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A common instability in the rock slopes is a toppling failure. If this type of slope
failure occurs due to another kind of failure, it is considered as the secondary toppling
failure. A type of secondary toppling failure is the slide-head-toppling failure. In this
instability, the upper portion of the slope is toppled, and the pressure caused by the
overturning of rock blocks leads to a semi-circular sliding in the soil mass at the slope
toe. This instability is examined through the theoretical analysis and physical
modelling. Firstly, the failure mechanism mentioned above is described. Next, the
slide-head-toppling failure is studied through seven numerical simulations. The
Phase2 and UDEC softwares, as the finite element and distinct element methods,
respectively, are used in this work. Different kinds of slide-head-toppling failure are
modelled such as the blocky, block-flexural, and flexural toppling failures. The
numerical modelling results are compared with the existing physical tests and
theoretical approaches. This comparison illustrates that the safety factor is
underestimated due to the plane strain supposition in numerical modelling. However,
the side-friction in the physical models has violated this assumption. The results
obtained demonstrate that the distinct element method has an acceptable accuracy
compared to the finite element method. Thus this numerical code can be used in order
to examine the mentioned failure.

1. Introduction

In 1976, Goodman and Bray [1] divided the case study results. In 2020, Sarfaraz [9]

toppling failure against the main (flexural, blocky,
and block-flexural) and the secondary categories
based on the physical modelling and regional
observations. In 1997, Adhikary et al. [2] simulated
the flexural toppling instability employing a
centrifuge device. Adhikary and Dyuskin [3] has
also performed a new modelling utilizing a
centrifuge machine on the glass and concrete
samples prone to flexural toppling failure in 2007.
Some works were accomplished on the numerical
modelling of toppling failure in the continuum and
discontinuum media [4]-[6]. Based on the
principles of compatibility governing the
behaviour of cantilever beams, Amini et al. [7], [8]
have offered a simple methodology for flexural
toppling failure, and their research works were in
good agreement with the physical modelling and
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recommended a new analytical method for flexural
toppling failure using the Sarma’s methodology,
and he compared his theory with the Amini et al.
[8] as well as the Aydan and Kawamoto approaches
[10]. In 2021, he presented a simple theory for
analyzing block toppling failure by applying
fictitious horizontal acceleration [11]. His
approach was compared with the Goodman and
Bray method. By incorporating the Goodman and
Bray and Aydan and Kawamoto theories, Amini et
al. [12] proposed a theoretical method in order to
analyze the block-flexural toppling instability.
Zheng et al. [13] have presented an analysis
approach for rock slopes prone to shearing and
flexural toppling failure based on the limit
equilibrium technique. They compared their
suggested method with the physical and numerical
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models, and the method of Aydan et al. [10]. In
2020, Sarfaraz and Amini [14] simulated the block-
flexural toppling failure applying the distinct
element code. Using the UDEC software as a
distinct element method and the geological
engineering surveys, Cai et al. [15] have
investigated the toppling mechanism and
deformation on a dam slope. In 2020, Kili¢ and
Ulamis [16] examined the sliding and toppling
mechanisms in volcanic bimrocks around Bayrakl
in Izmir, and studied the relation of the blocks and
the slope geometry.

For the main kind of toppling failure, the main
cause of instability is the weights of rock columns.
Conversely, the secondary toppling failure was
stimulated by various external elements. Several
studies have been published for these failures [17-
28]. Sari [20] has presented a nice table in his

Figure 1. A schematic picture of slide-head-toppling instabil

2. A Review of Physical Modelling

Physical modelling is a typical procedure to
examine the failure mechanism in geo-technical
engineering. Amini et al. [26] have performed

igure 2. Tilting table machine a) p
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research work for summarizing the studies related
to the toppling failure types and analysis methods.
A conventional kind of secondary toppling
instability is a slide-head-toppling failure. In this
instability, the rock blocks with the potential of
toppling are located in the upper part of the slope,
and the pressure caused by overturning these rock
columns leads to the sliding of soil mass at the
slope toe (as indicated in Figure 1). In 2018, Amini
et al. [26] performed seven experimental tests for
this failure, and developed an analytical solution
based on the limit equilibrium method. In this
research work, the physical modelling and
analytical approach outcomes were evaluated using
the finite and distinct element methods. The
experimental models carried out by Amini et al.
[26] is summarized in the following section.

Lavered hard Sandstone

seven physical tests through the tilting table device
indicated in Figure 2. These researchers simulated
three kinds of secondary toppling, as presented in
Figure 3.
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Figure 3. Physical modelling with a height of 24 cm a) blocky, b) block-flexural, c) flexural modes [26].

In the blocky toppling failure type, the fictitious
cross-joints was built at the block base, and the
angle of the failure surface relative to the table base
was 20°. Continuous blocks were applied for
modeling in the flexural toppling failure type. Due
to bending, the blocks were broken at their base
under tensile stress. In order to model the block-
flexural toppling failure type, the partial rock

columns were continuous, and the other rock
blocks had cross-joint. As tilting the table, the
tensile cracks were developed at the upper part of
the model, and the blocks bent over soil mass.
Next, a semi-circular sliding happened in the soil
mass, and the blocks were suddenly toppled [26].
The physical modelling results are listed in Table
1.

Table 1. Physical model test results [26].

Model test No. B20 B24 B30 BF20 BF24 F20 F24
. Block- Block-
Toppling mode Block Block Block flexural flexural Flexural  Flexural
Model height (cm) 20 24 30 20 24 20 24
Table inclination at failure 345 29 235 37 315 39 33
(degree)
3. Numerical Modelling tool to analyze the rock slope stability that has been

The numerical methods are useful tools for the
design and stability of project control. In a
numerical model, the elements may be connected
to each other, called a continuous model, and may
be separated by a discontinuity, called a discrete
model. The discrete models make it possible to
create models of separation and slide. In this work,
the physical model results are simulated using the
Phase 2 and UDEC softwares, which are based on
the finite element and distinct element approaches,
respectively [29]. These programs are a beneficial
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used for the investigation of sliding and toppling
failures. The capability of using this method in the
analysis of discontinuous models has increased
[20, 29]. In the Phase 2 code, the Goodman joint
element is applied in order to examine the joints.
This element can model the sliding of two joint
surfaces on each other and their separation. On the
other hand, the joints are evaluated with the help of
the Goodman joint element, which agrees with the
model to account for detachment of the joint
surfaces and their sliding over each other. This
characteristic allows to model the toppling failure.
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Therefore, the toppling failure modelling in this called safety factor. The properties of the powder
software is possible. The UDEC software solves and block used in the experimental tests are given
the discontinuous media problems such as the rock in Table 2. Furthermore, the joint properties among
slopes, crack coalescence, and toppling failures in the blocks are illustrated in Table 3. The Mohr-
the dynamic and static conditions. The strength Coulomb friction law was employed in the
reduction factor (SRF) was first suggested by numerical modelling. The numerical models were
Zienkiewicz et al. in 1975 [30]. Its description of investigated by the shear strength reduction
the safety factor for a slope is frequently defined as technique. For studying the mechanism of the
the ratio of the actual shear strength to the sliding-head-toppling  instability, = numerical
minimum ones of a soil or rock material required modellings were examined based on the kind of
to maintain the slope equilibrium. The software failure at the upper region of the slope into the
performs a regular search for the strength reduction flexural, block, and block-flexural sections. The
factors, starting from a unity value to the value that size of the numerical models is the same as the
brings the slope to the failure verge. The critical physical models.

value of this quantity found in the process is the so-

Table 2. Mechanical and physical properties of powder and block [26, 31].

Friction Friction

Unit Elasticity Poison Tensile angle angle Cohesion Cohesion
Element weight modulus . strength s .g (peak) (residual)
3 ratio (peak) (residual)
(KN/m?) (MPa) (kPa) (kPa) (kPa)
(degree) (degree)
Solid block 21.1 10 0.27 14 35 25 100 0
Powder 16 4 0.25 0 28 22.5 0.551 0.35
Table 3. Joint elements properties [29].
Normal stiffness  Shear stiffness Peak cohesion Residual Peak friction Residual friction
(MPa/m) (MPa/m) (kPa) cohesion (kPa)  angle (degree) angle (degree)
100 1 0 0 32 25
3.1. Flexural toppling instability the Phase2 and UDEC softwares, respectively (as

indicated in Figure 5 and Figure 6). SRF is
achieved at 0.877 and 0.9 in the FEM and DEM
approaches, respectively.

In this failure mode, the blocks are continuous at
the upper zone of the slope. Due to the bending
stress, these blocks are broken and then toppled. As
a result, the soil mass slides at the slope toe. As this

kind of failure is sensitive to the tensile strength, 3.2. Block toppling instability

the tensile stress distribution is illustrated in In this mode of failure, the rock columns do not
Figure4. According to this figure, the partial cross- withstand the tensile stresses due to the existing
sections of every block are approximately under cross-joints, and they topple or slide due to the
tensile stress. In the flexural toppling instability, upstream block pressures. The shear strain
the failure surface determination is accompanied contours in the Phase2 and UDEC softwares for the
by many uncertainties. This plane is commonly model of B24 are shown in Figure 7 and Figure 8,
located at the above plane perpendicular to the rock respectively. The circular failure path and shearing
block discontinuities. This angle is estimated at 5 among joints can be seen in these figures. Besides,
to 15 degrees in the experimental and analytical the rock columns overturned around their bottom,
studies. This angle was determined in order to and illustrated a pure toppling. SRF is 0.894 and
evaluate the accuracy of the numerical modelling 0.943 in the FEM and DEM methods, respectively.

outcomes, which were about 9 and 12 degrees in
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Figure 4. Tensile stress distribution in F24 model.
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Figure 5. Angle between overall failure plane and surface perpendicular to rock mass discontinuities in F24
model in Phase2 software.
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Figure 6. Angle between overall failure plane and surface perpendicular to rock mass discontinuities in F24
model in UDEC software
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Figure 7. Shear strain contours in model of B24 using Phase2 software.
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(b)
Figure 8. Numerical modelling outcomes in B24 model using UDEC software a) model plot, b) shear strain
contour.
3.2. Blocky-flexural toppling instability other parts are separated from the cross-joints

(block toppling), and then all of them are toppled
together. The numerical analysis results of the
BF24 model are shown in Figure 9 and Figure 10.

In this failure, the blocks are partially broken
under tension stress (flexural toppling), and the
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These figures show that the elements and joints
have yielded under the shear and normal stresses.
Furthermore, the overall failure plane passes via
the cross-joints. SRF is 0.91 and 0.916 in the
Phase2 and UDEC softwares, respectively.

4. Results and Discussion

The numerical modelling outcomes are
compared with the experimental modellings in
order to validate the numerical models in this
section. Several diagrams and quantities are
obtained in the numerical analysis, and the physical

Yielded Critical SRF: 0.91

Journal of Mining & Environment, Vol. 13, No. 1, 2022

igure 9. Yielded element in BF24 model using Phase2 software.

and numerical modelling results can be compared
in different ways. The most proper quantity to
compare these models is the critical stress
reduction factor. The researchers believe that this
quantity can be presumed to be equal to the factor
of safety in the numerical methods [25], [30]. Since
the safety factor of the experimental tests is
equivalent to one at the failure moment, the critical
SRF of each numerical model should also be equal
to one. The safety factor (FS) of the experimental
tests are compared with the stress reduction factor
(SRF) of these models achieved from the numerical
analysis (Table 4).

Table 4. SRF comparison in numerical modellings with experimental tests.

Models B20 B24 B30 BF20 BF24 F20 F24
FS in physical modeling 1 1 1 1 1 1 1
SRF in UDEC software 0.9 0.943 0.966 0.865 0.916 0.814 0.9
SRF in Phase2 software 0.86 0.894 0.88 0.935 0.91 0.875 0.877
Error of UDEC software (%) 10 5.7 34 13.5 8.4 18.6 10
Error of Phase2 software (%) 14 10.6 12 6.5 9 12.5 12.3
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Figure 10. Yielded element in BF24 model using UDEC software a) model plot, b) plastic point plot.

As it can be seen in Table 4, the average error
from the Phase2 and UDEC softwares is 10.99%
and 9.94%, respectively, indicating that the results
from the DEM method are more consistent with
those from the FEM method, which seems
reasonable due to the complex mechanism of the
failure mechanism. The table inclination can also
be compared between the numerical and physical
tests at the moment of failure. The line
perpendicular to the rock block discontinuities in
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the numerical models corresponds to the table
inclination. This quantity can be compared
between the numerical and physical model and a
theoretical solution proposed by Amini et al. [26],
indicated in Figure 11. This figure demonstrates an
acceptable agreement between the numerical and
theory outcomes. The results obtained by the
distinct element method are more consistent with
the results by the finite element method. The
numerical modellings estimated the table



Sarfaraz et al.

inclination to be less than the amounts measured in
the experimental test in all tests. Both the
numerical and physical modellings are under the
plane strain conditions. However, note that the
side-conditions are not completely similar in the
numerical and physical models. It may be due to

Journal of Mining & Environment, Vol. 13, No. 1, 2022

the side-effects in the experimental modelling, as
numerical modellings are supposed to be 2D

systems. In contrast, side-frictions in the
experimental models lead to a 3D failure
mechanism.
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Figure 11. Comparison of numerical modelling outcomes with theoretical predictions.

5. Conclusions

This work investigated the mechanism of sliding-
head-toppling instability using seven numerical
modellings analyzed in the FEM and DEM
methods. The outcomes can be summarized as
follow:

e In the flexural toppling instability, the rock
blocks are broken due to induced tensile stress
and bent over of the soil mass. Consequently, the
sliding failure occurs at the slope toe.

¢ In the block toppling instability, the blocks do not
withstand tensile stresses due to the existence of
cross-joints. Due to the pressure caused by the
upstream blocks, they overturn or slide about the
joint base, and finally, a sliding failure happens
in the soil mass.

e Partial of the rock columns is broken under the
induced tension stress, and the other parts are dis-
jointed from the cross-joints in the blocky-
flexural toppling instability. Then all the rock
columns are toppled, which leads to a sliding
failure at the slope toe.

e The error between the numerical modelling
results with the DEM method with the physical
model was approximately 9.94%, while the error
between the numerical modelling results with the
FEM method was approximately 11%.

e The numerical and physical modelling
comparison illustrated that the safety factor was
underestimated in the numerical models due to
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the plane strain assumption. However, the side-
friction in the experimental models violated this
supposition.

e This work showed that DEM had a better
accuracy in evaluating the slide-head-toppling
failure than FEM. Therefore, this numerical
method could be used to investigate the
mentioned failure.
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