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 The production cycle in open-pit mines includes the drilling, blasting, loading, and 
haulage. Since loading and haulage account for a large part of the mining costs, it is 
very important to optimize the transport fleet from the economic viewpoint. 
Simulation is one of the most widely used methods in the field of fleet design. 
However, it is unable to propose an optimized scenario for which the appropriate 
metaheuristic method should be employed. This paper considers the Sungun copper 
mine as the case study, and attempts to find the most feasible transportation 
arrangement. In the first step, in this work, we compare the flexible dispatching with 
the fixed allocation methods using the Arena software. Accordingly, the use of flexible 
dispatching reveals the increase in the production rate (20%) and productivity (25%), 
and the decrease (20%) in the idle time. The firefly metaheuristic algorithm used in 
the second step shows that the combined scenario of the 35-ton and 100-ton trucks is 
the most suitable option in terms of productivity and cost. In another attempt, 
comparing different heterogeneous truck fleets, we have found that the scenarios 35-
100 and 35-60-100-144 increase the production rate by 39% and 49%, respectively. 
Also, in both scenarios, the production cost decreases by 11% and 21%, respectively. 
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1. Introduction 

Transportation in open-pit mines accounts for up 
to 60% of the mining operating costs. Therefore, 
optimizing the mining operations and fleet 
management has a significant effect on the 
operational efficiency [8]. The shovel-truck system 
is one of the most widely used transportation 
systems in mines. Nowadays, the increase in the 
equipment efficiency, transportation planning, 
truck allocation, and dispatching strategy can 
significantly reduce the costs in this sector [16]. 
Simulation is one of the best ways to identify the 
current situation and improve the performance of 
systems, especially the manufacturing systems. 
Providing an optimization approach is one of the 
critical issues in this area. Simulation is the 
imitation of performance in a process or system 
over time. Whether manual or computer-aided, 
simulation creates a system history and checks the 

system to achieve the results related to the 
functional characteristics of the system [1].  

The first manual simulation of the mining fleet 
took place in the late 1960s in northern Sweden in 
the Kirona underground iron mine [21]. Rist (1961) 
ran the first computer simulation of an 
underground mine's operation in order to determine 
the optimal number of wagons for reducing the 
waiting time for loading and unloading [23]. 
Herbar (1979) used the simulation to select the 
dragline type in an open-pit mine [9]. Castillo and 
Cochran (1987) developed a program based on the 
FITPLUS and SLAM II languages for the 
simulation and statistical analysis of mining 
models [7]. Bonates and Lizotte (1988) developed 
a simulation model for open-pit mining using the 
FORTRAN programming language in order to 
achieve the required long-term production and 
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maximize the productivity of the shovel-truck 
system [6]. Baafi and Ataee-pour (1996) for the 
first time applied Arena to the mining industry. 
They used the discrete event simulation to 
investigate a truck-shovel system of discontinuous 
open-pit mines [3]. Temeng and Amoako (1997) 
used a computer model to optimize the flexible 
dispatching of trucks in open-pit mines and 
managed to provide a solution for reducing the 
waiting time for the system equipment [26]. 
Sturgul (2001) described the importance of 
simulation in mining and described GPSS/H and 
SIMAN-based ARENA as the two most commonly 
used discrete event simulation languages in this 
field [25]. Amel et al. (2012) used the intelligent 
movement simulation based on the real-time 
control system to flexibly dispatch trucks to the 
transportation system of an open-pit mine [13]. 
Hashemi and Sattarvand (2015) studied different 
management systems of the open-pit mining 
equipment including non-dispatching, dispatching, 
and blending solutions using simulation modeling 
[11]. Azadi et al. (2015) used the simulation 
technique to model the transportation system of the 
mine in the Arena software, and then by defining 
new systems, the efficiency of the available fleet 

was improved [2]. Zeng et al. (2016) used a 
discrete event simulation model with 3D animation 
in order to estimate the productivity of a truck-
shovel network system, shovel efficiency, truck 
cycle time, truck utilization, and the optimal fleet 
size [34]. Upadhyay et al, (2016) developed a 
simulation optimization framework/tool to account 
for the uncertainties in mining operations for robust 
short-term production planning and proactive 
decision-making. This framework/tool uses a 
discrete event simulation model of mine 
operations, which interacts with a goal-
programming-based mine operational optimization 
tool to develop an uncertainty-based short-term 
schedule [28]. In another research work, Upadhyay 
et al. (2019) presented a simulation framework to 
estimate the productivity of haulage fleet for the 
open-pit mining operations with the truck-and-
shovel system. The historical data was used to fit 
probability distributions for the haulage cycle 
components, and the mine road network and long-
term production schedule were the main inputs to 
the model [29]. Table 1 presents some research- 
works on designing the mining transportation 
systems. 

Table 1. Some research works on designing mining transportation 
Ref. Case Method 

Zhang et al., 2021 [35] 
Optimization of autonomous truck 

trips and speed to reduce fuel 
consumption 

TABU search algorithm 

Bakhtavar et al., 2021 [4] 
Estimating the impacts of the 

uncertainty on the efficiency of 
truck-shovel systems 

Chance-constrained goal 
programming model 

Mohtasham et al., 2021 [18] 
Equipment sizing (ES) problem to 
verify the overall efficiency of the 

fleet 

Mixed-integer non-linear 
programming (MINLP) models 

Jamil et al., 2021 [12] Multi-type vehicle routing problem 
(MTVRP) Firefly algorithm 

Yeganejou et al., 2021 [33] 

Mimicking the real truck-and-
shovel operations and measure 
trucks’ productivity in terms of 

Tonne Per Gross Operating Hour 
(TPGOH). 

Monte-Carlo simulation 

 
An optimization problem refers to the 

maximization or minimization of an objective 
function by setting suitable values for the variables 
from a set of feasible values. These problems 
appear not only in complex scientific studies but 
also in our day-to-day activities. For instance, 
when a person wants to go from one place to 
another, and has multiple possible routes, a 
decision is required to be made on which route to 
take. The decision can be with the objective to 

minimize the travel time, fuel consumption, and so 
on. However, these kinds of problems with fewer 
number of alternatives can easily be solved by 
looking at the outcome of each one of the 
alternatives. However, in the real problems such as 
optimizing the mining transportation fleet, it is not 
always the case to have a finite and small number 
of alternatives. Hence, different solution methods 
are proposed based on the behavior of the problem 
[15]. Since the introduction of evolutionary 
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algorithms, many studies have been conducted on 
the heuristic algorithms. Currently, there are more 
than 40 metaheuristic algorithms [27]. Most of 
these new algorithms have been introduced by 
mimicking a scenario from the nature. For instance, 
the genetic algorithm is inspired by the Darwin 
theory of survival of the fittest [19]; particle swarm 
optimization is another metaheuristic algorithm, 
mimicking how a swarm moves by following each 
other [14]; the firefly algorithm is inspired by how 
fireflies signal each other using the flashing light to 
attract for mating or to identify predators [31], and 
the prey predator algorithm is another new 
algorithm inspired by the behavior of a predator 
and its prey [27]. These algorithms use different 
degrees of exploration and exploitation based on 
their different search mechanisms [15]. Among 
these new algorithms, it has been shown that the 
firefly algorithm is very efficient in dealing with 
the multi-modal, global optimization problems. FA 
has two major advantages over the other 
algorithms. First, FA is based on attraction, and 
attractiveness decreases with distance. This leads 
to the fact that the whole population can 
automatically sub-divide into sub-groups, and each 
group can swarm around each mode or local 
optimum. Among all these modes, the best global 
solution can be found. Secondly, this subdivision 
allows the fireflies to be able to find all optima 
simultaneously if the population size is sufficiently 
higher than the number of modes [30]. 

As it can be concluded from the literature, using 
the intelligent algorithms in solving the mining 

transportation problems has recently become 
widespread due to their ability and speed in 
determining the possible answers. The present 
paper aims to study and analyze the performance of 
the Sungun copper mine's transportation system 
using the ARENA software. Also the obtained 
simulation scenarios are optimized using the firefly 
metaheuristic algorithm in the MATLAB 
environment.  

2. Methodology 
In this work, we used the discrete event 

simulation for the systems in which the state 
variable changes in a set of discrete time instants, 
such as the mining transportation system. In 
general, a complete simulation process involves 
defining a goal, collecting the data, developing a 
model, validating the model, verifying the model, 
using the model, and analyzing the results [5]. 

2.1. Modeling using ARENA software 
ARENA (ver. 14) is a relatively new simulation 

software developed by the ROCKWELL Company 
based on SIMAN/CINEMA [22]. During the 
modeling with ARENA, two terms, module and 
template, are used extensively. Module is an image 
object in ARENA used to display a number of 
system components, and is actually a combination 
of SIMAN blocks and CINEMA elements [24]. 
Figure 1 shows the two most widely used modules 
in ARENA. 

 
Figure 1. Two most widely used modules in ARENA. 

 
Template is the place of gathering and 

organization of a group of modules with almost 
equal importance. The three most important 
ARENA templates used in this work are Common, 
Support, and Transfer. 

The steps for generating a simulation model in 
ARENA are [24]: 

1. Create a scheme of the problem 

2. Define the problem logic by selecting the 
appropriate modules in ARENA to show the 
real system components and their operations 
and then to put them in a schematic design. 

3. Enter the model data with specific available 
structures. 

2.2. Optimization with firefly algorithm (FA) 

Swarm intelligence belongs to a branch of 
artificial intelligence that has attracted attention in 
the last decade. It is inspired by the collective 
behavior of social groups of ants and termites, 
worms, birds, and fish [10]. FA is one of the swarm 
intelligence methods that was developed by Yang 
(2008). and inspired by the light emitted by the 
firefly. FA is a randomized algorithm, meaning that 
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it uses random selection to search for a set of 
solutions [31]. This algorithm relies on the physical 
formula of light intensity (I), which decreases by 
increasing the distance by ݎଶ. However, as the 
distance to the light source increases, the light 
becomes weaker due to light absorption. This 
phenomenon can be optimized along with the 
objective function. In general, the firewall 
algorithm follows the following rules [31]: 

(1) Fireflies are unisex; therefore, they are attracted 
to other worms regardless of sex. 

(2) In the firefly algorithm, the absorption increases 
in proportion to the brightness and the reduced 
distance between the two fireflies. Hence, in two 
flashing fireflies, the brighter fireflies attract 
other surrounding worms. If none of them are 
brighter, there is a random movement. 

(3) The brightness of a firefly is determined by the 
objective function. 

The steps of the firefly algorithm is presented in 
Appendix 1. 

In order to properly design FA, two important 
issues should be defined: light intensity and 
attractiveness. The attractiveness of fireflies is 
determined by the brightness or light intensity 
obtained from the objective function. The intensity 
of light can be obtained based on the following 
equation [32]: 

ܫ =  ݁ିఊ (1)ܫ

where, I= Primary light intensity and γ= 
Absorption coefficient. 

The attractiveness of fireflies is quite relative and 
should be seen in the eyes of the observers or 
judged by other fireflies. Thus, the attractiveness 
changes with the distance r between firefly i and 
firefly j [20]: 

ݎ = ห ܺ − ܺห = ඨ ( ܺ , − ܺ,)ଶ


ୀଵ
 (2) 

where  ܺ ,= Part k of firefly i, ܺ ,= Part k of 
firefly j, and n = problem aspect. 

The following formula can be used to describe 
the attractiveness [32]: 

ߚ = ݁ିఊߚ  (3) 

where, ߚ= Amount of attractiveness at zero 
distance and ߛ= Absorption coefficient  

The movement of firefly i towards the more 
attractive firefly j is obtained from the following 
equation [32]: 

ݔ = ݔ + ݁ିఊೕߚ
మ
൫ݔ − ൯ݔ +   (4)ߝߙ

where, ɛᵢ= A random number obtained from 
Gaussian distribution 

3. Sungun Copper Mine 
3.1. Geographical location and access routes of 
Sungun copper mine 

The Sungun copper mine is located in the East 
Azerbaijan province, Iran, in the coordinates of 
46° 43' longitude and 38° 43' latitude in the 
vicinity of Republics of Azerbaijan and Armenia. 
The average elevation of the region is 2000 m 
above the sea level, and the main access road to 
the mine is through the Tabriz-Varzeqan-Sungun 
asphalt road. Cold and freezing winter and mild 
summer describe the climate characteristics of this 
region [17]. 

3.2. Sungun copper mine's transportation fleet 
The mining operation is managed in the mine site 

by employing a fleet of dump trucks, loaders, 
shovels, excavators, bulldozers, and drilling rigs. 
The characteristics of the mining fleet and its block 
diagram are illustrated in Table 2. The loading and 
haulage system studied in the Sungun copper mine 
includes three loaders at the L2, L4, and L6 loading 
stations. There are two shovels at the L3 and L5 
loading stations and one excavator at the L1 
station. The system includes six 100-ton trucks and 
twelve 35-ton trucks. Figure 3 shows a schematic 
view of the system arrangement.  

Table 2. Sungun mine’s fleet characterization. 
Subsystem name Model 

Shovel Liebherr R9350 
Loader Caterpillar 988B 

Dump truck Komatsu HD-785-5 
Dump truck Komatsu HD 325 

 
Figure 3. Schematic view of system component 

arrangement. 
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4. Modelling and Results 
4.1. ARENA modelling 

One of the main steps in a simulation operation 
is to gather information about the system. The time 
required to perform the activities is one of the most 
important pieces of information. The timing of the 
Sungun copper mine is the direct observation of the 
active sectors. Other information is required to run 
a simulation is the specific gravity of the 
transported materials to determine the capacity of 
trucks. In this work, the specific gravity of minerals 
is 2.5 tons per cubic meter, waste is 2.3 tons per 
cubic meter and copper oxide is 2.5 tons per cubic 
meter. Also the working hours in each shift, 
effective working time of a shift, and number of 
working shifts per day are among the essential 
information used. Considering the delays and 

timing of the study system, the useful working time 
during the day and night is 990 minutes. The 
primary function of simulation is to find the right 
distribution for the input data from the viewpoints 
of time and required resources. This research work 
uses the Arena's input analyzer software to fit and 
select the appropriate distribution. This software is 
an input data analysis package that is also available 
from the ARENA software. The software package 
allows to adapt possible distributions to the data 
and estimate the parameters. Figure 2 shows the 
histogram and probability distribution of the 
traveling time of a 100-ton truck between 
intersection to the Loader 1 (L1) in Sungun mine, 
which are generated by the input analyzer of 
ARENA, and Table 3 summarizes the timing of the 
Sungun mine.  

 
Figure 4. Histogram and probability distribution of traveling time of a 100-ton truck between intersection and 

loader 1 in Sungun mine generated by ARENA.  

The length of each iteration of the simulation is 
considered to be seven working days, of which 990 
minutes run per day. The half-width confidence 
interval of the system performance criteria is 15. In 
order to calculate the system warm-up time, the 
behavior of some system performance criteria has 
been studied, and the time it takes for them to reach 
a steady state has been considered as the system 
warm-up time. Figure 5 shows the average trend of 
fleet equipment efficiency in two different 
iterations. As it can be seen from this graph, in all 
repetitions, after a period of 14 hours, the 
productivity has reached a steady state. Therefore, 
the warm-up time of the system is considered to be 
14 hours. 

 
Figure 5. Average trend of fleet equipment 

efficiency in two different iterations. 

In this research work, the following steps were 
taken to validate the model: 

 More detailed review of the model by 
professional experts; 

Distribution: Beta (min) 
Expression: 1.18+1.81*BETA (2.4, 3.33) 
Square error: 0.010535 
Chi Square test 
Number of intervals= 5 
Degrees of freedom= 2 
Test statistic= 4.4 
Corresponding p-value= 0.117 
Kolmogorov-Smirnov test 
Test statistic= 0.0676 
Corresponding p-value > 0.15 
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 Checking the model outputs for different inputs; 
and  

 Preparing model animation to understand and 
correct the model shape errors. 

As simulation is an estimate of the real world, it 
should be noted that it is not possible to validate 
100% of the model with the real system. In the first 
step, the sensitivity analysis was used to check the 
apparent validity of the model. For this purpose, the 
number of entities (number of trucks) changed to 
examine its effect on the current situation and the 
efficiency of equipment. As a result, with increase 
in the number of trucks, the efficiency of 
equipment increased as expected. In the second 

stage, the hypotheses related to the model structure 
and model information were examined with the 
cooperation of the mining experts in an 
experimental and intuitive manner. In the last step, 
the results of the transportation system simulation 
model including the production and cost were 
compared with the actual fleet. It was found that 
the results did not differ significantly in the 
simulation mode and the mining fleet.  

After running the model simulation for 7 days, 15 
iterations, and 14 hours of system warm-up time, 
some results of the current mining allocation system 
(fixed allocation) and the flexible dispatching are 
given in Tables 4 and 5. 

 
Table 3. Some examples of timing equations in Sungun mine. 

Standard 
deviation Mean Type of distribution and its parameters 

(BETA (min)) Variable type 

0.065 1.41 2.6 + 0.59 * BETA(1.36, 1.47) Loader L1 load time 
0.036 2.91 1.56 + 2 * BETA(2.78, 3.05) Moving time from loader L1 to the intersection 
0.065 1.4 4.58 + 4.5 * BETA(1.28, 1.52) Moving time from the intersection to crusher 
0.063 1.4 2.56 + 3.58 * BETA(1.64, 1.16) Return time from crusher to the intersection 
0.035 3 1.26 + 1.45 * BETA(2.76, 3.24) Return time from the intersection to loader L1 
0.057 1.66 2.54 + 1.3 * BETA (1.46, 1.86) Loader L2 load time 
0.024 2.05 3.58 + ERLA(0.614, 3.5) Moving time from loader L2 to the intersection 
0.066 1.36 4 + 4.96 * BETA(1.27, 1.45) Moving time from the intersection to crusher 
0.061 1.44 2.3 + 3.66 * BETA(1.75, 1.13) Return time from crusher to the intersection 
0.019 1.61 NORM(2.93, 0.293) Return time from the intersection to loader L2 
0.064 1.42 3.72 + 0.68 * BETA(1.45, 1.4) Loader L3 load time 
0.006 2.33 3.15 + ERLA(0.173, 4.5) Moving time from loader L3 to the intersection 
0.081 0.95 3 + 2.73 * BETA(0.734, 1.18) Travel time from the intersection to the dump 

0.050 2.43 1.54 + 3.1 * BETA(2.56, 2.3) Return time from tailings dump to the 
intersection 

0.044 1.95 2 + 2.89 * BETA(1.9, 2) Return time from the intersection to loader L3 
0.018 2.25 0.89 + 1.3 * BETA(2.5, 2) Loader L4 load time 
0.083 2.26 NORM(4, 0.53) Moving time from loader L4 to the intersection 
0.038 0.93 2.55 +2.87 * BETA(0.73, 1.13) Travel time from the intersection to the dump 
0.056 2.72 1.45 + 3.2 * BETA(2.6, 2.85) Return time from waste dump to the intersection 
0.048 1.69 2 + 2.23 * BETA(1.54, 1.84) Return time from the intersection to loader L4 
0.070 1.4 1 + LOGN(2.12, 0.685) Unloading time in the crusher 
0.059 1.15 UNIF(0.855, 1.45) Duration of unloading in the waste dump 
0.010 1.59 3.54 + 1.53 * BETA(1.65, 1.54) Loader L5 load time 
0.030 1.99 2.24 + GAMM(0.215, 3.78) Moving time from loader L5 to the intersection 
0.061 3.58 1.12 + WEIB(3.89, 3.27) Travel time from the intersection to the dump 
0.019 1.95 TRIA(1.45, 1.88, 2.54) Return time from waste dump to the intersection 
0.064 2.62 1.14 + 1.41 * BETA(2.3, 2.95) Return time from intersection to loader L5 
0.006 1.64 2.74 + 0.54 * BETA(1.6, 1.69) loader load time L6 
0.081 0.97 2.45 + LOGN(1.25, 0.694) Moving time from loader L6 to the intersection 

0.042 2.86 1.18 + 1.81 * BETA(2.4, 3.33) Moving time from the intersection to the oxide 
dump 

0.050 3.27 UNIF(2.04, 4.5) Return time from oxide dump to the intersection 
0.044 3.78 TRIA(2.98, 3.45, 4.92) Return time from the intersection to loader L6 
0.018 0.9 0.869 + 0.832 * BETA(0.675, 1.13) Dump time in oxide dump 

Table 4. Results of current mining allocation system (fixed allocation). 
Average 

queue 
length 

(minutes) 

Half-length of 
95% 

confidence 
interval (tons) 

Average 
production 

(tons) 

Maximum 
production 

(tons) 

Minimum 
production 

(tons) 

Efficiency 
relative to 
scheduled 
time(%) 

Loading 
station 

1.47 39.8 23130 23292 22995 40 L1 
1.97 37.14 31770 31878 31662 79 L2 
1.77 64.54 30339 30609 30123 75 L3 
0.3 1325 30337 35820 25155 29 L4 

0.87 177 78170 79080 77442 57 L5 
0.12 74.16 84267 84540 83903 59 L6 
1.08 1717.64 278013 285219 271280 56.5 Entire system 
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Table 5. Results of flexible dispatching. 

Loading 
station 

Efficiency 
relative to 
scheduled 
time (%) 

Minimum 
production 

(tons) 

Maximum 
production 

(tons) 

Average 
production 

(tons) 

Half-length of 
95% 

confidence 
interval (tons) 

Average 
queue length 

(minutes) 

L1 82.9 40923 45516 43223 765 0.37 
L2 97.5 34747 39526 37118 796 1.21 
L3 94.7 34221 39253 36663 696 2.37 
L4 54.3 49708 54992 52153 931 0.21 
L5 75.5 101113 108633 105028 1296 0.17 
L6 48.8 62589 70057 66234 1197 0.87 

Entire system 75.6 323301 357977 340419 5681 0.86 
 

By examining the results related to the flexible 
dispatching of the current mining fleet in 
comparison with the results of the fixed allocation, 
we found that the average productivity compared 
to the planned time and weekly production 
increased by 25% and 18%, respectively. Also the 
average length of the queue was reduced by 20%. 

4.2. Firefly algorithm 
In order to optimize the loading and transport 

fleet for reducing the costs and increasing the 
production in the Sungun copper mine, the firefly 
algorithm was used. Due to the fact that there are 
no multiple objective functions that accommodate 
all parameters, a neural network was used to 
determine the objective function. In fact, the neural 
network is responsible for simulating the objective 
function, which is recalled by the m.file command 
in the firefly algorithm. In this work, the average 
geometric cost function (cost and production) was 
used for the optimization. Table 6 displays the 

control parameters of the firefly algorithm, which 
was obtained using trial-and-error. 

Initially, the model simulation was run with a 
different number of trucks, and the results 
including the production level and system cost 
were obtained in different cases. In the first 
scenario, the optimal number of 35-ton and 100-ton 
trucks was determined using the firefly algorithm. 
The decision variables are the number of 35-ton 
and 100-ton trucks marked by x1 and x2 in Table 7 

Table 6. Control parameters of firefly algorithm. 
Parameters Symbol Amount 

Maximum number of iterations Max It 200 
Number of  fireflies (Scenario 1) N pop 130 
Number of fireflies (Scenario 2) N pop 190 
Light absorption coefficient γ 1 
Amount of attractiveness at zero 
distance ˳β 0.7 

Convergence coefficient α 0.2 
Space width δ 0.05 
Absorption coefficient exponent m 2 

 

Table 7. Decision variables in Scenario 1. 
Truck type Decision variable Minimum value Maximum value 
35-ton truck ݔଵ 1 40 
100-ton truck ݔଶ 1 40 

 
In the second scenario, two 60-ton and 144-ton 

trucks were added to the system. It should be noted 
that the 60-ton and 144-ton trucks are not currently 
available in the mine, and this scenario is only 
proposed to compare the results of using larger 

trucks. The decision variables in this scenario are 
the number of 35-ton, 60-ton, 100-ton, and 144-ton 
trucks, which are marked by x1, x2, x3, and x4 in 
Table 8. 

Table 8. Decision variables in Scenario 2. 
Truck type Decision variable Minimum value Maximum value 
35- ton truck ݔଵ 1 30 
60- ton truck ݔଶ 1 30 

100- ton truck ݔଷ 1 20 
144- ton truck ݔସ 1 20 

 
In both cases, the optimal number of trucks was 

determined aiming to maximize the production and 
minimize the costs. It should be noted that in both 
scenarios, the number of loaders was kept constant. 

Table 9 presents some results of simulating the first 
scenario and Table 10 presents the results of 
optimizing this scenario. 
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Table 9. Results of simulating first scenario. 
Total operating costs (dollars) Production (tons) X1 X2 

251986 404631 17 11 
508921 615535 19 26 
252645 410553 23 9 
360768 545064 27 14 
420624 593049 29 17 
258988 423100 30 7 
420670 593130 30 18 
333289 520307 31 11 
651580 619247 35 30 
426377 600032 36 15 
399828 587705 37 13 
228526 362652 37 3 
529591 618911 47 18 

Table 10. Results of optimizing first scenario. 
Total operating costs (dollars) Production (ton) X1 X2 

251986 404631 17 11 
252645 410553 23 9 

 
Table 11 presents some results of simulating the 

second scenario and Table 12 presents the results 
of optimizing the second scenario. 

With the increase in the number of 35-ton and 
100-ton trucks, the production of mines will 
increase by 32%. Also, the difference between 
production and cost is greater than the current fleet, 

which indicates the reduction in the fleet costs 
compared to the current situation. It can be 
observed that with the addition of higher-capacity 
trucks to the transport fleet, the production will 
increase by 49%. Also the difference between 
production and cost is greater than the current fleet 
of mines. 

Table 11. Results of simulating second scenario. 
Total operating costs (dollars) Production (tons) X1 X2 X3 X4 

190935 312182 30 2 2 2 
294937 545361 10 2 2 15 
265304 505639 6 2 3 14 
632832 916329 5 2 2 12 
838796 972781 5 7 2 16 
754586 964716 5 4 6 21 
484411 793748 5 2 2 16 
658095 945361 5 3 3 16 
579384 878507 4 2 7 20 
365710 639749 4 2 4 11 
884411 974394 3 2 10 23 
383664 661077 3 2 4 15 
672916 957999 3 2 3 31 
514148 827687 3 3 9 12 
330025 596974 3 2 3 17 
733533 961490 3 3 4 20 
335565 623838 2 2 4 15 
208363 378345 2 3 2 2 
602656 899023 2 5 2 19 
698446 959877 2 4 2 21 
540551 859877 2 8 3 19 
923007 976006 2 5 7 23 
967942 789674 2 11 2 20 

Table 12. Results of optimizing second scenario. 
Total operating costs (dollars) Production (tons) X1 X2 X3 X4 

294937 545361 10 2 2 15 
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5. Conclusions 
In this work, the simulation method was used to 

model the current transport fleet of the Sungun 
mine and the proposed scenarios. The optimal state 
of the fleet in terms of number, capacity, 
production, and cost was then determined using the 
firefly metaheuristic algorithm. The general 
findings of this work are presented as follow: 

With the flexible allocation of the mining fleet 
compared to the current state, which is of the fixed 
allocation type, the production level and 
productivity increase by 20% and 25%, 
respectively, and the waiting time decreases by 
20%. By applying a scenario involving seventeen 
35-ton trucks and eleven 100-ton trucks, the 
production will increase to 404,631 tons per week 
at the cost of $251,986. The difference in 
production and cost in this case is 11% higher than 
the current mining fleet. A scenario involving ten 
35-ton trucks, two 60-ton trucks, two 100-ton 
trucks, and fifteen 144-ton trucks can increase the 
production to 545,361 tons per week at the cost of 
$294,937. The difference in production and cost in 
this case is 21% higher than the current mining 
fleet. 

It is suggested for the future research work that 
the number of decision variables and goals in the 
objective function include more items. It is also 
possible to include manpower in the model 
simulation and to evaluate the impacts on the 
production and cost of the mining fleet. 
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Appendix 1. Firefly algorithm pseudo-code 

(1) Objective function f(x), x=(x1 ,….., xd)T 

(2) Initialize a population of fireflies xi (i , , ….,n) 

(3) Define light absorption coefficient 

(4) While (t <Maxgeneration): 

(5) For i=1 : n all n fireflies: 

(6) For j=1 : n all n fireflies: 

(7) Light intensity Ii at xi is determined by f(xi) 

(8) If (Ij > Ii): 

(9) Move firefly i toward j in all d dimensions 

(10) End-if 

(11) Finding distance 

(12) Evaluate new solutions and update light intensity 

(13) End-for j 

(14) End-for i 

(15) Rank the fireflies and find the current best 

(16) End-while 

(17) Postprocess results and visualization 
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