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In this research work, a comprehensive study is conducted to predict flyrock as a
typical and undesirable phenomenon occurring during the blasting operation in open-
pit mining. Despite the availability of several empirical methods for predicting the
flyrock distance, the complexity of flyrock analysis has resulted in the low
performance of these models. Therefore, the statistical and robust artificial intelligence
techniques are applied for flyrock prediction in the Sungun copper mine in Iran. For
this purpose, the linear multivariate regression (LMR), imperialist competitive
algorithm (ICA), adaptive neuro-fuzzy inference system (ANFIS), and artificial neural
network (ANN) methods are applied to predict flyrock with effective parameters
including the blasthole diameter, stemming, burden, powder factor, and maximum
charge per delay. According to the attained results, the ANN model with the structure
of 5-8-1, Levenberg-Marquardt as the learning algorithm, and log-sigmoid (logsig) as
the transfer functions are selected as the optimal network with the RMSE and R2
values of 5.04 m and 95.6% to predict flyrock, respectively. Also it can be concluded
that the ICA technique has a relatively high capability in predicting flyrock, with the
LMR and ANFIS models placed in the next. Finally, the sensitivity analysis reveal that
the powder factor and blasthole diameters have the most importance on the flyrock
distance in the present work.

1. Introduction

Despite extensive advances in the industry of
drilling machinery, blasting has still a significant
role in extracting the mineral resources [1]. In this
respect, by an accurate and optimal blasting, the
productivity can be improved the and total costs
can be increased. The researches have shown that
around two thirds of total blasting energy is wasted
due to the adverse and harmful phenomena caused
by the blasting such as flyrock, air-blast, and
ground vibration, and the rest is spent for rock
fragmentation [1-6]. Flyrock is an environmental
problem defined as throwing or displacement of
rock pieces outside the normal distances from the
blast area due to wasting of explosive energy,
which can lead to fatalities in mines [7, §].
Therefore, the evaluation and estimation of flyrock
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is vital to minimize these problems. According to
Figure 1, flyrock can be divided into the three main
categories of face bursting, rifling, and cratering.
Based on the previous studies, controllable and
uncontrollable parameters can affect flyrock [9].
The controllable parameters include the powder
factor, burden, stemming, hole spacing, stemming
length, hole length, hole diameter, sub-drilling, and
so forth. On the other hand, the uncontrollable
parameters include the rock mass characteristics
and geological structures including the bedding
planes, faults, and joints [10]. Given the
importance of investigating the blasting-induced
flyrock in mines and construction projects, several
researchers have studied the rate of blasting-
induced flyrock. Some researchers have developed
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empirical models to predict the flyrock distance.
According to Lundborg et al. [11], the

flyrock distance can be determined by the
following equation:

L, =260xD*" (D)

where Ly, is the maximum flyrock distance in m
and D is the blasthole diameter in inch.
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One of the other empirical models for prediction
of flyrock (F) has been introduced by Ghsemi et al.
[9], where the effective parameters including
burden (B), spacing (S), stemming (St), blasthole
length (H), blasthole diameter (D), charge per
blasthole (Q), and powder factor (P) are considered
as follow:

F — 6946.547[B*0796So.783St1A994H1.649Dl.766(P / Q)1.465]

@)

Dehghani and Shafaghi [12] have predicted the
blasting-induced flyrock distance using the
dimensional analysis (DA) algorithm and the
differential evaluation (DE) algorithm. The results
obtained have presented that the offered DE-DA
model outperforms the experimental approaches.
Koopialipoor et al. [8] have used GA-ANN,
particle swarm optimization (PSO)-ANN, and
imperialist competitive algorithm (ICA)-ANN in
order to predict the flyrock distance produced by
blasting. According to their results, the PSO-ANN
model has more ability than the other models for
prediction of flyrock. Lu et al. [13] have developed
machine learning models to predict the flyrock
produced by blasting. They collected and used data
from three granite mines in Malaysia. According to
their results, the machine learning models
outperform ANN and multiple regression models.
Rad et al. [14] have used a recurrent fuzzy neural
network (RFNN) with a genetic algorithm (GA) for
flyrock prediction. In this study, non-linear
regression, ANN, and hybrid ANN-GA models
were applied to evaluate the suitability of the
RFNN-GA model. The results obtained showed
that the proposed RFNN-GA model had a better

Face Bursting

performance in flyrock prediction. Han et al. [15]
have used the random forest method and the
Bayesian network (BN) method with an acceptable
performance. Nguyen et al. [16] have presented a
numerical model for estimation of flyrock using a
powerful combination of Kernel functions, support
vector machine (SVM), and whale optimization
algorithm (WOA). Zhou et al. [17] have used the
non-linear and Monte Carlo (MC) simulation
models for predicting and simulating flyrock. The
results of the MC simulation showed the good
accuracy of flyrock distance. Manjezi et al. [18]
have used the ANN, LMR, and Gene Expression
Programming (GEP) models to predict flyrock.
The results of their studies show that the GEP
model has a good accuracy in predicting flyrock.
Regarding the mentioned points, the present
work aimed to use the statistical and intelligent
methods to assess the rate of blasting-induced
flyrock in the Sungun copper mine using a
statistical relationship. In this work, for the first
time, the statistical relationships using linear
multivariate regression and ICA are proposed.
Furthermore, the results obtained are compared
with ANN and ANFIS in the Sungun copper mine.

Rifling Cratering

|
]

Figure 1. Flyrock phenomenon categories in open-pit mines [17].
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2. Data and Methods
2.1. Database

As the largest copper mine located in NW Iran,
the Sungun copper open-pit mine has a confirmed
ore reserve of about 1600 Mt with an average grade
of 0.67% copper. In the Sungun mine, the blasting
operations are performed by ANFO, detonating
cord and Nonel systems. The flyrock caused by the
blasting operation is one of the unwanted
phenomena in this mine, for which a maximum of
100 m flyrock distance has been reported (Figure
2).
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Figure 2. A view of Sungun copper mine in Iran.

Journal of Mining & Environment, Vol. 13, No. 2, 2022

According to the performed studies, a
comprehensive database consisting of 281 datasets
with five effective input parameters was prepared
for predicting the flyrock (FR). Table 1
demonstrates the range of the input and output
parameters applied in this work. Also the
relationship between the input and output

parameters, as the Pearson’s correlation matrix, is
shown in Table 2. It is notable to mention that
RMR of the considered rocks in the present study
is about 40.

Table 1. Considered input and output parameters.

Input/

Parameter Symbol Min Max  Mean  Std. Deviation

output

Hole diameter (in) 3 5.5 5.178 0.532

Burden (m) 2.5 5 4.090 0.552
Inputs Stemming (m) 2.5 5.5 3.922 0.505

Powder factor (Kg/ton) 0.18 1 0.425 0.115

Charge per delay (Kg/ms) Ch 9.23 88 24.088 13.375
Output  Flyrock (m) FR 13 100  67.320 21.027

In order to find the best relationship between the
considered inputs data and the flyrock distance as
the output parameters, 70% of the data was

randomly considered as the learning data, while the
rest of the data was used to validate the proposed
statistical relationship.

Table 2. Matrix of Pearson’s correlation for applied inputs and output parameters.

Correlations D B St Pf Ch FR
D 1 0.565 0.600 0.210 0.058 0.054
B 0.565 1 0.787 -0.504 0.051 -0.583
St 0.600 0.787 -0.208 0.127 -0.120
Pf 0.210 -0.504 -0.208 1 0.071 0.674
Ch 0.058 0.051 0.127 0.071 1 0.066
FR 0.054 -0.583 -0.120 0.674 0.066 1

According to the linear dependence degree in 2.2. Methodology

Table 2, the value 0 indicates no correlation, whilst
the values -1 and 1 show a negative and a positive
correlation between the parameters, respectively
[19].
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In the present work, the linear multivariate
regression modeling and the intelligent methods of
ANN, ICA, and ANFIS were studied for predicting
the flyrock produced by blasting in the Sungun
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copper mine. This section gives an overview of
these methods.

2.2.1. Linear multivariate regression

The linear multivariate regression (LMR) is a
statistical method that uses several explanatory
variables for predicting the outcome of a response
variable. An LMR model with n regression
variables can be expressed as follows:

C=B,+Bx, +..+B,x, +¢

)

where [, is the constant value, [,is the

regression coefficients (1=1,2,...,n), and ¢ is

the model’s error value.

By considering the prediction models of complex
structures, the following nonlinear model can be
applied [5, 20-22]:

C =B, +Bx, +B,x] +B5e" +B,x,X, +¢ «;

In order to simplify this non-linear model, the
linear variables can be simply substituted. Thus by

taking z, =x,,z, =x,, z; =e“and z, =X,X,,
Equation (4) can be expressed as the following
form in order to predict the flyrock values:

C=B,+Bz, +B,z, +B;z, +B,z, +¢ (5)

2.2.2. Imperialist competitive algorithm (ICA)

The ICA method has been developed as a global
search strategy applying the sociopolitical
evolution of humans as a basis of inspiration [23].
High speed of convergence and more capability of
searching global optimization are the advantages of
this method [24, 25]. According to Figure 3, which
shows the process of this algorithm, initialize the
empires (including countries) as the random
population is the first step [26, 27]. In the
following, some of the powerful -counties
according to their cost function in the produced
population are considered as the imperialists, and
the rest as the colonies. Based on the power of each
imperialist, the colonies are allocated among them.

In the next step, after moving the colonies to their
imperialist country, the imperialistic competition
occurs among the empires. Consequently, the
powerful empires remains, and the weaker ones
will be eliminated, and their colonies will belong to
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the powerful empires. In this competition, also by
the assimilation process of the imperialist states
and also revolution (random changes that suddenly
happen in the position of some countries) an
increase in the power of colonies will gradually
occur and the position of empire and colonies be
changed. The process is terminated when only one
empire remains and all the weak empires collapse
[28].

2.2.3. Artificial neural networks (ANNS)

ANNSs, among the most popular Al techniques,
have been developed based on the human brain
construction [4]. One of the most useful types of
these networks is the multi-layer perceptron (MLP)
and FFNN network with a back-propagation
training algorithm. These networks consist of
several mutually processing elements called
neurons in three layers including the input layer
(number of neurons in this layer is equal to input
variables), hidden layer(s) (number of neurons is
determined based on the complexity of the
problem), and an output layer. According to the
previous studies, a network consisting of one or
two hidden layer is capable to predict the most
complex problems, and also the optimal number of
hidden layer neurons is usually determined by trial
and error (choosing too many neurons in these
layers may result in overfitting, and less neurons
will decrease the network performance) [30]. More
details on the neural network can be found in the
literature [3, 4, 31].

2.2.4. Adaptive neuro-fuzzy inference system
(ANFIS)

ANFIS is a multi-layer transmission network that
uses the input-output data, learning algorithms of
neural networks, and if-then rules of fuzzy in the
training process. This algorithm was introduced by
Jang in 1993 in which a fuzzy inference system
operates within compatible neural networks [22,
30, 32]. In this approach, an empirical knowledge
is converted into a mathematical mapping by tye
verbal or linguistic rules. However, in the systems
where expert knowledge is either not available or
not accurately expressed, the neural network
method can create the functions that benefit from
the membership and system rules [33]. Figure 4
illustrates a schematic view of the ANFIS structure
(type 3 ANFIS) with two inputs.
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Figure 3. Flowchart of colonial competition algorithm ICA [29].
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Figure 4. A Schematic view of ANFIS structure including two inputs [32].

According to Figure 4, the structure of the
ANFIS model involves five distinct layers. In the
first layer, fuzzification occurs by various types of
membership functions. In the second layer, the
received signals from the first layer are multiplied.
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In fact, in this layer, the firing strengths for the
fuzzy rules are generated. In the third one, the
calculated firing strengths are normalized.
Defuzzification happens in the fourth layer, and the
final outputs of i considered inputs (with attained
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weights w, ) are achieved in the fifth layer or output
layer by the following equation [19, 34]:

Final output =3 w,f = ZZW/’
i i\/\/l_

3. Results and Discussion
3.1. Predicting flyrock by linear multivariate
regression model

Table curve software, as a powerful statistical
software, was used to extract the best statistical
relationship between the considered inputs and the
flyrock distance data. These relationships are
assessed based on their R-squared coefficients.

Journal of Mining & Environment, Vol. 13, No. 2, 2022

Thus the linear dependence between the flyrock
and the obtained relationships (as the input
parameters) was determined by the IBM SPSS
software.

The backward statistical analysis was used to
determine the multivariate equation. Four
statistical parameters including accounted for
variance (VAF), mean absolute error (MAE),
root-mean-square error (RMSE), and coefficient
of determination (R*) were applied to find the best
relationship and prediction in all methods. Finally,
Equation 6 with the highest values of 0.9, 90.01,
7.33 m, and 5.15 m for R*>, VAF, RMSE, and
MAE, respectively, was extracted for the flyrock
prediction using the LMR method.

FR =c, +((c2 xB3)+(%D+((c4 xB3) +(cs xSt))+(%j+((c7 x Bx LN(B))+(CS xB'" ))

0

where CO to C8 are the coefficients of Equation
7 listed in Table 3. Hence, the final relationship for
predicting the flyrock by considering the inputs is

expressed as Equation 8, and comparison of the
measured and predicted flyrock values by the LMR
relationship is shown in Figure 5.

Table 3. Coefficients of LMR model.

C1 () C3 Ca

Cs Cs C7 Cs

307.24 -0.17 -9.45

0.44

14.22

-366.86 243.57 -195.3

FR =307.24+ [(—0.17 xB’)- [%D + ((—0.44>< B')+(14.22x St)) —( ~

((243.57xBxLN(B)) +(~1953xB'* )

366.86)
+
®)

100+

R-squared = 89.3%

904
80
70+
604
50+
404
30+

Predicted FR with LMR (m)

20

104 -

10 20 30 40

T
50

T T T T T
60 70 80 90 100

Measured FR (m)

Figure 5. Correlation between measured and predicted flyrock values by LMR.

The relationship between the statistical model

validation data and the measured data is shown in

Figure 6. This figure shows the error analysis
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histogram of the proposed model. The error
distribution function of the model is normal,
suggesting the reliability of the model.



Shakeri et al.

Frequency

Journal of Mining & Environment, Vol. 13, No. 2, 2022

Mean=-1.7IE 14
Std. Dev.= 0984
N=225

Regression Standardized Residual
Figure 6. Histogram of presented LMR model error data.

3.2. Optimizing relationship with ICA

In this section, the statistical equation obtained to
predict flyrock using the multivariate linear
regression method (Equation 8) is optimized by the
ICA technique. The optimization process was
performed by optimizing the coefficients CO to C8
in Equation 7. In this algorithm, the functions
RMSE and R? are considered as the objective
functions:

1 N
RMSE = \/E ZI: (Xiprcd - Ximcas )2 ©)

N
Z (Ximeas - Xipred )2
R*=1-- (10)

N

> Ko = X

i=1

MAE = l i ‘ximeas - xipred (1 1)
niq

where X.

ipred

is the predicted flyrock, and X,

is the measured flyrock distance. Based on the
objective functions, the final relation 12, is
obtained to predict the blasting-induced flyrock.
The optimized coefficients of this relationship are
given in Table 4. The values of R?, RMSE, MAE,
and VAF indices for the optimal relationship were
0.91, 7.03 m, 5.19, and 90.63 m, respectively.

Table 4. Optimized coefficients with ICA model.

C1 C2 C3 Ca Cs Cs C7 Cs

-33.8 2066 -10.8  -21.64 2292 -115.846 -99.6 8298

FR = —33.8+((20.66xB3)—(%D+((—21.64xB3)+(22.92xSt))—(

((—99.6x BxLN(B))+(82.98xB"*))

2

115.85)
+
(12)

For presenting the accuracy and validation of the
obtained equations (8 and 12), some of the
considered data for testing the models in this work

are given in Table 5. The measured relative flyrock
distance and the calculated values by these
equations are also presented.
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Table 5. The measured flyrock and predicted values by LMR and ICA.

D B St Pf Ch

Flyrock Flyrock Flyrock
(measured) (LMR) (ICA)

5 4 41 038 295
5.5 4.5 41 037 192
5 4.5 43 036 13.33
5.5 4.5 43 044 3125
5.5 4.5 36 036 135

5 4 41 049 20
5.5 4 41 047 207
5.5 5 4 0.29 235
5.5 5 45 032 16
4.5 4 41 036 9.23

5.5 4.5 43 044 345
5.5 4.5 43 038 25
5.5 4 4.1 0.5 21.37
5 4 41 044 522
5.5 4.5 36 034 135
5.5 5 45 031 396
5.5 4.4 3.6  0.39 44
5.5 4 32 0.38 15

75 75.672  75.711
40 57.209  55.522
56 56.796  58.491
62 64.116  64.751
50 49.390  43.250
84 81.256  82.092
85 82.982  81.958
19 20.619  20.108
38 30.783  35.060
72 70.848  73.044
63 64.116  64.751
52 60.725  60.874
82 84.188  83.337
84 79.064  79.587
50 47.846  41.485
36 29.830 33971
50 56.068  49.974
54 65.423  55.886

In the model produced in MATLAB 2019a, the
number of countries, imperialists, and repetitions
were 200, 35, and 400, respectively. Figure 7
presents the correlation between the measured and
ICA-optimized values of flyrock. Moreover,

Figure 8 illustrates the empires created by their
colony. Acoording to this figure, the bigger
created empires have a greater number of
colonies.

100+ ]
gp{ R-squared =916%
80
i i
g 70
=
£ 60
% 50+
&
& 401
2z
A 304
20+
104 [ ]
10 20 30 40 50 60 70 80 90 100

Measured FR

Figure 7. Correlation between measured and ICA-optimized values of flyrock.
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40 T T
Imperialist *
35r
Colony o
30
257t
201

o & B
¥

, , . . Mo
0

0 100 200 300 400 500 600

Figure 8. The empires created with their colony in which bigger empires have a greater number of colonies

3.3. Predicting flyrock using ANN were applied. Finally, a network with one hidden
layer including eight neurons showed the best
performance (with the lowest RMSE and highest
R?) in predicting flyrock in this work. To this end,
a network with the structure of 5-8-1 (Figure 9),
Levenberg-Marquardt as the learning algorithm,
and log-sigmoid (logsig) as the transfer function
was selected as the optimal network to predict
flyrock using the prepared database.

In te present work, ANN was used for flyrock
evaluation and prediction. Hence, a feedforward-
backpropagation neural network, a type of ANN
with high efficiency to predict various problems,
was considered. Since the networks with one or
two hidden layers can predict more complicated
problems, many networks with different structures

Hidden layer with 8 neurons

Inp
Output

Hole diameter
—>

Burden

—>

Stemming

—_

Powder factor

Flyrock
—>

Charge per delay
> Backpropagation

Figure 9. Schematic structure of achieved optimal ANN.

The relationship between the measured flyrock considered for assessing the network performance.
values and the values predicted by ANN for the test These values for the selected optimal network were
data is illustrated in Figure 10. The indicators of 1.93 m and 99.1% for the train data and 5.04 m and
RMSE and coefficient of determination (R*) were 95.6% for the test data, respectively.
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100

R-squared =95.6%

90

80

704

60 4

504

40 1

Predicted FR with ANN

304

204

10

10 20 30 40

50

60 70 80 90 100

Measured FR

Figure 10. Correlation between measured flyrock and values predicted by ANN.

3.4. Predicting flyrock using ANFIS

The ANFIS method was also used for prediction
of the blasting-induced flyrock in present work.
Like the ANN method, this method was performed
to evaluate and compare the accuracy of the ICA-
optimized relationship. The input parameters and
data used for the train and test process are
considered as the above applied methods. The
parameters of the optimum ANFIS for predicting
flyrock are listed in Table 6. In addition, Figure 11
shows the correlations of the measured and
predicted flyrock values by the ANFIS method.

Table 6. Parameters of optimum ANFIS model.

Parameters Description/value
Fuzzy structure Sugeno-type
Membership function for inputs Gaussian
Membership function for the output Linear
The influence of cluster centers 0.8
Iteration number 600
Step size for Initializing 0.1
Step size for the decreasing rate 0.7
Step size for the increasing rate 1.3
Fuzzy rules number 5

100
R-squared = 80.7%
90
80
70
60
50 |

40

Predicted FR with ANFIS

30
20
104

10 20 30 40

The achieved results of this work presented that
the applied methods showed a high ability in
prediction of the flyrock (Table 7). Among the
considered models, based on the performance
indicators for the testing models, the superiority of

50

60 70 80 20 100

Measured FR
Figure 11. Correlation between measured flyrock and values predicted by ANFIS.
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the ANN model was proved for predicting the
flyrock in this work. Evetually, Figure 12 shows a
comparison of the values predicted by the
intelligent methods and the LMR method used in
this work.
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Table 7. Results of considered statistical parameters for all optimized models

Models
Index LMR ICA ANN ANFIS
R2 0.89 0.92 0.96 0.81
Test RMSE 733 6.85 5.04 10.79
e MAE 5.15 4.92 3.42 5.54
VAF 0.90 0.91 0.95 0.78
12
10 =R2
RMSE
8
% MAE
=
S 6 VAF
ho]
8
Q
g 4
(0]
=
&
2
, LN [ | | [ |
LMR ICA ANN ANFIS

Indexes

Figure 12. Measured flyrock compared with predicted values by LMR, ICA, ANFIS, and ANN models.

4. Sensitivity Analysis

sensitivity analysis was performed to identify the
relative impact of each parameter on the output in
the mode using the cosine domain method [35]. All
the data pairs were utilized to construct a data array

X as follow [35]:
X =1{x,,X Xy X, ) (13)

Each one of the elements, xi, in the data array X is
a vector of lengths of m, i.e.:

(14

Equation 15 represents the strength of the relation
among the dataset, x; and x;:

S xx
k=1

ry=e—— (15)

m m
2
PRSI
k=1

k=1

X =1{x,1,x,2,x,3,....x

17 0.988
0.956
095 0ol 0.942
B .
E 0.9 A 0.87
0.85
0.8 T T T T 1
D (inch) B (m) Input %tagg eters Pf(Kg/ton) Ch (Kg/ms)

Figure 13. Impact of input parameters on flyrock by sensitivity analysis.

385



Shakeri et al.

Figure 13 shows the strengths of the relations (rj;
values) between the model inputs and outputs. The
results obtained showed that the powder factor
(Pf), hole diameter (D), stemming (St), burden (B),
and charge per delay (Ch) had the most and the
least effect on flyrock (FR), respectively.

5. Conclusions

In the present work, different models were
applied in order to evaluate and predict the
blasting-induced flyrock in the Sungun open-pit
copper mine. The parameters of blasthole diameter,
burden, stemming, powder factor, and maximum
charge per delay were considered as the input
parameters of the applied models. The models
LMR, ICA, ANFIS, and ANN were applied to
predict flyrock in 281 blasting operations in the
Sungun copper mine. The performance of these
models was compared based on the indicators of
R?, RMSE, MAE, and VAF. According to the
achieved results, the values of these parameters for
the obtained neural network were 95.6%, 5.04 m,
3.42 m, and 95.27%, respectively. Therefore, the
ANN technique was considered as the best model
for predicting the flyrock distance. Besides, the
results obtained indicated that the ICA technique
had a relatively high ability in predicting flyrock,
with the LMR and ANFIS being in the following
ranks in the order of their appearance. Moreover,
the sensitivity analysis showed that powder factor
and blasthole diameter had the highest impact on
the flyrock phenomenon in the order of their
appearance.
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