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 This work attempts to estimate the amount of fly-rock in the Angoran mine in the 
Zanjan province (Iran) using the gene expression programming (GEP) predictive 
technique. For this, the input data including the fly-rock, mean depth of the hole, 
powder factor, stemming, explosive weight, number of holes, and booster is collected 
from the mine. Then using GEP, a series of intelligent equations are proposed in order 
to predict the fly-rock distance. The best GEP equation is selected based on some well-
established statistical indices in the next stage. The coefficient of determination for the 
training and testing datasets of the GEP equation are 0.890 and 0.798, respectively. 
The model obtained from the GEP method is then optimized using the teaching–
learning-based optimization (TLBO) algorithm. Based on the results obtained, the 
correlation coefficient of the training and testing data increase to 91% and 89%, which 
increase the accuracy of the equation. This new intelligent equation could forecast fly-
rock resulting from mine blasting with a high level of accuracy. The capabilities of 
this intelligent technique could be further extended to the other blasting environmental 
issues. 
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1. Introduction 
Surface mines are sometimes close to the 

residential areas due to the population growth and 
restricted land resource use. For having a green 
mining strategy, it is significant to consider a safe 
blasting operation in these mines [1, 2]. The 
drilling and blasting methods are extensively 
practiced for fragmentation rocks in surface 
mining, tunnels, and construction projects [3]. 
Among all environmental issues of blasting, fly-
rock is considered the most hazardous event in 
surface mining excavated by blasting [4]. Hence, 
predicting the fly-rock distance plays an 
outstanding role in controlling and minimizing 
blasting accidents in surface mines [5]. The 
previous researchers proposed several 
experimental methods to predict fly-rock [6]. 
However, the complexity of the fly-rock analysis 

causes a low-performance prediction of such 
practical methods [4]. The inaccuracy of empirical 
models is mainly caused by different effective and 
vital parameters and their unknown relationships 
[7]. In the recent years, the use of new approaches 
such as artificial intelligence (AI) and machine 
learning (ML) in solving problems related to 
blasting environmental issues, e.g. fly-rock is 
highly recommended [8, 9; 10; 11, 12]. The 
performance of the AI and ML techniques show 
that these methods are proper tools to minimize 
uncertainty in blasting operations [13]. In addition, 
the use of the AI and ML techniques in solving 
other issues related to science and engineering has 
been highlighted in the literature [14, 15, 16, 17, 
18, 19; 20; 21; 22; 23; 24; 25; 26; 27, 28, 29; 30, 
31; 32; 33, 34; 35, 36, 37, 38, 39].  
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Adhikari (1999) has examined the amount of fly-
rock from 47 explosions in six limestone mines. 
After analyzing the results, he provided some 
suggestions to minimize the risks of fly-rock in 
limestone mines [40]. Bajpayee et al. (2004) have 
examined several case studies about fatal injuries 
caused by flyrock during 21 years, from 1978 to 
1998. This study concluded that the causes of these 
injuries are essentially personal and, to some 
extent, environmental [1]. Kecojevic and 
Radomsky (2005) have investigated the results of a 
research study on the fly-rock phenomena and 
safety-related incidents in the blasting region of 
surface mining. This study indicated that 45 fatal 
and 367 non-fatal accidents happened in the coal, 
metal, and non-metallic surface mines between 
1978 and 1998, which was essentially due to the 
insecurity of the blast region, the fly-rock, an early 
explosion, and a non-explosive pit [41]. 
Investigations conducted on fly-rock showed that 
one or more of the following vital factors affected 
significantly fly-rock, which are: 1) discontinuities 
in the geological structure, 2) inappropriate 
charging, and 3) arrangement of holes, inadequate 
overburden, excessive density of explosives, and 
insufficient stemming [41, 42]. Rezaei et al. (2011) 
have developed a fuzzy model to predict fly-rock 
at the Gol Gohar iron mine. In this respect, a 
database including 490 datasets of explosion 
operations was provided and used. The 
performance of the fuzzy model was compared 
using the statistical method. It was perceived that 
the efficiency of the developed fuzzy model was 
much better than the statistical model [43]. 

Additionally, the sensitivity analysis revealed 
that the powder factor and rock density parameters 
had the most and the most negligible influence on 
fly-rock distance, respectively. Monjezi et al. 
(2012) have attempted to develop a model based on 
an artificial neural network (ANN) and genetic 
algorithm (GA) to predict fly-rock at the Sungun 
copper mine. The model provided using this 
method is faster and more accessible than the 
conventional ANN. The sensitivity analysis 
revealed that the most influential parameters on 
fly-rock were powder factor and stemming [44]. 
Amini et al. (2012) have predicted fly-rock at the 
Songun copper mine by applying another ML 
model, namely support vector machine (SVM). It 
was concluded that the SVM method was faster 
and more precise than the ANN method [45]. 
Armaghani et al. (2014) have proposed a new 
approach of combining particle swarm 
optimization (PSO) with ANN to succeed in the 
PSO-ANN constraints. In this regard, 44 datasets 

obtained from three granite mining sites in 
Malaysia were used to create the mentioned model. 
The results revealed that the proposed method 
could predict fly-rock caused by blasting with a 
high accuracy rate. The sensitivity analysis 
determined that the powder factor and maximum 
charge per delay were the most efficient parameters 
in fly-rock [42]. Ghasemi et al. (2014) have 
developed two prediction models, namely ANN 
and fuzzy logic techniques, to predict fly-rock at 
the Songun copper mine. The results determined 
that both models were beneficial and efficient, 
while the fuzzy model had a better performance 
than the ANN model in predicting fly-rock. The 
performance of the models revealed that the 
developed AI models were a good device to 
minimize uncertainty in blasting operations [13]. 
Dehghani and Shafaghi (2017) have predicted the 
explosion-induced fly-rock by combining the 
differential evolution (DE) algorithm and the 
dimensional analysis (DA) algorithm. 
Accordingly, the parameters of 300 blasting 
operations were estimated. The results determined 
the superiority of the proposed DE-DA model 
compared to the experimental approaches [46]. 
Hasanipanah et al. (2017b) have acted to model to 
create an accurate and efficient model based on the 
regression tree (RT) to predict fly-rock caused by 
explosions in the Ulu Tiram mines (Malaysia). In 
this respect, 65 blasting operations were examined, 
and the most effective parameters available on the 
rock-fly were measured. The results revealed that 
RT could be introduced as a powerful method to 
predict fly-rock [47]. Rad et al. (2018) have 
indicated the amount of fly-rock applying the least 
squares support vector machine (LS-SVM) 
method. The support vector regression (SVR) 
method was also used to compare them. A case 
study was conducted in the Golgohar iron mine to 
measure the required parameters of 90 explosions 
to meet the desired goal. According to the results 
obtained, the LS-SVM method with a correlation 
coefficient of 0.969 and a mean squared error of 
16.25 can be more efficient than the SVR method 
with a correlation coefficient of 0.945 and mean 
squared error of 31.58 in estimating the fly-rock 
caused by blasting [48]. Kumar et al. (2018) have 
proposed a combined PSO-ANN prediction model 
to predict fly-rock. The developed model results 
were compared with the imperialist competitive 
algorithm (ICA)-ANN, BP-ANN methods, 
experimental equation, and multivariate regression 
analysis (MRA). The results revealed that the PSO-
ANN method gave a more accurate prediction than 
the other methods [49]. Koopialipoor et al. (2018) 
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have used the ICA, GA, and PSO methods with an 
ANN to predict the explosion-induced fly-rock. A 
database consisting of 262 datasets was collected 
to meet this objective. The results determined that 
although all predictor models could estimate the 
fly-rock, the PSO-ANN prediction model 
performed better than other models [50]. Han et al. 
(2020) have conducted a two-part study on fly-rock 
prediction. The first part was associated with 
evaluating and selecting the most effective fly-rock 
parameters utilizing the random forest technique. 
Using this technique, they removed the "maximum 
charge per delay" from the input variables. The 
second part estimated fly-rock using the Bayesian 
network technique [51]. it still needs some new 
model/direction for predicting or minimizing fly-
rock, which is one of the most significant issues 
related to blasting. Shakeri et al. (2021) have 
determined blast ground vibration (BGV) by 
applying ANNs and LMR [32]. Dehghani et al. 
(2021) have used a combination of TLBO and GEP 
to predict PPV at the Galali iron mine in Iran. For 
this purpose, they built a dataset including 13 
parameters collected from 34 blasting blocks in the 
area. After finding the most influential factors 
using statistical analyses, they applied GEP in 
order to suggest an empirical relationship. 
Eventually, the TLBO algorithm was utilized to 
optimize the suggested relationship [33]. 
Moomivand (2022) has investigated the influences 
of blast hole parameters such as burden, blast hole 
diameter, and stemming, which have been 
investigated in the previous empirical research 
work [52]. For this purpose, as an example the fly-
rock has been estimated up to 3512 m by Lundborg 
et al. (1975), which is much higher than the real 
results (Moomivand 2022) that is because there are 
not some crucial parameters in the Lundborg et al. 
(1975) relation. 

In this study, the idea is to propose an empirical 
relationship for predicting the fly-rock distance, 
which is essential to determine the blast safety 
regions. The relationship is suggested with the help 
of a powerful AI method, namely GEP. The GEP 
relationship is proposed using the most influential 
parameters on fly-rock. Then the relationship is 
optimized using the TLBO algorithm in order to 
increase the prediction accuracy. Before the 
blasting operations, the proposed relationship can 
be utilized to identify the safe area for blasting. The 
remaining parts of this study are as follows: 

The second part is related to some principles of 
the GEP model and TLBO in predicting issues. 
Then the third section describes the studied area, 
database establishment, and modeling procedure of 
the fly-rock prediction. Section 4 provides some 
critical discussions of the obtained fly-rock 
prediction results, and the sensitivity analysis 
results are presented in Section 5. Eventually, some 
critical conclusions and limitations will be 
discussed in the last section.  

2. Materials and Methods 

In order to provide a mathematical equation, the 
amount of fly-rock in the Angoran mine was 
collected using the methods of gene expression 
algorithm and the teaching and learning-based 
optimization algorithm of all required parameters. 
Then 70% of the data was randomly used to 
construct the model, and 30% of the data for 
validation. An equation between the parameters 
and the dependent variable was then developed 
using the gene expression algorithm. The obtained 
equations for optimization of prediction accuracy 
entered the teaching and learning-based 
optimization algorithm. The steps for conducting 
the research work are shown in Figure 1. 
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Figure 1. Flowchart of fly-rock prediction. 

2.1. GEP 
One of the most significant subfields of AI is the 

evolutionary algorithm (EA). EAs are inspired by 
biological evolution in order to solve the 
engineering and science problems [53, 54]. EAs 
themselves include several different sub-classes 
that are based on the principles of biological 
evolution. GA is one of the EA methods, and it is 
considered as a simple natural evolution. In the 
computer science, GA is a search method to find 
approximate solutions for optimization purposes. 
The search problems are a particular type of EA 
that utilize the biological evolution techniques such 
as heritage and mutation to solve the problems. In 
general, GA uses a genetic technique as a problem-
solving model. It tries to find the best solution to 
the problem by genetically modifying the 
population of solutions in successive generations 
[55]. In GA, several individuals will first generate 
randomly a problem where this set of individuals is 
called the "initial population". Each individual is 
regarded as a chromosome. The chromosomes are 

combined, and mutations are made in them after 
evaluating the initial population's fitness to 
organize and reproduce better chromosomes 
utilizing genetic actuators, and eventually 
combining the current population with a new 
population emerging from a combination and 
mutation in chromosomes [56]. The method is a 
new regression technique with a high capability for 
the automatic evolution of programs. Koza (1995) 
invented genetic programming in the late 1980s 
after performing experiments on symbolic 
regression [57]. 

Ferreira (2001) has developed a new algorithm 
based on GA and genetic programming, namely 
gene expression programming (GEP) [58]. It is a 
new technique to create computer programs based 
on trained models and genetic programming. GEP 
is an evolutionary algorithm to defeat many 
constraints of GA and genetic programming (GP). 
GEP is a learning algorithm that particularly learns 
the relationship between variables in a set of data 
and creates models among these variables in more 
simplistic terms. One of its strengths is its high 
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speed and ability in complicated modeling; 
therefore, it can be considered the most robust 
learning algorithm [59]. GEP is a new and 
powerful EA algorithm with a high capability to 
find the function and discover non-linear 
regression models. The statistical coefficients 
gained by this method present high productivity 
and great results. The three methods GA, GP, and 
GEP belong to the same family, and are different 
in the individuals' nature. The individuals are 
symbolic strings of constant size in GA 
(chromosomes). The individuals in non-linear 
inputs have different sizes and shapes in GP (parse 
tree). In GEP, the individuals are still non-linear 
inputs with different sizes and shapes (expression 
tree, ET) but complex inputs are encoded as simple 
strings of constant size. This process starts with the 
production of a random generation of 
chromosomes and a certain number of individuals 
or programs as the initial population. The initial 
population of models is first created for 
mathematical modeling, and these chromosomes 
are then displayed as a decomposition tree, and the 
fitness of all models is estimated. Based on their 
value, the programs are selected based on their 
value to create new generations with new features 
by modifying and replicating. This process is 
repeated for many generations until a proper 
solution is determined [59]. 

2.2. TLBO algorithm  
Introduced by Rao et al. in 2011, the TLBO 

algorithm is among the newest developments in the 
field of intelligent optimization [60]. An 
outstanding feature of this algorithm is its 
independence of the parameters, as it works with 
the minimum possible number of parameters, 
making it a unique approach. Inspired by the 
teaching-learning process in a conventional 
classroom, this algorithm considers the population 
of solutions as a group of students in a class and 
takes the best member of the population as the 
teacher. The teacher then attempts to train the 
students to add to their knowledge, with the 
students further adding to their own knowledge 
upon training by communicating with one another. 
This algorithm goes through two stages, namely 
the teacher and the student stages [60]. 

3.1. Teacher stage 
At this stage, the teacher improves the students' 

information and knowledge through teaching and 
training. The following Equation describes this 
stage: 

푋 , = 푋 , + 푟(푋 − 푇  푀 ) (1) 

where: 
r: a random number in the [0, 1] interval; 
TF: teaching factor; 
Xi

best: the best member of the population at the ith 
iteration (selected as teacher); 
Mi: mean of the class at the ith iteration; 
Xold, i: a member that needs to be taught; 
Xnew, i: a taught member. 

 
Xnew, i would be accepted if it is somehow better 
than Xold, i [60]. 

3.2. Student stage 
At this stage, each student exchanges information 

with another randomly-selected student to enhance 
his/her own deal of knowledge. For the ith member 
of the population, a member is selected randomly. 
Then if 푓(푋 ) < 푓 푋 , the ith member is taught 
based on Equation 6, while Equation 7 is applied 
otherwise. This stage is performed for each and any 
member of the population. 

푋 , = 푋 , + 푟(푋 −  푋 ) (2) 

푋 , = 푋 , + 푟(푋 −  푋 ) (3) 

where: 
 

r: a random number in the [0, 1] interval; 
Xold, i: a member that needs to be taught; 
Xnew, i: a taught member. 

 
If Xnew, i is better than Xold, i, it replaces Xold, I, 
[60]. 

4. Case Study 
Angoran lead and zinc mine is located in the 

Zanjan state (Iran) 136 km SW of the Zanjan city. 
The mine is located 36 degrees and 66 minutes 
north and 48 degrees and 48 minutes east [61]. The 
Angoran concentrate plant is located near the city 
of Dandi. The oxide part is placed in the highest 
part of the deposit, the sulfur part is in the lowest 
part, and the mixed part (a mixture of oxide and 
sulfur) is located between these two parts. This 
mine is a part of the complex metamorphic NE of 
Takab in Iran's geological divisions, an important 
part of the Central region in Iran. This complex 
includes Gneiss, Amphibolite, and Greenschist. 
The Angoran mine schists have been introduced in 
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stratigraphy under Angoran schists' names 
including mica schist, chlorite schist, graphite 
schist, sediment schist [62]. As mentioned earlier, 
fly-rock is one of the unwanted environmental 
issues of blasting, which causes damage to the 
personnel, buildings, and equipment. Therefore, it 
is possible to transfer the personnel and equipment 

to safer locations to minimize damage by 
predicting the amount of fly-rock from each model. 
The required data was collected from 33 patterns to 
investigate, predict, and control this unwanted 
phenomenon. A view of the open-pit of Angoran 
mine in Zanjan is shown in Figure 2. 

 
Figure 2. General view of open-pit of Angoran mine in Zanjan. 

4.1. Data collection 
All the required parameters were collected from 

the mentioned mine to provide a mathematical 
equation for the prediction of the fly-rock distance 
using GEP and TLBO. The symbols were assigned 
to each one of the collected parameters to 
understand them better. Table 1 shows the input 

and output parameters along with the signs 
assigned to these parameters and their ranges. As 
observed, the amount of fly-rock varies from 102 
to 192 m. Considering that the range of fly-rock 
changing is high, hence, the possibility of damage 
caused by this phenomenon is also considered a 
high level.  

Table 1. Input and output parameters and their statistical information. 
Parameter Unit Symbol Range Median Standard deviation Parameter type 

Burden m B 3.80-4.80 4.2 0.15 

Input 

Average depth of holes m H 5-11 11 1.34 
Maximum power factor per delay kg Q 30-95 85 12.84 
Stemming m T 2.23-4.90 3.25 0.56 
Total amount of ANFO kg ANFO 1800-8145 3870 1755 
Number of holes - N 24-170 46 30.19 
Number of boosters - Bo 30-180 50 30.86 
Fly-rock m F 102-192 160 22.75 Output 

 
4.2. GEP modeling 

In this study, the gene expression algorithm 
software (GeneXproTools v5.0) was utilized to 
obtain a relationship between the input and output 
parameters. Originally, the GeneXproTools 
software was used to divide the data into the model 
data and validation data, each one containing 70% 
and 30% of the original dataset, respectively. It 

should be remarked that the validation data was 
selected randomly. 

The first GEP step is to choose the fit function. 
In this study, Equation (4) was considered as a 
fitness function: 
In the above equation: 
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푅푀푆퐸 =
1
푛

 (푃 −푂 )  (4) 

 
n: number of data; 
Pi: estimated data; 
Oi: real data. 
After identifying the fitness function, sets of 

functions were chosen to form chromosomes. The 

next step includes selecting the chromosomal 
structure, selecting the critical function, and 
determining the genetic operators' coefficients. The 
models can be created after the specified steps. In 
this research work, 42 GEP models were created to 
obtain the relationship between fly-rock and the 
input parameters. The number of iterations were 
fixed as 3000 to create these models. Table 2 shows 
the top five GEP model structures among all 
constructed models. In addition, Table 3 defines 
the functions applied in the GEP models to predict 
the fly-rock distance.  

Table 2. Structure of GEP models. 
Model 

number 
Number of 

mhromosomes 
Head 
size 

Number 
of genes 

Linking 
function 

Genetic 
operators Used functions R2 RMSE 

1 39 10 7 Multiplication Optimal 
evolution 

+, -, ×, ÷, Sqrt, Exp, 
Log, Abs, X2, X3, 
3Rt, 4Rt, Avg2 

0.74 9.38 

2 55 15 10 Multiplication Optimal 
evolution 

+, -, ×, ÷, Sqrt, Exp, 
Log, Abs, X2, X3, 
3Rt, 4Rt, Avg2 

0.79 8.51 

3 55 15 10 Multiplication Optimal 
evolution 

+, -, ×, ÷, Sqrt, Exp, 
Ln, Log, Abs, Inv, 
X2, X3, 3Rt, 4Rt, 
Avg2 

0.80 8.26 

4 54 16 8 Addition Optimal 
evolution 

+, -, ×, ÷, Sqrt, Exp, 
Ln, Abs, Inv, X2, 
3Rt, 4Rt 

0.83 7.77 

5 39 10 7 Addition Optimal 
evolution 

+, -, ×, ÷, Sqrt, Exp, 
Log, Abs, X2, X3, 
3Rt, 4Rt, Avg2 

0.89 5.99 

Table 3. GEP functions definition. 
Name Representation Definition 

Addition + (x+y) 
Subtraction - (x-y) 
Multiplication × (x×y) 
Division / (x/y) 
Square root Sqrt sqrt(x) 
Exponential Exp exp(x) 
Logarithm of base 10 Log log(x) 
Natural logarithm Ln ln(x) 
Absolute value Abs abs(x) 
Inverse Inv 1/x 
x to the power of 2 X2 x^2 
x to the power of 3 X3 x^3 
Cube root 3Rt x^(1/3) 
Quartic root 4Rt x^(1/4) 
Average of 2 inputs Avg2 avg(x,y) 

 
According to the statistical criteria (root mean 

square error, RMSE, coefficient of determination, 
R2), GEP model number 1 was selected as the best 
model. Figure 3 shows the final equation obtained 

using the GEP algorithm to estimate the amount of 
fly-rock as an expression tree. The equation of each 
tree is shown individually in Equations 5-11.  
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Sub-ET 1 = ABS(ABS(((H-10.482)-10.482))) (5) 

 
Sub-ET 2 = ABS ((ABS((Log((ANFO-(-8.185)))/Log(10))) + ((ABS(-2.782)^3) - (ABS(N) - Bo)))) (6) 

 
Sub-ET 3 = (Log(ABS(((EXP(((B^3) - Q)) - ((8.728^3)*(B ^ 3)))^3)))/Log(10)) (7) 
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Sub-ET 4 = ABS((Q - ((SQRT((H - 3.979)) - ((5.185 - H) - B))*T))) (8) 

 
Sub-ET 5 = (-1.258*(ABS((ABS(B))^(1/3)) - (((Bo-6.642)^(1/4)) - T))) (9) 

 
Sub-ET 6 = (Log(((((T*Bo) + (Bo^3))*(Bo*Bo)) - ((-1.408-ANFO)*(Bo*Q))))/Log(10)) (10) 
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Sub-ET 7 = (Q - ((T*(Log(((N + Q) - (Log(ANFO)/Log(10))))/Log(10)))*T)) (11) 

Figure 3. A statement tree for estimating amount of fly-rock. 

Considering that (+) has been used in this model 
as a connection function, the final equation can be 
obtained by adding the expression trees 1 to 7. The 
final mathematical equation obtained by GEP to 
estimate the amount of fly-rock is shown in 
Equation 12. 

F = Sub-ET1 + Sub-ET2 + Sub-ET3 + 
Sub-ET4 + Sub-ET5 + Sub-ET6 + Sub-
ET7 

(12) 

 

4.3. TLBO modeling 
Based on Equation 12, the mathematical 

relationship of fly-rock prediction was optimized 
using the teaching and learning-based optimization 
algorithm. In this algorithm, the RMSE function 
(Equation 4) was considered as the objective 
function. In the MATLAB 2017b software model, 
the number of populations was 100, and the 
number of repetitions was 1000 considered. 
Reduction of the RMSE error during the 
performance of the teaching and learning-based 
optimization algorithm is shown in Fig. 4.  

 
Figure 4. Amount of RMSE error during performance of optimization by TLBO. 
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Using the teaching and learning-based 
optimization algorithm, Equation (13) was 
obtained for PPV prediction . 

F = -1.60 – 4.34Sub-ET1 + 1.71Sub-ET2 + 
1.27Sub-ET3 + 5.38Sub-ET4 – 10.11Sub-
ET5 + 4.08Sub-ET6 – 2.58Sub-ET7 

(12) 

5. Discussion 
In this work, developing a new model to estimate 

the fly-rock rate was examined using the mean 
depth of holes, power factor on the delay, 

stemming, amount of ANFO, number of hopes, and 
number of boosters, with the help of GEP and 
TLBO algorithms. A mathematical equation was 
first created with the help of the GEP algorithm and 
using 70% of the data or training datasets to present 
the above model. The developed model was 
validated/tested using the remaining 30%. Next, 
the results obtained were compared by calculating 
R2, RMSE, and mean absolute error (MAE), and 
then the best model was selected to predict the 
amount of fly-rock. Then the obtained equations 
are optimized using the TLBO algorithm. Table 4 
shows the value of the statistical parameters. 

Table 4. Results from GEP and TLBO. 
Stage Parameter GEP TLBO 

Training 
RMSE 5.99 5.47 

R-square 0.89 0.91 
MAE 4.31 3.99 

Testing 
RMSE 13.30 9.53 

R-square 0.80 0.89 
MAE 10.15 6.20 

 
Figure 5 displays the relationship between the 

results of the predicted and measured fly-rock 
using the testing data samples. The presented 
results showed that the proposed GEP equation was 
well-developed in the training stage (R2 = 0.89), 
and due to that, a high level of accuracy was 
obtained in the model testing stage (R2 = 0.798). 

The model obtained from the GEP method was 
optimized using the TLBO method. 

 Additionally, Figure 5 illustrates a diagram of 
the actual amount of fly-rock with the predicted 
amount of fly-rock in testing the data samples 
using the GEP and TLBO algorithms. The results 
identified that the proposed model accurately 
estimates the fly-rock distance. According to 
Figure 6, the predicted fly-rock values are close to 
the actual values, which confirms that GEP and 
TLBO are powerful and applicable techniques for 
blasting environmental issues.  

  
Figure 5. Relationship between model testing data and target values. 
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Figure 6. Diagram of predicted fly-rock and actual value for testing data samples. 

6. Sensitivity Analysis 
The sensitivity analysis is called the study of the 

influence of input variables on the system output in 
a statistical model. It is useful to identify each input 
parameter's importance and influence on the output 
parameter (fly-rock). This allows us to recognize 
the most sensitive parameters hierarchically 
affecting fly-rock. Two types of sensitivity 
analyses, tornado and spider, were performed to 

meet this objective. The correlation ranges are 
between -1 and +1 in a tornado sensitivity analysis. 
Figure 7 shows the tornado sensitivity analysis, and 
Figure 8 shows the spider sensitivity analysis for 
identifying the most influential parameters on fly-
rock. These figures show that the number of 
boosters, the maximum power factor per delay, and 
stemming are the most efficient fly-rock 
parameters. Additionally, the burden and the 
number of holes have the least influence. 

 
Figure 7. Tornado sensitivity analysis. 

 
Figure 8. Spider sensitivity analysis. 
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7. Conclusions 
In this work, a new mathematical equation based 

on GEP and TLBO model was developed to 
estimate the fly-rock distance using the mean depth 
of holes, power factor on the delay, stemming, 
amount of ANFO, number of holes, and number of 
boosters. Several models were developed using a 
series of parametric studies, and the following 
results were obtained and highlighted: 

• Based on the results obtained, it can be concluded 
that the GEP and TLBO algorithm have a satisfying 
capacity to estimate the amount of fly-rock. 
Consequently, this method can be employed to 
estimate the number of other consequences of the 
explosion such as ground vibration, air blast, and 
rock fragmentation.  

• The results of this modeling can be utilized to 
determine the blast safety areas, which reduces the 
amount of damage caused by a fly-rock. 

• It is cost-effective due to the lower cost of 
modeling than the operational methods, and a good 
feasibility study can be obtained at the lowest 
budget. 

• According to the performed sensitivity analysis, the 
number of boosters, a maximum power factor per 
delay, and stemming are the most influential 
parameters on the fly-rock distance. Furthermore, 
the burden and the number of holes have the most 
negligible influence in this regard. 

• Due to the variability of each region's geological 
and mechanical characteristics, the results obtained 
from this work are associated with the Angoran 
mine. Nevertheless, the developed GEP and TLBO 
equation can also be generalized to other regions. 
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  چکیده:

ستفاده از روش الگوریتم بیان ژن، پیش ستان زنجان (ایران) با ا سنگ در معدن انگوران در ا ست. براي این منظور، دادهدر این مقاله، میزان پرتاب  شده ا اي هبینی 
ها، ارتقا دهنده انفجار، جمع آوري شــدند. ســپس، با اســتفاده از روش تعداد چالها، فاکتور پودرشــوندگی، میزان مواد منفجره، میانگین عمق چالورودي شــامل، 

خاب ماري، بهترین رابطه انتبینی فاصله پرتاب سنگ، ارائه شدند. در ادامه، با استفاده از پارامترهاي آهاي ریاضی براي پیشاي از رابطهالگوریتم بیان ژن، مجموعه
ضرایب تعیین، براي داده ستفاده از روش الگوریتم بهینه 798/0و  89/0هاي آموزش و آزمایش، بترتیب شد. میزان  سپس با ا سـازي یادگیري معلم، رابطه بودند. 

ض ست، که میزان  ست آمده حاکی از آن ا شد. نتایج بد ست آمده از الگوریتم بیان ژن، بهبود داده  ستفاده از روش الگوریتم یادگیري معلم بد ست آمده با ا رایب بد
صد و  91میزان، هاي آموزش و آزمایش، افزایش یافته و بترتیب بهبراي داده ساس نتایج می 89در سیدند. برا صد ر عنوان تواند بهتوان دریافت که این رابطه میدر

توان ســایر ملاحظات ورد اســتفاده قرار گیرد. همچنین، با اســتفاده از قابلیت این روش هوشــمند، میمعیار جدیدي در پیش بینی حاصــل از انفجار، با دقت بالا، م
  زیست محیطی ناشی از عملیات آتشکاري را نیز، مورد بررسی قرار داد.

  کاري، پرتاب سنگ، الگوریتم بیان ژن، الگوریتم بهبود دهنده یادگیري معلم.عملیات آتش کلمات کلیدي:

 

 

 

 

mailto:Behshad.JodeiriShokri@usq.edu.au

