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 In this work, the machine learning prediction models are used in order to evaluate 
the influence of rock macro-parameters (uniaxial compressive strength, tensile 
strength, and deformation modulus) on the rock fracture toughness related to the 
micro-parameters of rock. Four different types of machine learning methods, i.e. 
Multivariate Linear Regression (MLR), Multivariate Non-Linear Regression 
(MNLR), copula method, and Support Vector Regression (SVR) are used in this 
work. The fracture toughness of mode I and mode II (KIC and KIIC) is selected as 
the dependent variable, whereas the tensile strength, compressive strength, and 
elastic modulus are considered as the independent variables, respectively. The data is 
collected from the literature. The results obtained show that the SVR model predicts 
the values of KIC and KIIC with the determination coefficients (R2) of 0.73 and 
0.77. The corresponding determination coefficient values of the MLR model and the 
MNLR model for KI and KII are R2 = 0.63, R2 = 0.72, and R2 = 0.62, 0.75, 
respectively. The copula model predicts that the value of R2 for KI is 0.52, and for 
KII R2=0.69. K-fold cross-validation testing method performs for all these machine 
learning models. The cross-validation technique shows that SVR is the best-designed 
model for predicting the fracture toughness mode-I and mode-II. 
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1. Introduction  

Rock fracture toughness is a material property 
accounting for the fracture resistance of jointed 
rocks under the applied loads [1]. Rock fracture 
toughness is the critical stress intensity factor 
(SIF) measured experimentally in the laboratory, 
and can be used as one of the design parameters 
for various rock engineering problems, e.g. in 
rock fragmentation processes such as blasting 
operation and rock cutting [2]. In the modern 
fracture mechanics, the idea of linear elastic 
fracture mechanics (LEFM), which is based on 
the concept of SIF and fracture toughness, has 
been adopted to study the mechanism of failure 
and fracturing in brittle materials such as glass, 
rock, concrete, and other rock-like materials 
[3].The applied rock fracture mechanics is used in 
various fields such as civil, mining, petroleum, 

geological, and environmental engineering, e.g. in 
rock slope stability, tunneling and underground 
constructions, rock burst, and hydraulic fracturing 
[4]. In the literature on fracture mechanics and 
based on LEFM concepts, generally, three modes 
of loading cause the cracked body to start 
propagation from the crack tip due to high-stress 
concentration at the crack end. The three modes of 
loading are i) the opening mode or pure mode I, 
where its corresponding SIF KII, and iii) the out-
of-plane shearing mode or pure mode II, where its 
corresponding SIF is KII. And iii) the out of plane 
shearing mode or pure mode III, where its 
corresponding SIF is KIII [5]. Many analytical, 
numerical, and experimental works have been 
carried out to estimate or measure the mode I and 
mode II fracture toughness of rocks [6]. The mode 
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I fracture toughness is the most versatile mode of 
fracture in use due to the relatively low tensile 
strength of rocks compared to those of the shear 
strength. However, the fracture problems related 
to the rock structure usually are associated with 
mode II and a mix-mode of loading mainly, mode 
I-II [7]; an example of this is the rock cutting by a 
wedge tool, where the fragmented rock chips are 
as result crack initiation and propagation below 
mix-mode I-II loading [8]. Numerous laboratory 
data shows that the mode-I fracture toughness 
linearly correlate with the tensile strength of the 
rock [9]. Although numerous experimental testing 
methods are developed for the estimation of the 
rock fracture toughness, they are time-consuming 
and costly; otherwise, using the sonic-log 
information from the field is proposed as the best 
relationship for the indirect determination of rock 
fracture toughness [10]. Chang Lee et al [11] have 
reported that most of the physio-mechanical 
properties of rocks (e.g. density, porosity, P-wave 
velocity, elastic modulus, uniaxial compressive 
strength, and Poisson’s ratio) and the P-wave 
velocity correlate with the mode I fracture 
toughness. They mentioned that the ductile 
materials presented more immense strain before 
reaching the failure state than those of brittle 
materials, as depicted schematically. 

Different methods are used to determine the 
fracture toughness, which depends upon the type 
of loading direction on the crack plane [12]. The 
classical computational methods (finite element 
method or pure mathematics) are used to calculate 
fracture toughness [13]. The fracture mechanics is 
a complex and sensitive field; these classical 
methods are not suitable for calculation since they 
require highly advanced mathematical skills, and 
are a lot time-consuming. In the recent 
developments, the machine learning (ML) 
techniques have arisen as a promising means in 
various scientific domains, including some 
applications in geotechnical engineering [14]. A 
single machine learning method does not have the 
ability to provide the solution to all problems, 
especially in fracture behavior [15]. Various 
machine learning algorithms should be applied to 
solve the problem in fracture mechanics. The 
machine-learning methods increase the quantity 
and quality of the data available offer and new 
possibilities to handle complex problems covering 
the clustering, classification, and regression issues 
[16]. Recently, some researchers have applied 
machine learning methods in the field of fracture 
mechanics. Goswami et al. [17, 18] have 
developed new approaches for solving complex 

problems. Wiangkham et al. [19] have used 
artificial intelligence machine learning methods to 
determine the mixed-mode-I and mode-II fracture 
toughness, and the machine learning method 
provided the best result compared with the 
classical computational methods. Wang et al. [20] 
have used various machine learning approaches, 
including decision regression tree, random 
regression forest, extra regression tree, and fully-
connected neural networks in order to predict the 
mode-I fracture toughness. Moreover, they have 
made improvements in the ISRM-suggested 
method of cracked chevron notched Brazilian disc 
(CCNBD) for rock specimens. Roy et al. [21] 
have predicted mode-I fracture toughness by 
using multiple regressions and soft computing 
methods such as an artificial neural network, 
fuzzy inference system, and adaptive neuro-fuzzy. 
Furthermore, for predicting KIC, they used tensile 
strength, P-wave velocity, and S-wave velocity. 
Fang and Fall [22] have predict the time, 
temperature, and sulfate ion's effect on the KI-
mode and KII-mode in cemented backfill-rock 
interface, and also all specimens have been 
subjected to semicircular bend (SCB) tests. 
Karakul, H [1] has predicted KI and KII from 
tensile strength by applying the linear regressions, 
multivariate regressions, and Adaptive Neuro-
Fuzzy Inference System (ANFIS) models. 
Moreover, KI, KII, and tensile strength were 
obtained using cracked chevron notched Brazilian 
disc (CCNBD), central cracked circular disk 
(CCCD), and Brazilian tests. Mahmoodzadeh et 
al. [23] KI using support vector regression with 
metaheuristic optimization algorithms, the support 
vector regression method are combined with six 
metaheuristic optimization models. Furthermore, 
they used 250 datasets including six input 
parameters and one output parameter (mode-I 
rock fracture toughness) are utilized in the models 
obtained through the CCNBD testing specimens 
suggested by the ISRM in the laboratory. 

In the latest research work, only mode-I has 
been predicted so far in some cases, where KI and 
KII have been predicted; only the tensile strength 
parameter of the rock samples was used as the 
input data for estimation. In previous studies, 
parameters have been used for estimation, which 
requires unusual and time-consuming tests. It is 
the first time to use common macro-properties 
(uniaxial compressive strength, tensile strength, 
and, modulus of elasticity) as the input parameters 
for the estimation of fracture toughness, which is 
obtained in most rock mechanics projects. 
Furthermore, the purpose of this research work is 
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to provide the optimal predictive models, and in 
this case, the correlation between the input 
variables is not an unfavorable parameter. In this 
regard, the K-fold cross-validation method has 
been used to determine the ability of models in 
forecasting, which confirms the capability of 
predictive models using these input parameters.   

This study predicts the rock’s most critical 
macro-parameters that may affect fracture 
toughness. For this purpose, various machine 
learning models are applied including Support 
Vector Regression (SVR), Multivariate Linear 
Regression (MLR), Multivariate Non-Linear 
Regression (MNLR), and the copula method, and 
their results are compared. The copula method is 
one of the most advanced soft computing methods 
that is used in the current study, for the prediction 
KI and KII. The K-fold cross-validation method is 
used to determine the ability of models in 
forecasting.   

2. Macro-Parameters Affecting Fracture 
Toughness 

The capacity of a material to take in energy and 
plastically deform and resist fracturing and 
propagation of the pre-existing cracks is referred 
to as the toughness modulus. The area below the 
rock’s stress-strain curve before the ultimate 
strength is an index for absorption of energy, and 
it depends on the ultimate strength and elastic 
modulus. The elasticity modulus has a significant 
impact on the rock deformation and failure, while 
it is not being considered as an effective 
parameter in the rock brittleness calculations. 
Brittle rock failure begins with the loss of 
cohesion (cementation) between the grains at an 
early stage, followed by dilation and the 
mobilization of frictional resistance [24]. In the 
rock sample, behavior changes start at 30% to 
50% during the peak stress, and the development 
of crack persists up to 70% to 85% during the 
peak stress. The concept of fracture toughness and 
strain energy is shown in (Figure1). Change of the 
tensile stress as a part of the crack opening, where 

the energy release rate reaches the area below the 
curve after the peak, (left-side of Figure A). The 
right-side of Figure B, the strain energy, which is 
the areas under the stress-strain curve, is used to 
define the energy upon failure [25]. The crack 
propagation in brittle material, e.g. rocks, is 
entirely dependent upon elastic energy. In the 
fracture mechanics, the elastic energy is the basic 
and essential energy for crack propagation. Irwin 
[26] gave a flexible solution of the energy 
required for the development of a crack on the 
crack tip, and showed that it did not depend on the 
state of stress if the plastic area across the crack 
tip was minimal in comparison to the crack 
length. The crack propagation is highly dependent 
on mode-II fracture toughness but the direct 
estimation of rock fracture toughness is difficult 
due to the limited number of available cores and 
consumption of a long time [27]. The numerical 
analysis method showed that the dominant mode 
of fracture, disregarding the shear stage, was  
tensional [28]. In Rock material, due to the 
presence of heterogeneity, porosity, bedding plane 
etc., the fracture toughness data is scattered, and a 
small number of specimens fail to provide 
versatile and reliable data. The three different 
modes of fracture toughness are shown in Figure 
2. 

Therefore, it is imperative to investigate the 
fracture toughness of rock statistically using 
several test samples [29]. Although the tensile and 
compressive rock strengths are relevant to elastic 
modulus, the elastic modulus results in brittleness 
and toughness cannot be ignored. In this research 
work, it is seen that the mode I and mode II 
fracture toughness are predicted better with three 
parameters of tensile and compressive rock 
strengths and Young’s modulus (σt, σc and, E) as 
opposed to using only tensile strength. We 
estimated the mode I and mode II fracture 
toughness as a function of compressive and tensile 
strength and Young’s modulus. The mechanical 
behavior of brittle and ductile fracture is shown in 
Figure 3. 
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Figure 1. An example of similarities between fracture toughness (A) and strain energy dissipation (B). Figure A 
indicates an ordinary mode I (tensile opening) fracture toughness curve, in which the actual energy release rate 
(GIC) is used to predict KIC. Figure B indicates a typical strain-stress curve, in which the strain energy (W) is 

used to define the energy launched upon failure [25]. 

 
Figure 2. Three fundamental modes of crack propagation: mode I (tensile), mode II (in-plane shear), and mode 

III (anti-plane shear) [30]. 

 
Figure 3. Mechanical behavior of brittle and ductile fractures [11]. 
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3. Data Collection: Mechanical Properties of 
Rocks 

The modes I and II fracture toughness (KIC, 
KIIC), tensile strength (t), uniaxial compressive 
strength (c), and elastic modulus (E) of some 
rock types collected from the literature are listed 
in Table 1. The values for tensile strength were 
derived from the Brazilian tests performed 
according to the ISRM suggested methods. The 
mode I and mode II fracture toughness values 

were estimated based on the Chevron Bend test 
and the Punch-via Shear test, respectively. The 
relationships between the input variables are 
investigated using R software. A Machine 
learning algorithm is applied to the available data 
in Table 1 to explore the impact of macro 
parameters (tensile strength, compressive 
strength, and elastic modulus) on fracture 
toughness as a micro-parameter of rock. 

Table 1. The mechanical properties of some typical rocks 
Rock Type KIIC (MPa.m0.5) KIC (MPa.m0.5) t (MPa) c (MPa) E (GPa) Reference 

Welsh limestone 1.0 0.9 8.5 144.9 33.2 [31] 
Coarse-grained sandstone 0.3 0.3 2.7 32.3 9.9 [31] 
Fine-grained sandstone 0.4 0.4 3.3 58.4 14.6 [31] 
Limestone 0.9 0.4 2.3 105.0 52.0 [32] 
Marble 6.1 2.2 17.6 202.0 78.0 [33] 
Sandstone 5.0 1.7 15.7 194.0 69.0 [33] 
Granite 4.9 1.9 10.7 166.0 66.0 [33] 
Aspo diorite 5.1 3.8 15.0 219.0 68.0 [34] 
Aue granite 4.1 1.6 8.0 134.0 48.0 [34] 
Mizunami granite 4.9 2.4 9.0 166.0 50.0 [34] 
Carrara marble 3.1 2.4 7.0 101.0 49.0 [34] 
Flechtingen sandstone 1.9 1.2 6.0 96.0 21.0 [34] 
Rudersdorf limestone 2.3 1.1 5.0 40.0 22.0 [34] 
Äspö diorite 4.4 3.8 14.9 211.0 76.0 [35] 
Lac du Bonnet granite 6.4 2.5 14.8 165.0 68.0 [36] 
Äspö diorite 2.0 1.0 10.0 224.0 60.0 [36] 
Crystalline rock 3.1 1.7 8.0 115.0 37.0 [36] 
Äspö diorite 4.7 3.3 14.8 165.0 68.0 [37] 
Pegmatitic rock 3.3 2.0 12.0 115.0 55.0 [38] 
Migmatitic gneiss 3.0 1.9 10.0 105.0 55.0 [38] 
Migmatitic gneiss 3.9 3.1 14.0 123.0 55.0 [38] 
Cement mortar 0.28 0.15 2.00 16.00 4.00 [38] 
Cement mortar 0.8 0.5 5.0 68.0 28.0 [38] 
Cement mortar 1.1 0.6 2.2 54.0 10.7 [38] 
 
4. Data Analysis by Machine Learning 
Methods 

The linear and non-linear multivariate 
regression analyses were applied to develop the 
prediction models to study the influence of the 
macro-parameter on the micro-parameter. 
Multiple linear regression (MLR) analysis was 
performed using the R-software. The backward 
method was selected to perform linear 
multivariate regression analysis. In this process, 
all impartial variables first enter into the equation, 
and the impact of all variables is estimated on the 
established variable. Less efficient variables  
exclude one after another, and in the end, those 
steps maintain till the test errors reach a sizeable 
degree of 10% [39]. Moreover, in this process, 

critical variables are acknowledged and continue 
to be in the equation. The rank order correlations 
(Pearson correlation) and descriptive statistics 
analysis in the form of a correlation matrix 
between the model inputs, KI and KII, are shown 
in Tables 2 and 3, respectively. The graphical 
presentation of the Pearson correlation is shown in 
Figure 4. Other machine learning methods are 
implemented in rock engineering-related 
problems [40]. The application of the support 
vector regression (SVR) models in solving non-
linear problems is growing among the researchers 
who deal with the geotechnical issues.  This 
approach focuses on forecasting analysis [41]. 
The SVR model is constructed based on the 
kernel function type of RBF. The reason for using 
the kernel function is its ability to transform our 
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data from the non-linear to the linear form. SVR 
allows to find a fit, and then data map to the 
original space. There are several advantages for 
using a support vector machine (SVM) [42]. 
These advantages include a global and unique 
solution, a simple geometric interpretation, 
structural risk minimization, and a low prone to 
overfitting[43]. 

 In this study, some statistical indices, including 
the mean absolute error (MAE), root mean square 
error (RMSE), and determination coefficient (R), 
are used to evaluate the performance of prediction 
models by comparing the predicted values with 
the actual values. The following (Equations 1 and 

2) give expressions of MAE, and RMSE, 
respectively. 

MAE =
1
n |(Yi− Yi ) (1) 

푅푀푆퐸 =
1
푛 (푌푖 − 푌푖  ́)  (2) 

Here Yi is the predicted value, Yi is the 
measured value, and n is a number of all 
variables. The results of above statistical indices 
calculated for all models are presented in Table 8.  

Table 2. Result summary of Descriptive statistics analysis. 

 n Mean Sd Median Trimmed Mad Min Max Range Skew Kurtosis se 
KIIC 24 3.04 1.92 3.1 3.00 2.67 0.28 6.4 6.12 0.03 -1.38 0.39 
KIC 24 1.70 1.09 1.7 1.64 1.11 0.15 3.8 3.65 0.36 -0.97 0.22 
σt 24 9.10 4.91 8.75 9.05 6.67 2 17.6 15.6 0.06 -1.38 1.00 
σc 24 125.82 61.36 119 126.42 69.68 16 224 208 -0.06 -1.17 12.52 
E 24 45.73 22.72 51 46.48 25.20 4 78 74 -0.38 -1.26 4.64 

Table 3. Pearson’s correlation coefficients for model inputs for KI and KII. 
Pearson correlation KIIC KIC σt σc E 

KIIC 1 0.817 0.878 0.749 0.844 
KIC 0.817 1 0.825 0.687 0.77 

σt 0.878 0.825 1 0.837 0.886 
σc 0.749 0.687 0.837 1 0.889 
E 0.844 0.77 0.886 0.889 1 

 
Figure 4. Graphical presentation of Pearson’s correlation coefficients. 
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4.1. Predicting rock fracture toughness by 
MLR and MNLR 

The multivariate linear regression (MLR) and 
multivariate non-linear regressions (MNLR) 
analyses were carried out to predict the values for 
the independent variable coefficients in the linear 
equation. The results of this regression analysis 
are present in Table 8. The values of R2 = 0.63 for 

KI and R2 = 0.72 for KII in MLR are shown in 
Figures 5 and 6, respectively. The results of non-
linear regression analysis to predict the values of 
toughness are presented in Figures 7 and 8. The 
regression coefficients for non-linear multivariate 
regressions models for KI and KII are 0.62 and 
0.75, respectively. 

 
Figure 5. Scatter plots of predicted mode I toughness, KI, from linear multivariate regressions. 

 
Figure 6. Scatter plots of predicted mode II toughness, KII, from linear and multivariate regressions. 

 
Figure 7. Scatter plots of predicted mode I toughness, KI, from non-linear multivariate regressions. 
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Figure 8. Scatter plots of predicted mode II toughness, KII, from non-linear multivariate regressions. 

4.2. Fracture toughness prediction using SVR 
The model is turned into built by way of the 

e1071 package, which is the primary and 
maximum intuitive package in the R-software 
program. Compressive strength, tensile strength, 
elastic modulus, and fracture toughness are 
selected as the model inputs. The SVR model was 
built primarily based on the kernel function form 
of radius basis function (RBF). The reason for the 

use of the kernel function is its ability to 
transform the statistical data from the non-linear 
to the linear form. SVR is to find a fit, and then 
information map to the unique space. The SVR 
model results are present in Table 8. In the results 
presented in Figures 9 and 10, the models show a 
good ability to predict fracture toughness for KI 
and KII with corresponding determination factors 
of R2 = 0.74 and R2 = 0.78, respectively. 

 
Figure 9. Scatter plots of predicted mode I toughness, KI, SVR models. 

 
Figure 10. Scatter plots of predicted mode II toughness, KII, SVR models. 
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4.3. Fracture toughness prediction using copula 
method 

Copula is a function that combines a 
multivariate distribution function with its 
marginal distribution functions, commonly called 
marginals or simply margins. Copula is an 
excellent tool for modeling and simulating the 
correlated random variables. The copula method 
plays a significant role in the field of civil, 
geotechnical, and engineering geology due to its 
high accuracy [44]. The copula method is 

performed using the R-software to determine the 
fracture toughness mode-I and fracture toughness 
mode-II. For mode I, the copula method with only 
tensile strength is the best predictor model, and 
for mode II, copula with all three independent 
variables is the best predictor method. The copula 
method results are present in Table 8). The value 
of R2 = 0.52 for KI and R2 = 0.69 for KII in the 
copula method are shown in Figures 11 and 12, 
respectively. 

 
Figure 11. Scatter plots of predicted mode I toughness, KI, from copula method. 

 
Figure 12. Scatter plots of predicted mode II toughness, KII, copula method. 

5. Cross-Validation for Machine Learning 
Methods 

One of the significant challenges in machine 
learning methods is to check the model accuracy 
of unseen data, to know whether the designed 
model is performing well or not. In order to 
evaluate the model accuracy, we should need to 
test it against those data points that are not present 

during the training of the model. Using R-
programming language, one of the best methods 
for checking the accuracy of the machine learning 
model is the cross-validation (CV) method. Cross-
validation is a standardized technique for testing 
the performance of a predictive model. In the 
process of cross-validation, a part of the dataset is 
saved, which will not be used in the model 
training. When the model is ready, this specific 
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dataset is used for testing the purposes. The cross-
validation method can be divided into two types: 
one is non-exhaustive cross-validation, which 
includes such as K-fold cross-validation, holdout 
method, repeated random sub-sampling 
validation, and exhaustive cross-validation 
includes such as leave-p-out cross-validation, 
leave-one-out cross-validation. 

The K-fold cross-validation method is used to 
find the best-designed machine learning models 
for fracture toughness mode-I and fracture 
toughness mode-II. The K-fold cross-validation 
method is one of the most accurate and reliable 
methods for testing the machine learning models. 
This cross-validation technique divides the data 
into equal K subsets (folds). Besides these K-
folds, one subset is used as a validation set, and 
the remaining is applied in the training model. 

The K-fold cross-validation method has been 
used for Support Vector Regression (SVR), 
Copula Method, Multivariate Linear Regression 
(MLR), and Multivariate Non-Linear Regression 
(MNLR) to find the best machine learning model 
for fracture toughness mode-I and fracture 
toughness mode-II. For these machine learning 
methods, the fitting models are built by the K-fold 
cross-validation technique. A total of eighteen 
models are developed for fracture toughness 
mode-I. The results are shown in Table 4. There 
are six models for multivariate linear regression 
(model numbers 1 to 6), six models for Support 
Vector Regression (SVR) (model numbers 7 to 
12), three models for Copula Method (model 
numbers 13 to 15), and three models for 
Multivariate Non-Linear Regression (MNLR) 
(model numbers 16 to 18). The details of Support 
Vector Regression (SVR) models for fracture 
toughness mode-I are in Table 5. A total of 
seventeen models are developed for fracture 

toughness mode-II. The results are shown in 
Table 6. There are six models for multivariate 
linear regression (model numbers 1 to 6), six 
models for Support Vector Regression (SVR) 
(model numbers 7 to 12), three models for Copula 
Method (model numbers 13 to 15), and two 
models for Multivariate Non-Linear Regression 
(MNLR) (models number 16 to 17). The detail of 
Support Vector Regression (SVR) models for 
fracture toughness mode-II are presented in table 
No 7. The result showed that the Support Vector 
Regression (SVR) is the best-designed model for 
fracture toughness mode-I and fracture toughness 
mode-II. In the K-fold cross-validation method for 
Support Vector Regression (SVR), darkness of 
color that ranges from 0 to 250 represents the best 
value for the required model. Furthermore, the 
darkness of color is processed to obtain the 
optimized value of cost and epsilon. For the 
fracture toughness mode-I, the value of cost seven 
and epsilon 0.04 (Figure 13). Moreover, for 
fracture toughness mode-II, the value of cost three 
and epsilon 0.6 (Fig. 14). The tensile strength has 
a direct effect on the fracture toughness mode-I 
and mode-II. In this regard, Support Vector 
Regression (SVR) is the more realistic and 
reliable model. The Multivariate Non-Linear 
Regression (MNLR) is the second-best Machine 
learning model to determine rock fracture 
toughness, which provide relationship in 
Equations 3 and 4 for fracture toughness mode-I 
and mode-II, respectively. 
 

퐾퐼퐶 = 0.13 × 푠푡 .  (3) 

퐾퐼퐼퐶 = 0.080 × 푠푡 . × 퐸 .  (4) 

Table 4. Cross-validation results for KI. 
Model 
num 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

R2 0.539 0.561 0.587 0.6 0.612 0.632 0.524 0.472 0.64 0.58 0.604 0.737 0.162 0.196 0.521 0.583 0.596 0.62 
RMSE 0.735 0.715 0.692 0.679 0.669 0.651 0.753 0.798 0.644 0.701 0.685 0.564 1.138 1.078 0.75 0.7 0.695 0.674 
MAE 0.597 0.578 0.553 0.539 0.515 0.498 0.608 0.648 0.516 0.591 0.524 0.425 0.879 0.836 0.571 0.565 0.536 0.52 

Table 5. Cross-validation results for KII. 
Model 
num 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

R2 0.683 0.689 0.726 0.731 0.741 0.751 0.778 0.652 0.738 0.638 0.741 0.721 0.637 0.69 0.664 0.731 0.753 
RMSE 1.068 1.054 0.985 0.983 0.957 0.938 0.94 1.144 0.963 1.139 0.987 1.005 1.183 1.067 1.089 0.982 0.944 
MAE 0.89 0.876 0.81 0.801 0.782 0.759 0.723 0.955 0.791 0.962 0.818 0.775 0.893 0.859 0.899 0.834 0.77 
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Table 6. Results of Support Vector Regression (SVR) model for fracture toughness mode-I. 

Model Micro-parameter 
 (fracture toughness mode-I) 

Macro-parameters (tensile strength, 
compressive strength, Young’s modulus) cost Epsilon 

SVR-model-7 KI σt, σc, E 0.7 0.1 
SVR-model-8 KI σt, σc, E 13 0.6 
SVR-model-9 KI σt, E 2 0.2 

SVR-model-10 KI σt, E 1.4 0.4 
SVR-model-11 KI σt 190 0.2 
SVR-model-12 KI σt 7 0.04 

 
 
 

Table 7. Results of Support Vector Regression (SVR) model for fracture toughness mode-II. 

Model Micro-parameter 
(fracture toughness mode-II) 

Macro-parameters (tensile strength, 
compressive strength, Young’s modulus) cost Epsilon 

SVR-model-7 KII σt, σc, E 3 0.6 
SVR-model-8 KII σt, σc, E 3.6 0.7 
SVR-model-9 KII σt, E 1 0.25 

SVR-model-10 KII σt, E 1.4 0.4 
SVR-model-11 KII σt 15 0.6 
SVR-model-12 KII σt 1 0.2 

 

 
a) First step for selecting optimized cost and epsilon b) Final step for selecting optimized cost and epsilon 

Figure 13. Steps for determination of optimized parameters in Support Vector Regression (SVR) for fracture 
toughness mode-I with the value of cost seven and epsilon 0.04. 

  
a) First step for selecting optimized cost and epsilon b) Final  step for selecting optimized cost and epsilon 

Figure 14. Steps for determination of optimized parameters in Support Vector Regression (SVR) for fracture 
toughness mode-II with the value of cost three and epsilon 0.6. 
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Figures 15 and 16, laboratory toughness mode-I 
and mode-II, are, respectively, compared with the 
best SVR and MNLR predictor models. 

The overall performance of various models is 
presented in this work in prediction of the 

toughness values based on RMSE. Table 8 
summarizes the comparison of all statistical 
indices (MSE, RMSE, and MAE) for different 
models. 

 
Figure 15. Comparison between data from best predictor models with real KI. 

 
Figure 16. Comparison between data from best predictor models with real KII. 

Table 8. Comparative table for all models 
Model Statistical indices for models Characterizes of models Total rank 

MLR 

Mode I (KI) Mode II(KII) Mode I (KI) Mode II (KII) 

3 R2 = 0.63 
RMSE =0.65 
MAE = 0.57 

R2 = 0.72 
RMSE =0.93 
MAE = 0.75 

Analysis method: 
Backward 

Analysis method: 
Backward 

MNLR 
R2 = 0.62 

RMSE = 0.67 
MAE = 0.52 

R2 = 0.75 
RMSE = 0.94 MAE = 0.77 

Function: Power 
form Function: Power form 2 

SVR 
R2 = 0.73 

RMSE = 0.56 
MAE = 0.42 

R2 = 0.77 
RMSE = 0.94 
MAE = 0.72 

SVM-type: 
eps-regression 

SVM-Kernel: radial 
cost: 7 

epsilon:0.4 
Number of Support 

Vectors:23 

SVM-type: 
eps-regression 
SVM-Kernel: 

linear 
cost: 3 

epsilon:0.6 Number of 
Support Vectors:23 

1 

Copula method 
R2 = 0.52 

RMSE = 0.75 
MAE = 0.43 

R2 = 0.69 
RMSE = 1.18 
MAE = 0.89 

C-vine copula 
method C-vine copula method 4 
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6. Conclusion 
Rock fracture toughness is one of the most 

sensitive and complicated topics in various 
engineering fields. It is imperative to determine 
the effect of macro-parameters such as tensile 
strengths (σt), compressive strengths (σc), and 
Young’s modulus on the different modes of 
fracture toughness. Therefore, modern and 
reliable machine learning models were used for 
this proposal. 

Support Vector Regression (SVR) model 
provided more realistic and accurate results for 
rock fracture toughness. Rock fracture toughness 
mode I has a direct relationship with tensile 
strength. Furthermore, these results are very close 
to the reality of rock fracture toughness mode-I. 
The best predictor model for fracture toughness 
mode-II, the SVR model with tensile strengths 
(σt), compressive strengths (σc), and Young’s 
modulus as independent components. The 
Multivariate Linear Regression (MLR) and 
Multivariate Non-Linear Regression (MNLR) 
provided good results as compared to the copula 
method for the rock fracture toughness. The 
copula method requires more data to achieve a 
good estimation model. Moreover, the results 
showed that the K-fold cross-validation was a 
beneficial method for determining the model with 
the best performance for prediction. 
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  چکیده:

 مدول و یکشش مقاومت ،يمحور تک يفشار مقاومت( سنگماده  کلان خواص ریتأث یابیارز منظور به نیماش يریادگی ینیبشیپ يهامدل از کار، نیا در
، شامل نیماش يریادگی روش مختلف نوع چهار. شده است استفاده در حالت شکست کششی و برشی سنگ شکست یچقرمگریز خواص  بر) الاستیسیته

مورد ) SVR(روش رگرسیون بردار پشتیبان  و )Copulaمفصل مبنا ( روش ،)MNLR( رهیمتغ چند یخط ریغ ونیرگرس ،)MLR( رهیمتغ چند یخط ونیرگرس
 مقاومت ،یکشش مقاومت که یحال در شود، یم انتخاب وابسته ریمتغ عنوان به) KIICو  II )KIC حالت و I حالت شکست یچقرمگ. استفاده قرار گرفته است

 دهدیم نشان آمدهدستبه جینتا. است شده يآور جمعطریق مرور منابع  از ها داده. شوند یم گرفته نظر در مستقل يرهایمتغ عنوان به کیالاست مدول و يفشار
 يبرا MNLR مدل و MLR مدل متناظر نییتع بیضر ریمقاد. کندیم ینیبشیپ 77/0 و73/0 نییتع بیضرا بابه ترتیب  را KIIC و KIC ریمقاد SVR مدل که

KIC و KIIC ضریب تعیین را براي ریدامقمفصل مبنا  مدل. است 75/0، 62/0 و 72/0 ،63/0 بیترت به KIC، 52/0 و KIIC ،69/0 آزمون روش. کندبرآورد می 
 انجام نیماش يریادگی يهامدل نیا همه يبراها و سنجش صحت نوع متغییرهاي مستقل ورودي به منظور تعیین اعتبار  روش )KFCVچند لایه ( متقابل اعتبار

 II حالت و I- حالت شکست یچقرمگ ینیبشیپ يبرا شدهیطراح مدل نیبهتر )SVR( بانیپشت بردار ونیرگرس که دهدیم نشان یاعتبارسنج روشاین . شد
  .است
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