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 Signal analysis approaches are a powerful and widely used tool in processing multi-
spectral satellite images for detection of alteration zones. The main goal of this work 

is application of the spectrum-area fractal methodology based on the Landsat 8 OLI 

satellite images’ data for separation alteration zones for iron oxides at the Tarom 

region (NW Iran). These alteration zones, Normalized Difference Vegetation Index 

(NDVI), and Normalized Difference Water Index (NWDI) are detected using the 

band-ratio and band combination methods. Then the calculated values are categorized 

by Spectral Angle Mapper (SAM), k-means, and S-A fractal model. Considering a 

positive correlation of iron oxides alterations along with magnetite mineralization as 

an index of mineralization at the studied region, the promising areas are classified by 

a decision-making model using the TOPSIS method with an acceptable accuracy for 

presenting in the exploration models. 
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1. Introduction 

Satellite imagery is a widely used tool, and also 

as an effective parameter for the mineral 

exploration operation. Satellite images such as 
Landsat sensor images provide an efficient tool to 

use different techniques and methods on the basis 

of combination of materials on the ground, and the 
light absorption or reflection frequency reveal the 

exploration target areas [1-13]. In this research 

work, in order to achieve acceptable results for 
presentation in an exploratory model in the 

subsequent studies, the Landsat OLI 8 satellite data 

related to the studied area, e.g. the Tarom region, is 

used. The exploratory model is planned for 
optimally identifying iron prospects. The major 

alteration zone is iron oxides/hydroxides. 

However, considering the local geological 
conditions, considering the existence of dominant 

intrusive masses in the region, to recognize the 

main mineralization in the region and also evidence 

of their relationship with iron mineralization ores, 
aluminous and propylitic ultrasonics are examined. 

An initial correction on the Landsat OLI 8 data is 

performed based on the band-ratio and band 
composition techniques. Next, the iron oxide 

alteration zones are detected and compared with 

surface evidence of magnetite mineralization. Then 
the output images for these detection techniques 

are classified by the spectrum-area technique, 

according to the intensity and weakness factors of 

the alterations, and the classification is presented to 
the expansion model. The ranking and 

classification of the promising areas are performed 

by the TOPSIS model. 

http://www.jme.shahroodut.ac.ir/
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2. Geological Situation/Setting of Tarom Zone 

and Materials 

2.1. Geological situation/setting of Tarom zone 

The Tarom district is part of the Zanjan province 
(NW Iran) that is a part of the Tarom-Hashtjin 

metallogenic belt by a NW-SE trend (Figure 1). 

The outcrops of this region are mostly Tertiary 
intrusive and volcanic rocks. However, the Tarom 

region is considered as a part of the Central Alborz 

zone in the geological structural division of Iran 
[14]. This mountain range is associated of layers as 

pyroclastic and volcanic rocks. Most rock types are 

of andesitic and rhyolite rocks, with low volumes 

of basaltic units. Eocene volcanic eruption has a 
variety of trachite-trachyandesite, and lapili tuff 

pyroclastic rocks. Furthermore, intrusives consist 

of Late Eocene-Oligocene quartz monzonite, 
monzonite, and granite. There is much metallic 

mineralization including Cu-Au, Fe, Pb-Zn, and 

Fe-P-REE mineralization [4 &15].  

In this area, Eocene volcanic masses were intruded 

by a 3–5 km wide and 10–15 km long NW-SE 

trending intrusions of Upper Eocene quartz-

monzonites to quartz-monzodiorites and 
monzogranites, as shown in Figure 1 [12]. The 

plutonic bodies are metaluminous I-type granitoid, 

and have calc-alkaline affinity[10]. There are iron 
oxide-apatite (IOA) ores including Sorkheh-Dizaj, 

Aliabad, Morvarid, Zaker, Golestan Abad, Zarnan, 

and Chorehnab. These deposits are hosted by 
quartz-monzonites, volcanic, and volcanoclastic 

rocks [15, 17&18]. Mineralogicaly, these IOA 

deposits are composed of magnetite, apatite, 

monazite, actinolite, clinopyroxene, pyrite, 
chalcopyrite, quartz, and calcite. One of the most 

important pieces of evidence of this type of 

mineralization is iron composites including Fe+3 , 
Fe+2 and magnetite forms of mineralization as an 

endmember to detect in the studied area. Also all 

other types of Fe mineralization that may have a 
relation to the IOA type of mineralization are 

considered to indicate the exploration factors. 
 

 

 

(a)  

Figure 1. A. Tarom 1:100000 sheet posision. B. Geological setting of Tarom 1:100000 sheet. C. Important Geological 

units. 
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(b) 

 
(c) 

Continuous of Figure 2. A. Tarom 1:100000 sheet posision. B. Geological setting of Tarom 1:100000 sheet. C. 

Important Geological units. 

2.2. Materials  
2.2.1. Multi-spectral image’s data 

A cloud-free level 1T entitled as terrain corrected 

of Landsat 8 satellite with OLI sensor with path and 

row 166 and 35, respectively, was derived via the 
U.S. Geological Survey Earth Resources 

Observation and Science Center [20].  

The Operational Land Imager (OLI) spectral 
bands prepare improvement from prior Landsat 

tools, with the additional two developed spectral 
bands consisting of 1) a deep blue visible band for 

water resources and coastal zone identification; 

and 2) an innovative infrared band (9) for the 

recognition of cirrus clouds. Two thermal bands as 
named TIRS detention data with a 100 m minimum 

resolution but they are recorded and delivered with 

the 30 m OLI data. The Landsat 8 file sizes are 
larger than the Landsat 7 data due to additional 

bands and improved 16-bit data product [20]. 
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Table 1. Processing and L1T terrain correction parameters. 

Processing Level 1T/Terrain correction 

Pixel size (m) 

 OLI Multispectral bands = 30 

 OLI panchromatic band = 15 

 TIRS = 100 that is resampled to 30 m to match the OLI multi-spectral bands 

Data characteristics 

 GeoTIFF data format 

 Cubic convolution (CC) resampling 

 North up (MAP) orientation 

 Universal transverse mercator (UTM) map projection (polar stereographic for antarctica) 

 World geodetic system (WGS) 84 datum 

 12 m circular error, 90% confidence global accuracy for OLI 

 41 m circular error, 90% confidence global accuracy for TIRS 

 16-bit pixel values 

 
The Landsat 8 OLI Level 1T data has a wide 

variety of corrections on its raw data using ordinary 

modification procedures for SWIR bands 

mentioned in Table 1. Thus the Orthorectification 
& Cross Track Illumination Corrections were done 

before doing any further processing for better and 

accurate results [21]. Subsequently, these bands 

were subjected to atmospheric correction using 
Fast Line of Sight Atmospheric Analysis Spectral 

Hypercube entitled as FLAASH [22]. An 

atmospheric improvement was done using the 
FLAASH algorithm on the Landsat 8 OLI L1 data 

related to the Tarom area (Figure 2). All data from 

Landsat 8 bands were layer stacked, and the central 
wavelength values were allocated to related bands 

for further analysis. 

2.2.2. Spectral features of iron minerals 

The alteration zones occur in a variety of 

geological features specifically volcano plutonic 

units with index mineral alterations as an 

exploration key. The iron alteration zones usually 
consist of limonite, hematite, goethite, and Jarosite. 

A rock’s reflectance spectrum is related to its 

mineralogical composition. 

 

 
Figure 3. An overview of Tarom region from The Landsat 8 OLI, atmospheric correction done using FLAASH 

algorithm (RGB:257). 
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Table 2. Band designations in different sensors 0. 

Band designations 
Landsat band wavelength comparisons 

All bands 30-meter resolution unless noted 

L8 OLI/TIRS L7 ETM+ L4-5 TM L4-5 MSS* L1-3 MSS* 

Coastal/Aerosol Band 1 0.43–0.45 -- -- -- -- -- -- -- -- 

Blue Band 2 0.45–0.51 Band 1 0.45–0.52 Band 1 0.45–0.52 -- -- -- -- 

Green Band 3 0.53–0.59 Band 2 0.52–0.60 Band 2 0.52–0.60 Band 1 0.5–0.6 * Band 4 0.5–0.6 * 

Panchromatic Band 8** 0.50–0.68 Band 8 ** 0.52–0.90 -- -- -- -- -- -- 

Red Band 4 0.64–0.67 Band 3 0.63–0.69 Band 3 0.63–0.69 Band 2 0.6–0.7 * Band 5 0.6–0.7 * 

Near-Infrared Band 5 0.85–0.88 Band 4 0.77–0.90 Band 4 0.76–0.90 Band 3 0.7–0.8 * Band 6 0.7–0.8 * 

Near-Infrared -- -- -- -- -- -- Band 4 0.8–1.1 * Band 7 0.8–1.1* 

Cirrus Band 9 1.36–1.38 -- -- -- -- * Acquired at 79 m, resampled to 60 m 
** 15-m (panchromatic) 
T1 = Thermal (acquired at 100 m, 
resampled to 30 m) 
T2 = Thermal (acquired at 120 m, 
resampled to 30 m) 

Shortwave Infrared-1 Band 6 1.57–1.65 Band 5 1.55–1.75 Band 5 1.55–1.75 

Shortwave Infrared-2 Band 7 2.11–2.29 Band 7 2.09–2.35 Band 7 2.08–2.35 

Thermal Band 10 T1 10.60–11.19 Band 6 T2 10.40–12.50 Band 6 T2 10.40–12.50 

Thermal Band 11 T1 11.50–12.51 -- -- -- -- 

Table 3. Bands of each Landsat satellite and descriptions of how each band is best used 0. 

Uses of Landsat bands 

Band name 
L8 

OLI/TIRS 
L7 

ETM+ 
L4-5 

TM 
L4-5 

MSS 
L1-3 

MSS 
Description of use 

Coastal/Aerosol Band 1 -- -- -- -- 
Coastal areas and shallow water observations; aerosol, dust, smoke 

detection studies. 

Blue (B) Band 2 Band 1 Band 1 -- -- 
Bathymetric mapping; soil/vegetation discrimination, forest type 

mapping, and identifying manmade features. 

Green (G) Band 3 Band 2 Band 2 Band 1 Band 4 Peak vegetation; plant vigor assessments. 

Red (R) Band 4 Band 3 Band 3 Band 2 Band 5 Vegetation type identification; soils and urban features. 

Near-Infrared (NIR) 
Band 5 Band 4 Band 4 Band 3 Band 6 Vegetation detection and analysis; shoreline mapping and 

biomass content. -- -- -- Band 4 Band 7 

Shortwave Infrared-1 

(SWIR-1) 
Band 6 Band 5 Band 5 -- -- 

Vegetation moisture content/drought analysis; burned and fire 

affected areas; detection of active fires. 

Shortwave Infrared-2 

(SWIR-2) 
Band 7 Band 7 Band 7 -- -- 

Additional detection of active fires (especially at night); plant 

moisture/drought analysis. 

Panchromatic (PAN) Band 8 Band 8 -- -- -- Sharpening multispectral imagery to higher resolution. 

Cirrus Band 9 -- -- -- -- Cirrus cloud detection. 

Thermal (T) 
Band 10 

Band 6 Band 6 
-- -- 

Ground temperature mapping and soil moisture estimations. 
Band 11 -- -- 

 

 
The spectra of the main materials found in this 

region were derived via the USGS spectral library, 

as depicted in Figure 3 [23]. The US Geological 
Survey's spectral library was utilized to study the 

magnetite mineral spectrum. In the first step, we re-

wrote the spectral library due to the Image Bands 

Center of Landsat 8. Then we extracted the 
magnetite spectrum (3B HS195 Magnetite) from it. 

Correspondingly, in the area of the image that 

ensured the existence of iron ores ae purity above 
50% was presented (location of mine dump and 

granulation plant), we selected a spectrum and 

analyzed it using the "spectral analysis" method, 
and it was almost 90% the same as the library 

spectrum. 

  
Figure 4. Reflectance spectra from USGS spectral 

library showing main minerals found on surface of 

Tarom region. 
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3. Methodology 

3.1. Band ratio 

This methodology is practical to suppress 

topographical difference and brightness variation 
of images according to the grain sizes’ variation 

[24]. However, this technique has been utilized for 

mapping geological features, e.g. alteration zones 
and rock types delineation based on differences 

between the spectral reflectance properties of rocks 

and altered [25]. Band ratio can reduce the effect of 
environmental artifacts. Many studies reveal 

representative band ratios that are used for 

enhancing different rocks [1, 6, 26 & 26]. This 

method includes dividing two bands on each other. 
The band with the most reflection is placed in the 

numerator and another band with the most 

reflection is placed in the denominator. The 
spectral characteristics of iron index altered 

minerals, usually are band3/band1 [24]. Van Der 

Meer [28] has suggested that iron-rich and other 
associated minerals with hydrothermal processes 

can be outlined by band4/band2 of Landsat 8 OLI 

image. According to the band frequency 

comparison in Table 2, the match bands are band 4 
instead of band 3 in TM and band 4 instead of band 

1. The results obtained by combining these two 

ratios are presented in Figure 4. Ali and Pour [29] 
have suggested a combination of band4/band2, 

bamd6/band7, and 5 as RGB for recognition of 

lithology, altered rocks, and vegetation. Several 

pairs of bands have offered delineation of various 
rock-mineral types such as: (Figure 4 a) 

band4/band2–iron oxide, Figure 4 b) 

band6/band5– ferrous mineral [3, 30]. The values 
of band4/band2 and band6/band5 globally show 

iron oxides in the studied zone. 

In this work, several methodologies were 
applied, and their results were correlated with 

geological specifics identified from the geological 

map of the Tarom sheet and other geological data. 

The iron oxides in the region are hematite, goethite, 
Jarosite, limonite, and magnetite. Furthermore, 

band4/band2 and band7/band5 and band7/band2 

and band7/band1 are used for extraction of iron 

oxides. Each ratio shows one feature of an 

alteration or mineralization. Therefore, the results 

should be visualized as mono-color images. The 
band 4/band2 globally shows the iron oxides in the 

studied region based on the reflectance of Iron 

mentioned in Tables 1, 2 (Figure 4), and the other 
ratio related to reflectance and absorption of 

magnetite needs to be RGB visualized in the band-

combination process. 

3.2. Band combination 

True color images are a result of a mixture of the 

three primary gray images. False-color images, 

mostly infra-red images, have certain advantages 
over true color images. The true color images are 

often utilized to recognize different geological 

units, while infra-red images are also highly 
recognizable [31]. The atmospheric attenuation 

such as fog, light scattering from clouds can be 

eliminated [32]. The major benefit of real color 
images is the accuracy for the detection of rock 

types. The band compositions such as RGB 

B7B6B4 or RGB B7B6B4 apply to separate rocks 

in alteration zones based on the color intensity 
changes. However, it is hard to extract the bond 

compounds that illuminate the target unit [33]. 

3.3. Visual interpretation (Band combination) 

The result derived via the approach is mono-

color, and needs to be colorized to have a better 

interpretation with sharpening more details. Based 

on this method, these components such as 
vegetation and alteration zones are indicated by a 

color spectrum. The essential color combination 

for showing the iron alteration is RGB equal to 
(4/2,1,1), which displays iron-oxide mineralization 

in yellow and light green (Figure 5 (B)), and the 

other ratios related to magnetite mineralization and 
alteration from band ratio process visualized using 

the color combination of RGB: (7/5,7/2,7/1; Figure 

5 A). 
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(a) (b) 

Figure 5. Ratio of band4/band2 and band6/band5 globally shows iron oxides in Tarom zone. A. band4/band2–

iron oxide. B. band6/band5 ferrous mineral band6/band5. 

 

 

(a) (b) 

 

 

(c) (d) 

Figure 6. A. Results of visual interpretation, RGB: (7/5,7/2,7/1); magnetite mineralization is yellow. B. Selected 

studied area of RGB: (7/5,7/2,7/1) C. Result of visualization interpretation, RGB: (4/2,1,1); D. Selected studied 

area of RGB: (4/2,1,1) classified using SAM in three classes. 
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3.4. Spectral Angle Mapper (SAM) 

This method was performed based on a similarity 

between the reference mineral spectrum and tested 

mineral spectrum for magnetite mineralization 
[34]. The similarity between the reference and 

pixel spectrums is evaluated via calculation of the 

angle between these spectra. The spectra are 
considered vectors in a multi-dimensional space. 

The angle between the reference reflectance and 

reflected spectrums of the pixel surface. It is 
represented as a measure of similarity. This method 

will be various from light effects, and will not be 

affected by the factors of sunlight because this 

angle among two vectors is independent from their 
length [34]. In an image achieved by the SAM 

method, each pixel shows the difference in 

reflection in the separation spectral pattern 

reflected from the surface with the reference 

pattern. This difference in spectral pattern is 

displayed angularly and on a radian scale, between 

0 and π/2 [35]. The output of SAM is a lighter pixel 
equivalent to a larger angle, indicating a greater 

difference between the studied and reference 

spectrums, and a darker pixel equivalent to a 
smaller angle and a symbol of greater spectrum 

similarity. However, the negative threshold for 

conversion was used to apply the display. 
Therefore, the output image will be an external 

image with the exposure of magnetite iron oxide 

(Figure 6). Then the calculated values of 

differences frequency angel between reference 
spectrum frequency of iron oxides and magnetite 

mineralization in the local area and processed 

remote sensing data, the values classified using 
Machin learning algorithm,  

 

 

 

(a) (b) 

 

 

(c) (d) 

Figure 7. A. Magnetite mineralization map in two classes using SAM, target spectrum angel value, and others. B. 

Selected studied area of SAM C. Result of visualization interpretation, RGB: (4/2,1,1); D. Selected studied area 

of RGB: (4/2,1,1) classified using SAM. 
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3.5. NDVI and NDWI 

NDWI is a remote sensing-based indicator 

sensitive to the change in the water content of 

leaves [36]. NDWI is computed using the near-
infrared (NIR) and the short-wave infrared (SWIR) 

reflectances. In Landsat 8 the NIR band is band 5 

(0.85-0.88 µm) and SWIR band is band 6 (1.57–
1.65 µm). 

The Normalized Difference Vegetation Index 

(NDVI) is a standard band-ratio calculation 
frequently used to analyze vegetation land cover 

using remote sensing data. NDVI is calculated 

from the ratio of the difference between NIR and 

the Red band, divided by the sum of them [37]. In 
Landsat 8, the NIR band is band 5 (0.85-0.88 µm) 

and the red band is band 4 (0.64-0.67 µm). 

3.6. K-mean 

This is one of the unsupervised classification 

algorithms, also called clusterization, that groups 

object into k groups based on their characteristics. 
This grouping was carried out by minimizing the 

summation of the distances between each object 

and the group or cluster centroid. The distance 

usually used is the quadratic or Euclidean distance.  
Let X = {xi}, i = 1, . . ., n be the set of n d-

dimensional points to be clustered at a set of K 

clusters, C = {𝑐𝑘, k = 1, . . .; K}. K-means algorithm 
finds a partition such that the squared error 

between the empirical mean of a cluster and points 

in this cluster is minimized. Let µk be the cluster’s 

mean as 𝑐𝑘. The squared error between µk and the 

cluster points 𝑐𝑘 is introduced as: 

𝐽(𝑐𝑘) =  ∑ ‖𝑥𝑖 − 𝜇𝑘‖2

𝑥𝑖∈𝑐𝑘

 (1) 

K-means aim to minimize the summation of 

squared error over all K clusters, 

𝐽(𝐶) = ∑ ∑ ‖𝑥𝑖 − 𝜇𝑘‖2

𝑥𝑖∈𝑐𝑘

𝑘

𝑘=1

 (2) 

Minimizing the objective function is identified to 
be an NP-hard problem (even for K = 2; [38]). Thus 

K-means can only converge to a local lowest value, 

even though a recent study has denoted with a large 
probability K-means could converge to the 

universal optimum while the clusters are properly 

divided [36]. K-means commences with a primary 
divider by K clusters and allocates patterns to 

clusters for reducing squared error. Since the 

squared error always decreases with an increase in 

the number of clusters K (with J(C) = 0 when K = 

n), this can be minimized only for a fixed number 

of clusters. These K-means major steps are as 

follows [44]:  
The first step is initialization. Once the group’s 

number, k has been chosen, k centroids are 

established in a data space, for instance, choosing 
them randomly. The second stage is one object of 

this data is assigned to its adjacent centroid, and the 

third step is centroids update and Computing new 
cluster centers. The centroid position for each 

group is updated taking as the new centroid the 

average situation of these objects belonging to said 

group. Repeat the second and third steps until the 
centroids do not move, or move below a threshold 

distance in each step.  

After computing the band ratio of band4/band2 
related to the iron alterations in the Tarom area and 

pixel values of Normalized Difference Vegetation 

Index (NDVI), the output images were classified 
using k-means algorithm at four clusters and 1 

iteration. The Iron oxide and NDVI classified maps 

using the k-means algorithm were presented in 

Figure 7. 

3.7. Multifractal S-A model  

The multifractal models are used in various 

applications of earth sciences to delineate the 
values in thresholds. Aramesh Asl 2015 identified 

alteration zones and major faults based on ETM+ 

multispectral data using multi-fractal modeling 

[29]. In other studies, Koohzadi et al. used 
FFT/IFFT in the signal processing and time series 

analysis for Li exploration performing the 

spectrum-area [45]. Afzal et al. 2013 applied a 
spectrum–area fractal model to identify 

geochemical anomalies based on soil data in 

Kahang porphyry-type Cu deposit [46]. 
In this study, the alteration classes were 

delineated based on the intensity of the Irion-oxide 

mineralization using the S-A method, and each 

class was presented as an eligible zone. For 
demonstrating the preceding method, the output of 

band combination and band ratio methods were 

taken from visualization process results. The S-A 
log-log plots represent variations of the alteration 

phases. S was calculated for distributions using 2D 

FFT by a MATLAB code. Logarithmic S and A 
values were created against each other (Figure 8). 

The log-log plots contain six populations for iron 

oxide alteration and magnetite mineralization. 

The components with relatively lower values of 
S and higher frequencies, give larger slopes (2/β > 

1) implying. Threshold values for iron oxide and 
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magnetite were determined from log-log S-A plots, 

(Figure 8).  

Based on these threshold values, the filters were 

designed for the separation of alteration classes 

populations. All output classified images are used 

as alternative layers in the decision-making system 

to calculate the final integrated map (Figure 9).  

 

 

 

(a) (b) 

 

 

(c) (d) 

Figure 8. A. Classified map of Iron oxide using k-means in full scene. B. Classified map of Iron oxide using k-

means in selected studied area in 4 classes. C. Classified map of NDVI using k-means in full scene. D. Classified 

map of NDVI using k-means in selected studied area in 4 classes. 
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(a) 

 

(b) 

Figure 8. (A) S-A log-log plot iron oxide alteration in Tarom zone. (B) S-A log-log plot of magnetite iron oxide 

alteration zones in Tarom zone. 
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(a) 

 
(b) 

Figure 9. Classified maps using S-A algorithm. 
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(c) 

 
(d) 

Continuous of Figure 9. Classified maps using S-A algorithm. 
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(e) 

 
(f) 

Continuous of Figure 9. Classified maps using S-A algorithm. 

3.8. MADM/MCDM 

Multi-Attribute Decision Making (MADM) is a 
common task in human activities. It consists of 

finding the most preferred alternative from a given 

set. The layout strategy invariably has an important 

effect on the performance of a manufacturing or 
service industry system, and it has been an 

attractive research section now [47]. The previous 

method, e.g. Spiral [48] and Multiple, can 

professionally create layout designs’ alternatives 

but these objectives are often oversimplified. 
Consequently, numerous decision-making 

processes in real data occur in different group 

settings with incomplete information. Salo in 1995 

established a collaborating technique to collect the 
group members’ preferences in the context of an 

improving value representation [49]. Kim in 1999 

presented a cooperating process for multiple 
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characteristic collection decision-making with 

insufficient information and described some 

theoretical models to establish a group’s pair-wise 

governance relationships by utility ranges with a 
distinguishable linear programming procedure 

[50]. Additional algorithmic approaches could be 

modeled the layout design problem as a mixed-
integer programming formulation [51, 52]. Method 

for instruction performance by similarity to ideal 

solution (TOPSIS) was initially introduced by 
Hwang and Yoon in 1981 [53], and Lai et al. in 

1994 [54], is a multi-attribute or multi-criteria 

decision-making [55, 56] to recognize explanations 

from a finite’s alternatives set based on the 
minimum and maximum distances from an ideal 

point and a negative ideal point, respectively. Shih 

in 2008 has extracted incremental investigation to 
overcome ratio scales drawbacks in different 

MCDM approaches [57]. Shih et al. in 2007 have 

identified the TOPSIS advantages that represent 
the basis of expert choice; the best and worst 

alternatives accounts; the efficiency measurements 

of all alternatives on features [58]. Nowadays, 

TOPSIS has been successfully used in different 
sciences [59-61]. However, uncertain data may not 

be precisely determined since human judgments 

are often vague under insufficient information. 
Therefore, fuzzy values or interval values are 

usually collected in the measurement of the relative 

importance of criteria and the performance of each 

alternative on the TOPSIS model [62]. Grobelny in 
1987 has used a fuzzy approach to solve layout 

problems by a fuzzy method to describe the 

closeness association among sections and optimum 
design in the final stage [63]. A layout design 

problem using the MADM procedures is 

preferable. Multiple objective decision-making 
(MODM) as a programming technique includes a 

conflicting goal’s set that cannot be accomplished 

at the same time [64, 65].  

3.9. TOPSIS 

The method of “Technique for Order of 

Preference by Similarity to Ideal Solution” was 

proposed by Huang and Yoon in 1981, which was 
used by various researchers and users. In this 

method, the alternatives are ranked on the basis of 

similarity to the ideal answer [53]. There are two 
concepts of ideal solution and similarities to this. 

An ideal solution, as its name implies, is the 

solution that is the best in every way, which 

generally does not exist in practice, and it tries to 
get closer to it. For measurement of the similarity 

of an alternative to an ideal and counter-ideal 

solution, the difference between the alternative and 

ideal and also the counter-ideal solution is 

measured. The alternatives are then evaluated and 

ranked based on the distance from the counter-ideal 
solution to the total distance from the ideal and 

counter-ideal solution. The TOPSIS technique has 

a strong mathematical backing, and like many 
scientific methods, the knowledge and observance 

of assumptions, the scope and conditions of 

validity of laws and the correctness of proposed 
formulas, and the accuracy of these results are very 

important. The TOPSIS process is a method with 

several very strong compensatory 

criteria/attributes for prioritizing alternatives by 
simulating the ideal answer. The steps to do this are 

as follows:  

The results via the band composition, color 
combination, SAM, and SA methods were 

considered as selection alternatives that are input to 

the TOPSIS model decision matrix. 
Correspondingly, the output of bandwidth methods 

and bandwidth ratios optimized by the area power 

spectrum method were considered as two input 

alternatives SA1 and SA2 as input in the decision 
model. In order to minimize expert involvement in 

weighting and decision-making, and to minimize 

imposed calculations from other hierarchical 
methods, the TOPSIS method, which is according 

to the variation from the ideal and anti-ideal 

answers, was used. Bachelor-approved criteria 

include positive criteria for proximity to the target 
range of reference minerals (from the USGS 

Spectral Library), proximity to the proven 

terrestrial range, and negative criteria such as 
vegetation and agricultural land (NDVI), water, 

and moisture (Normalized Difference Water Index; 

NWDI), were abnormal effects and ways. 

Step one: 

Given the number of alternatives, criteria and the 

calculation of all alternatives for different criteria 

form a decision matrix. This decision matrix is 
formed as follows: 

𝑿 =

[
 
 
 
 
𝒙𝟏𝟏 … 𝒙𝟏𝒏

. … .

. … .

. … .
𝒙𝒎𝟏 … 𝒙𝒎𝒏]

 
 
 
 

 (4) 0 

xij is the function of the i (i = 1, 2, …, 6) related 

to the criteria j (j = 1, 2, …, 5) 

In this step, based on the available data, the final 
outputs of all methods were prepared by the expert 

as decision alternatives, that choice the best pixel 
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value related to the mineralization at that point 

(PIXEL).   

In this research work, the alternatives are the 

output classes of SA1, …, SA5, and k-means 
algorithm for ban4/band2 ratio. The NWDI, NDVI 

classified using k-means and Urban factors are 

negative criteria for alternatives, And closeness to 
Reference, spectral particulars of magnetite, 

closeness to reference spectral features of iron 

oxide are positive criteria for alternatives. 

Step two: 

The normalized decision matrix is calculated in 

this phase. Some normalized methods for TOPSIS 

are summarized by Shih et al. in 2008 [57]. To 
simplify, a vector normalization method is 

introduced whose normalized value 𝒓𝒊𝒋 is 

calculated as: 

𝒓𝒊𝒋 =
𝒙𝒊𝒋

√∑ 𝒙𝒊𝒋
𝟐𝒎

𝒊=𝟏

 
(5) [57 & 66] 

𝒓𝒊𝒋 is the normalized members of the decision 

matrix. 

Step three: 

In this step, the weighted normalized decision 

matrix is estimated. In order to importance of the 
attributes coefficient, the attributes weighting 

vector defines as follows:  

𝑾 = [𝒘𝟏 𝒘𝟐 … 𝒘𝒏] (6) [66] 

At this stage, the criteria were given expert 

weight due to the expert opinion, field studies, and 

experiences of field experts. 

Step four: 

Calculating the weighted normalized decision 

matrix was carried out in this step. This matrix is 

given by multiplying this matrix by the attributes 
weighting vector: 

𝒗𝒊𝒋 = 𝒘𝒋   

𝒋 = 𝟏,… , 𝒏    (7) [66] 

𝒊 = 𝟏,… ,𝒎  

Step five:  

Determine A+as positive ideal and A−  negative 

ideal solution as below: 

𝑨+ = {𝒗𝟏
+, 𝒗𝟐

+, … , 𝒗𝒋
+, … , 𝒗𝒏

+} (8) 

𝑨− = {𝒗𝟏
−, 𝒗𝟐

−, … , 𝒗𝒋
−, … , 𝒗𝒏

−} (9) [66] 

where vj
+ is the best value of attribute j among all 

alternatives and vj
− is the worst value of j among 

all the alternatives. The alternatives in A+ and A− 

represent completely better and completely worse 

alternatives, respectively. The result for 
measurements of the ideal and negative ideal 

solutions are indicated in Table 4. 

Table 4. Result for ideal and negative ideal solution for criteria/attributes. 

Solution 
Urban 

factor 

Closeness to reference spectral 

characteristics of magnetite 

Closeness to reference spectral 

characteristics of hematite 

NDWI and 

NDVI 

Ideal 0.173 0.080 0.160 0.079 

Negative ideal 0.087 0.0126 0.112 0.133 

 
Step six:  

In this step, for each alternative, the distances 

from the ideal and the negative ideal solutions are 

calculated from the following equations, 
respectively: index j represents the desired 

criterion, and index I represent the desired 

alternative (Table 5): 

𝑺𝒊
+ = √∑(𝑽𝒊𝒋 − 𝑽𝒋

+)
𝟐

𝒏

𝒋=𝟏

 (10) [66] 0 

𝑺𝒊
− = √∑(𝑽𝒊𝒋 − 𝑽𝒋

−)
𝟐

𝒏

𝒋=𝟏

 (11) [66] 
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Table 5. Each alternative distances from negative ideal and ideal solutions. 

Alternative’s index 1 2 3 4 5 6 

Distance from ideal solution 0.070 0.052 0.050 0.061 0.076 0.098 

Distance from negative ideal solution 0.070 0.064 0.066 0.082 0.082 0.098 

 
Step seven:  

Finally, the relative closeness of alternatives to 

the ideal solution are calculated. The relative 

closeness of any alternative Ai regarding A+ is 

represented in the following form: 

𝑪𝒊
+ =

𝑺𝒊
−

𝑺𝒊
− + 𝑺𝒊

+ (12) [66] 

The similarity index varies between 0 and 1. If 

the closer alternative is to the ideal, then the 
similarity index value will be to one (Table 6). 

Table 6. Value of similarity for alternatives. 

Alternative pixel index 1 2 3 4 5 6 

Similarity index or weighted 0.579 0.610 0.622 0.522 0.458 0.421 

Step eight:  

Rank preference order is carried out in this step. 

Choose an alternative with maximum 𝑪𝒊
+ or rank 

alternatives based on 𝑪𝒊
+in descending order. 

4. Results and Discussion 

4.1. Integration 

Mapping the integration of the image results of 
each process method needs to be standardized or 

stacked to be utilized as an alternative in the 

decision TOPSIS model. Pixel values of each 
image should be paired with other image pixels. In 

this work, the pixels without pair values 

participated in zones made by fair classification 
methods. The S-A method classified the processed 

images and made input alternatives for TOPSIS, 

although the decision calculations can reduce by 

new classes as new zones. The standard values are 
used for other pixels. The processing algorithm 

was performed (Figure 10). 

4.2. Validation 

The integrated map from all processed images 
and results show the target area of iron alterations. 

The final promising area map is validated by the 

mines/deposits and index layer shown in Figure 11. 
The final potential map shows a large correlation 

between iron oxide mineralization and existing 

indices and mines like magnetite mineralization in 
this region (Figure 11). However, the final 

potential map shows a large relationship between 

iron oxide and the target geological units based on 

the 1:100,000 geological map of Tarom. 
Alternations with more intensity are mostly located 

on the southern part of Tarom mountain range, and 

related to the Quartz-monzodiorite as qm unit 
(Figure 12) around Sorkheh Dizadj, Aliabad, 

Morvarid mines and around Zaker, Golestanabad 

and Zarnan deposits. 
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Figure 9. Flowchart of processing algorithm in this work. 

 
Figure 10. Integrated target map of iron oxide alteration in the Tarom studied area overlayed by mines/deposits 

and Index. 
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Figure 11. The integrated target map of iron oxide alteration in studied area overlayed by target lithologies from 

1:100000 geological map of Tarom (qm: Quartz-monzodiorite). 

5. Conclusions 

The iron alteration zones were identified on the 

Landsat8 OLI images by the methods of bond ratio, 

color combination, SAM, and S-A fractal model. 
The usage algorithm as a hybrid of the S-A fractal 

model and TOPSIS, which was applied by 

detecting alterations and increasing the accuracy of 
determining alteration zones by combining several 

criteria of different methods, could be applied to 

identify iron-magnetite deposits, which usually 

contain secondary oxide minerals, and iron 
hydroxides are at the level of indicator alterations, 

be very useful. The alteration zones can also be 

utilized as labeling classes in exploratory iron-
apatite and magnetite-apatite exploration models 

on a semi-detailed scaling scale. 

The results obtained by pixel value were closed 
either using the raw value of pixels (pixel-based 

method), then reclass the final results or reclass 

each alternative pixel for TOPSIS decision and 

apply the weight to final values (zone-based 
method). The pixel-based method shows a more 

accuracy in the final results but the zone-based 

method reduced the calculation processes. A 
combination of these methods is recommended 

according to the classes’ variations. 
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 چکیده:

تار . هدف اصلی این نوشهای چندطیفی حاصل از دورسنجی هستندگسترده در تحلیل دادههای مبتنی بر آنالیز سیگنال از ابزارهای نیرومند و دارای استفاده روش

ستفاده از روش فرکتالی طیف توانجدایش محدوده سید آهن با ا سانی اک ساحت بر پایه داده-های دگر ست م طارم  ییدر زون فلززا OLI 8های گرفته از ماهواره لند

 های نسبت وهای دگرسانی بصورت کلی براساس تغییرات شاخص نرمال شده آب و پوشش گیاهی و با استفاده از روشهباشد. این محدودمیواقع در استان زنجان 

ندی قرار بمساحت مورد دسته-های کا و مدلسازی فرکتالی طیف توانهای سنجش زاویه طیفی، میانگیناند. سپس با استفاده از روشترکیب باندی بارزسازی شده

های آهن موجود در منطقه بخصوص کانسارهای مگنتیتی بوده و درنهایت مناطق امیدبخش زاییهای بدست آمده دارای همبستگی مثبت با کانهاند. محدودهگرفته

 اند.بندی قرار گرفتهگیری تاپسیس مورد ردهحاصله با استفاده از سیستم تصمیم

 ، طارم.آهن دیاکس یدگرسان، تاپسیس، OLI 8مساحت، لندست -روش فرکتالی طیف توان کلمات کلیدی:

 

 

 

 


