents the detailed results, which contain the mean values, standard deviations, and PoFs.

<table>
<thead>
<tr>
<th>Residual strength parameter</th>
<th>Critical strain (%)</th>
<th>Permissible strain (%)</th>
<th>Permissible displacement (mm)</th>
<th>Maximum averaged model displacement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>0.11</td>
<td>0.27</td>
<td>15.39</td>
<td>42.32</td>
</tr>
<tr>
<td>0.65</td>
<td>0.31</td>
<td>0.37</td>
<td>17.67</td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>0.37</td>
<td>0.37</td>
<td>21.09</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Permissible and measured displacements and strains.

<table>
<thead>
<tr>
<th>Statistics of model displacement</th>
<th>Maximum permissible displacement (mm)</th>
<th>PoF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (mm)</td>
<td>S.D. (mm)</td>
<td>COV (%)</td>
</tr>
<tr>
<td>Right wall</td>
<td>19.14</td>
<td>2</td>
</tr>
<tr>
<td>Left wall</td>
<td>19.47</td>
<td>2</td>
</tr>
<tr>
<td>Crown</td>
<td>22.25</td>
<td>2</td>
</tr>
<tr>
<td>Invert</td>
<td>42.32</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 5. Probabilistic stability analysis results.

4.4. Tunnel monitoring

It is essential to utilize the monitoring techniques in the underground excavations during construction and service periods in order to control and investigate the ground behavior. The Alborz tunnel was instrumented to monitor the inward tunnel deformation by use of the convergence pins and extensometers. As discussed earlier, the tunnel excavation brings about wall displacements. The convergence pins are the most common tools used for tunnel movement measurement, which evaluate the relative displacement of two points on the excavation boundary [57]. The advantages of this method are its facility in use, high measurement rate, and low cost. A set of instruments was installed in the chainage. Figure 11 depicts the instruments, their installing locations, and the monitoring results. The final relative convergence values were selected after smoothness of the displacements. According to the figure, the relative displacements were equal to 4 mm for the hypothetical line connecting the left and the right walls (L-R) and 3 mm for the crown to both the right wall (C-R) and the left wall (C-L). The numerical and measured convergence values are compared in Table 6. The mean numerical convergences are in good accordance with the relative displacements recorded by the monitoring instruments (after the face being far enough from the station). It must be noted that the accuracy of the monitoring tool was in mm but the numerical displacements were calculated in 0.01 mm.
Table 6. Calculated and measured relative displacements at chainage 0 + 293.20.

<table>
<thead>
<tr>
<th>Location</th>
<th>Measured displacements (mm)</th>
<th>Calculated displacements (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L-R</td>
<td>C-R</td>
</tr>
<tr>
<td>Eastern tunnel</td>
<td>4.00</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Figure 10. PoF for: (a) right wall; (b) left wall; (c) crown; (d) invert.

4.5. Comparing probabilistic and deterministic analysis results

In this section, the probabilistic results are compared with the deterministic ones. The mean values were used as the input parameters for the deterministic model. The other specifications (e.g. failure criterion, boundary, initial conditions, etc.) were the same. The details of numerical modeling were described in the previous sections. Figure 12 compares the results obtained from the deterministic and probabilistic analyses, which are provided in Table 7. The mean values from the probabilistic method were used to compare with the deterministic results. It can be observed that the deterministic displacements are smaller than the probabilistic values. It is, therefore, clear that employing this technique would result in a non-realistic estimation of the tunnel deformation. Consequently, the displacements fall behind the permissible limit, and one might conclude that the tunnel will be stable without a significant support system installation.
Figure 11. a) Instruments; b) pin locations; c) monitoring results.

Figure 12. Comparison of deterministic and probabilistic displacements.
Table 7. Comparing deterministic and probabilistic stability analysis results.

<table>
<thead>
<tr>
<th>Location</th>
<th>Deterministic displacement (mm)</th>
<th>Mean probabilistic displacement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right wall</td>
<td>7.77</td>
<td>19.14</td>
</tr>
<tr>
<td>Left wall</td>
<td>7.76</td>
<td>19.47</td>
</tr>
<tr>
<td>Crown</td>
<td>9.33</td>
<td>22.25</td>
</tr>
<tr>
<td>Invert</td>
<td>12.28</td>
<td>42.32</td>
</tr>
</tbody>
</table>

Figure 13 compares the deterministic, probabilistic, and measured convergences. As discussed above, the deterministic displacements are far from the probabilistic means and measured values. It is also shown that the crown convergences to the both sidewalls are almost identical using three methods (C-R and C-L). Adversely, the sidewall convergences were obtained to be different (L-R). In this case, the deterministic analysis revealed its inefficiency again. In contrast, the probabilistic values were very close to the measured displacements.

4.6. Support system requirements

Site investigations for the conventional rock mass characterization are not often accurate enough to get its quality into perspective during the design stage. It would be possible to select the stabilization measures and the support system requirements after overlapping different data sources gathered during the comprehensive site characterization, the numerical modeling results and interpretation, and the observations during the construction stage.

The most common brittle failure modes are cracking, spalling, slabbing, and collapse [58], while squeezing and swelling could be categorized in the ductile class [59]. During the construction stage, there was no vital instability, and the partial rock-falls and minor spalling were the only observed hazards. Therefore, a preliminary support system consisting of a shotcrete layer with 15 cm thickness and non-systematic rock bolting was considered to be sufficient for this section. The analyses, however, showed the possibility of exceeding the permissible displacement in the crown and invert. Table 8 illustrates that the excavation behavior falls in the third class of the H1 geo-mechanical hazard group. According to Russo [59], it corresponds to the Ma1 and Mb5 stabilization measures, which require the actions presented in Table 9. It is, therefore, recommended to utilize a composition of steel sets, steel fiber-reinforced shotcrete (SFRS), and rock-bolts as the final support system in this section.
5. Conclusions

In this work, we presented a methodology for the stochastic stability analysis of rock tunnels. The spatial variability of rock mass properties was considered using the stochastic finite difference method. The Monte Carlo simulation technique was utilized for developing the model realizations. Besides, the deterministic numerical analysis was also performed for the comparison purposes. Furthermore, the critical strain concept and the tunnel displacements were used to define the tunnel performance function. The numerical results were compared with the in-situ measurements in order to check the validity of the results. Subsequently, the support requirements of the tunnel were proposed. According to the results obtained, the following conclusions could be drawn for the conducted work:

- The probabilistic mean convergences were in good accordance with the measured values in the monitoring points.
- Compared to the in-situ measurements, the deterministic analysis underestimates the displacements. In contrast, the probabilistic mean values are close to the measured convergences.
- Employing the permissible displacement concept would make the tunnel performance function more comprehensible.
- Based on the observations and the results obtained, it is recommended to utilize a composition of steel sets, steel fiber-reinforced shotcrete, and rock bolts as the final support system of the tunnel section.
- Compared to the random field method, the presented approach obtains reliable results with a lower computational effort.

Acknowledgments

The authors would like to express their grateful appreciation to Geodata Engineering SpA and Tehran-Shomal Freeway Company for providing the required data during the work.

References

تحلیل پایداری تصادفی تونل‌ها با در نظر گرفتن تغییر‌پذیری فضایی خصوصیات توده‌سنگ

مسعود مزرعه لی*، شرکاره زارع و موسی آدابیو ادرس

1- دانشکده مهندسی معدن، نفت و زغال‌سنگ، دانشگاه صنعتی شهید شریعتی، تبریز، ایران
2- بخش مهندسی معدن و زغال‌سنگ، دانشگاه صنعتی شهید بهشتی، تهران، ایران

ارسال: 20/10/2021
اریخ پذیرش: 22/12/2021
ارسال مدارک: mazraehli.m@shahroodut.ac.ir

چکیده:
هدف از این مطالعه ارائه روشی برای تحلیل پایداری احتمالاتی تونل‌ها با در نظر گرفتن ناهنجانی خصوصیات توده‌سنگ است. برای این منظور، اکثریت تغییرات فضایی خصوصیات توده‌سنگ در دو دوی نسبت به حدود خاص مونت کارلو مطرح می‌گردد. نتایج تحلیل نشان می‌دهد که با استفاده از روش پایداری، احتمال وقوع تونل‌های در کن، سقف و دیواره‌ها معادل 0.18/8/6 و 0.19 درصد ارزیابی شده است. مقایسه مقدارهای ارزیابی، همگرا محاسبه‌شده نشان از این دارد که تحلیل مقایسه مدیریت‌های جایگزین را کمتر از مقایسه اولیه نشان می‌دهد. بنابراین، روشی بیشتری را می‌توان به عنوان یک روش قابل اعتماد در مقایسه با روش مقایسه‌ای می‌داند.

کلمات کلیدی: حفرات زیرزمینی، تحلیل پایداری احتمالاتی، تغییر‌پذیری خصوصیات توده‌سنگ، روش نافذ محدود، شبیه‌سازی مونت کارلو.