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 In this work, an effective methodology is introduced for simulation of the crack 
propagation in linear poroelastic media. The presence of pores and saturated cracks 
that can be accompanied by fluid flow makes the use of poroelastic media inevitable. 
In this work, involvement of the time parameter in crack propagation is of particular 
importance. The order of doing the work is such that first, derives the fundamental 
solutions of a poroelastic higher order displacement discontinuity method 
(PHODDM). Then will be provided a numerical formulation and implementation for 
PHODDM in a code named linear element poroelastic DDM (LEP-DDM). Analytical 
solutions use different times to check the correctness and validity of the proposed 
solution and the newly developed code. The numerical results show a good agreement 
and coordination with the analytical results in time zero and 5000 seconds. The code 
is able to pursue crack-propagation in time and space. This topic is introduced and 
shown in an example. 
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1. Introduction 
Among the numerical methods, the boundary 

element method (BEM) is particularly used in the 
field of linear elastic fracture mechanics (LEFM). 
This method is devided into two categories of 
direct and indirect  

. The direct method can directly obtain the 
unknown boundary parameters (stresses and 
displacements) based on the specified boundary 
conditions. Thus it is known as a direct integration 
technique. In the indirect method, the solution is 
first performed for the singularities that satisfy the 
specified boundary conditions. The unknown 
parameters are then obtained indirectly through the 
standard numerical techniques in terms of these 
singular solutions. In the boundary element-based 
methods, since the governing differential equations 
are solved exactly in the domain of the problem, 

they lead to a high accuracy in the solutions. BEM 
performs discretization only at the boundaries, thus 
reducing the dimensionality of the problem. This 
manner results in a smaller system of equations that 
are very cost-effective, as it significantly reduces 
the data required for analysis, and also eliminates 
the need for re-meshing using BEM, and crack 
growth may be modeled by adding a new element 
to the previous mesh. One of the common forms 
based on the boundary element is the dual 
boundary element method (DBEM), which 
consists of two combinations of independent 
boundary integral equations. Numerous 
investigations have been carried out concerning the 
growth of cracks based on DBEM in the 2D [2-4] 
and 3D [5-7] conditions. 
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Discontinuity Discontinuity Method (DDM) is 
one of the other methods based on boundary 
element that is widely used in solving linear elastic 
fracture mechanics (LFEM) problems. First, 
Crouch and Starfield defined the basic principles of 
this technique [8, 9]. In this method, stresses and 
displacements at a point are calculated according to 
the discontinuity of normal and shear 
displacement. Many scientific research works have 
presented how to use constant ordinary elements in 
DDM [10-12]. Indeed, the main advantage of using 
these elements is their simplicity; however, they 
cannot correctly predict the stresses and 
displacements in the field points adjacent to the 
boundaries. Moreover,  the singularity variations 
1/r0.5 and r0.5 in the stresses and displacement 
equations cause the calculation  precision at the 
vicinity of the crack tip severely decrease [13]. 

In this regard, linear [14, 15], quadratic [16 & 
17], and cubic higher-order [18 & 19] elements 
have been utilized to conquer these problems and 
obtain more correct values of stresses and 
displacements along boundaries. Based on the 
strain gradient stretching theory, Exadaktylos et al. 
and also a new constant displacement discontinuity 
element have been stated. This new method 
substantially improves the accuracy of DDM 
without using higher-order and crack tip elements 
[20-22]. The increase in accuracy is achieved by 
high-order elements. However, this does not work 
well for crack tip singularities. Therefore, crack tip 
elements were introduced to remove the obstacles 
[23]. To significantly increase the accuracy of 
analysis in crack problems, ordinary and crack tip 
higher-order elements are used simultaneously. 
Yan et al. have introduced constant crack tip 
elements to utilize in DDM [24]; they developed 
the procedure of the fatigue crack growth in the 
structures having multiple cracks [25]. Li and co-
workers have used a method composed with the 
constant element displacement discontinuity 
method and meshless procedures to grow the crack 
in the static and cyclic loading conditions [26]. 

Cracks are the main flow channels in sub-surface 
rocks. It is important to state that the issues of crack 
propagation and fracture in artificial environments 
such as concrete and glass can be investigated and 
analyzed [27, 28]. Variation in the fluid pressure 
induces matrix deformation and stress variation; 
matrix deformation, in turn, induces fluid volume 
variation and fluid pressure variation. Possible 
fracture propagation results in the variation of pore 
pressure and stress in the whole field. The variation 
in pore pressure and stress at any point affect the 
fracture and induce fracture deformation. This 

makes rocks exhibit a strong coupling of 
mechanical and hydrological behavior. To study 
this coupled hydro-mechanical behavior, the 
poroelasticity theory has been developed. 
Problems such as hydraulic fracturing [29-33], in-
situ stress measurement [34-36], and geo-thermal 
[37-40] occurs in sub-surface rocks that are mostly 
filled with discontinuities (such as fissures and 
faults) and pores. These discontinuities and pores 
can be saturated with water, air, oil, etc. These 
fluids can greatly affect the stress (i.e. effective 
stresses due to pore pressure effect) and 
displacement fields in a rock mass. Also pore fluid 
flow occurs due to the pore pressure gradient in the 
rock. The flow can also be in response to changes 
in macroscopic stresses caused by natural factors 
such as tectonic forces and artificial factors such as 
drilling wells [41]. In order to accurately model 
these coupled interactions, all of these couplings 
must be considered. DDM has been coupled with 
other numerical methods such as FDM and FEM to 
inquire poroelastic effects of fracture [42-44]. For 
instance, Ji used DDM to simulate crack-
propagation in porous media, and coupled it with 
FDM to simulate fluid interaction. Yin et al. 
coupled DDM and FEM to propound poroelastic 
effects in reservoirs. Bobet and Yu have presented 
a closed form solution of the crack-tip stress field 
[45]. They showed that the stresses created during 
the drying of the medium were higher than the 
stresses around the crack tip under pressure in a 
saturated medium. During the last decades, many 
studies have focused on providing a mathematical 
formulation or analytical solution for the hydraulic 
fracture problem in a porous rock [46-54]. 

This study discusses the parameters of crack-
propagation in a porous medium. Then the required 
fundamental solutions for the poroelastic HODDM 
are derived. After that, numerical formulation and 
implementation of the HODDM in a poroelastic 
rock are introduced. After verifying the linear 
element poroelastic displacement discontinuity 
method code named LEP-DDM, the crack 
propagation in a porous medium is shown with an 
example. 

2. Definition of higher order displacement 
discontinuity  

A displacement discontinuity element of length 
2a along the x-axis is depicted in Figure 1 (a), 
which is characterized by a general displacement 
discontinuity distribution uξ.  Considering the ux 
and  uy components of the general displacement 
discontinuity uξ to be constant and equal to Dx 
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and Dy, respectively, in the interval (-a, +a) as 
depicted in Figure 1 (b), two displacement 
discontinuity element surfaces can be 
distinguished, one on the positive side of y and 
another one on the negative side y. 

The displacement endures a constant change in 
value when passing from one side of the 
displacement discontinuity element to the other 
side which may be defined as: 

Dx=ux(x,0-)-ux(x,0+) 
(1) 

Dy=uy(x,0-)-uy(x,0+) 

The positive sign convention of Dx and Dy is 
depicted in Figure 1 (b), and demonstrates that 
when the two surfaces of the displacement 
discontinuity overlap, Dy is positive, which causes 
a physically impossible situation. This conceptual 
difficulty is overcome by considering that the 
element has a finite thickness in its undeformed 
state, which is small compared to its length but 
bigger than Dy [9]. The linear element displacement 
discontinuity formulation is based on the analytical 
integration of linear shape functions, straight-line 
displacement discontinuity elements.  

 
Figure 1. a) Distribution of uξ for gemeral displacement discontinuity element. b) Constant element. 

Figure 2.(a) depicts the linear displacement 
discontinuity distribution, which may be written in 
a general form as: 

Di(ξ) = N1(ξ)(Di)1 + N2(ξ)(Di)2 (2) i = x,y 

where (퐷 )  and (퐷 )  are the linear 
displacement discontinuities, and 

N1(ξ) = -(ξ- a2)/( a1+ a2) 
(3) 

N2(ξ)=(ξ-a1)/(a1+a2) 

are their linear collocation shape functions. It 
should be attentioned that a linear element has 2 

nodes, which are the centers of the two elements 
within the path element [55]. 

3. SIF calculation and crack propagation 
parameters for poroelastic media 

The Mode I and Mode II stress intensity factors 
KI and KII can be easily presumabled based on the 
linear elastic fracture mechanics (LEFM) 
principles [56, 57] . A crack tip element of length 
2a is considered after the SIFs with respect to the 
normal and shear displacement discontinuity 
(assuming plane strain condition) can be specified 
[55] as:  

 
Figure 2. Location of nodes for higher order displacement discontinuity elements. 
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퐾 =
퐺

4(1 − 휈)
2휋
푎 퐷 (푎)    

(4) 

퐾 =
퐺

4(1− 휈)
2휋
푎
퐷 (푎) 

where 퐺 is the shear modulus, and ν is the 
Poisson’s ratio of the brittle material. In 
poroelasticity, the discontinuities are time-
dependent, so in this analysis, intensity factors 
(SIFs) Mode I and II are also time-dependent. KI 
and KII can be obtained by similar equations used 
in LEFM for DDM. 

퐾 (푡) =
퐺

4(1− 휈)
2휋
푎
퐷 (푥,푦, 푡) 

(4) 

퐾 (푡) =
퐺

4(1− 휈)
2휋
푎
퐷 (푥,푦, 푡) 

The initial condition of crack-propagation (for 
critical crack propagation) that is reaching a critical 
value (fracture toughness) can be satisfied by 
changing SIFs with time. The time dependence of 
SIFs indicates that crack propagation must have a 
certain rate in porous media, a quantity that is not 
present in elastic analysis. Therefore, by 
introducing time into the analysis, it should be 
considered that cracks take some time to grow to a 
certain length; therefore, a speed should be 
assigned to the crack propagation. In the proposed 
model, a time step Δt is considered. Crack-
propagation in a porous medium requires the use of 
critical and sub-critical crack-propagation 
theories. Critical crack propagation takes place 
when Mode I SIF KI and fracture toughness KIC are 
equal. This propagation is inherently unstable, as 
once it starts, the stress value decreases to continue  

[58, 59]. The limiting speed or the maximum 
speed of critical crack propagation is equal to the 
speed of the Rayleigh wave [60]. Lithology, 
porosity, fluid content and temperature and stress 
field in rock formations change this speed. Sub-
critical crack growth is often observed in rocks and 
minerals that experience prolonged or cyclic 
loading or high temperature. Cracks can propagate 
over a long period of time when KI is less than KIC 

[44]. This theory is implemented in this research 
work.  

The power-law relationship between crack sub-
critical velocity and SIF is written in the form of: 

푣 = 푣 푘
푘  (6) 

where Vmax is a constant, and n is a sub-critical 
index  

[44]. The speed may be chosen based on the 
nature of the crack-propagation being used (critical 
or subcritical propagation). 

Maximum tangential stress criterion is used for 
evaluation of rack propagation and initiation angle 
[61]. In each time increment Δt, crack elements 
will grow a length of: 

∆퐿 = 푉 × ∆푡 (7) 

When ΔL reaches a pre-determined growth 
increment length, a boundary element is added to 
that crack element to indicate a growth event. 

4. Poroelastic 

The theory of linear, isotropic poroelasticity was 
proposed by Biot for modeling the response of 
fluid-saturated porous solids [62], and was further 
extended by others [63, 64]. According to the 
original formula of Biot, the basic dynamic 
parameters of total stress σi j and pore pressure p 
along with their corresponding quantities, solid 
strain ei j = ( ui,j + uj,i)/2 and change of fluid volume 
per unit reference ζ are considered here. A fixed set 
of parameters for linear isotropic theory are shear 
modulus G, drained and undrained Poisson ratios, 
which are, respectively, ν = (3K − 2G)/2 (3K + G), 
νu = (3Ku − 2G)/2 (3Ku + G) (drained and 
undrained bulk moduli K and Ku), Skempton’s 
pore pressure coefficient S (ratio of induced pore 
pressure to variation of confined pressure in 
undrained conditions), and permeability 
coefficient κ = k/μ (where k is intrinsic 
permeability and μ fluid dynamic viscosity) [62]. 
The governing equations of linear isotropic 
poroelasticity consist of the following [62]: 
• Constitutive equations: 

휎 = 2퐺푒 +
2퐺휈

1 − 2휈 훿 푒 − 훼훿 푝 (8) 

푝 = −
2퐺푆(1 + 휈 )
3(1− 2휈 ) 푒 +

2퐺푆 (1− 2휈)(1 + 휈 )
9(휈 − 휈)(1− 2휈 ) 휁 (9) 

• Equilibrium equations 

휎 , = −퐹  (10) 

• Darcy’s law 

푞 = −휅 푝, − 푓  (11) 

• Continuity equation 
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휕휁
휕푡 + 푞 , = 훾 (12) 

where, in the above equations, e = eii is the 
volumetric strain, Fi = ρgi bulk body force (solid 
and fluid), gi gravity component in i direction, n 
porosity, qi specific discharge, ζ variation of fluid 
content, ρ = (1−n)ρs + ϕρf  bulk density, ρs and ρf 
solid and fluid part densities respectively, fi  = ρf gi 
fluid body force, γ fluid injection rate from the fluid 
source, and α is the Biot coefficient of effective 
stress, defined as: 

훼 =
3(휈 − 휈)

푆(1− 2휈)(1 + 휈 ) (13) 

The foregoing can be combined to yield a set of 
field equations in terms of displacement and fluid 
content change. Combining Equations (8) to (10) 
yields an elasticity equation with a fluid coupling 
term: 

퐺훻 푢 +
퐺

1− 2휈 푒, −
2퐺푆(1 + 휈 )
3(1 − 2휈 ) 휁, = −퐹  (14) 

Combining Equations (9), (11), and (12), and 
also using Eq (14), produces the following 
diffusion equation: 

휕휁
휕푡

− 푐훻 휁 =
푘푆(1 + 휈 )
3(1− 휈 ) 퐹 , − 푘푓 , + 훾 (15) 

where 

퐶 =
2푘푆2퐺(1 − 휈)(1 + 휈푢)2

9(1 − 휈푢)(휈푢 − 휈)  (16) 

is a generalized consolidation coefficient [64]. 
The above equations can be used to obtain the 
required solution for HODDM in porous rock. 

5. Fundamental solutions of higher order 
diplacement discontinuity method in poroelastic 
medium 

Detournay, Cheng, and Abdollahipour have 
presented the poroelastic solution of point plane 
strain displacement discontinuity based on 
dislocation theory [65, 66] (see Appendix A). In 
Appendix A, the first displacement subscript 
indicates the displacement component, while the 
second subscript (and the last one in all parameters) 
is reserved for dislocation mode (1 for sliding 
mode, 2 for normal mode). 

Poroeastic influence functions for HODDM can 
be obtained by distributing this solution over an 
element domain ᴦλ located on the local s-axis 
(Figure 3). For example, using the following 
integrals, it is possible to obtain the value of the 
stress in the local n direction caused by the 
discontinuity of the normal displacement. 

 

 
Figure 3. A higher order element in local coordinates. 
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휎 = (퐷 ) 푁 (휁)(휎 )  푑휁 + (퐷 ) 푁 (휁)(휎 )  푑휁 (17) 

∆ 휎 = (퐷 ) 푁 (휁)∆(휎 ) 푑휁 + (퐷 ) 푁 (휁)∆(휎 )푑휁 (18) 

 
(퐷 ) 푁 (휁)(휎 )  ,(퐷 ) 푁 (휁)(휎 )  , 

(퐷 ) 푁 (휁)∆(휎 ), and(퐷 ) 푁 (휁)∆(휎 ) are 
the fundamental solutions in Equations (A3) and 
(A4) of Apendix A and k = i = j = 2. For the time-
independent and time-dependent influence 
functions, the complete set of integrals and their 
solutions is given in Appendix B.  

The fundamental solution sum of all elemental 
discontinuities results in stresses and pore 
pressures for a fluid-saturated poroelastic rock. 
Figure 4 depicts a bent higher order element in a 
poroelastic environment. In most of the failure 
problems at the beginning of the numerical 

simulations (in poroelasticity), displacement and 
shear discontinuities are not clear. Rather, they 
should be solved along elements over time using 
the stress and pore pressure histories. Therefore, to 
construct a set of linear equations for the numerical 
method, pore stresses and pressures should be used. 
Consider the jth element in Figure 4. To apply 
fundamental solutions for element jth, global 
coordinates must be converted to local coordinates 
s and n. Pore pressure and stresses caused by 
displacement and flux discontinuity of element jth 
are presented in local coordinates in Equations 19 
and 20 respectively. 

 

 
Figure 4. Bent higher order element in a porous medium. 
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푝(푥̄, 푦̄, 푡) = 푝 (푥̄, 푦̄, 푡) 푁 (퐷 ) + 푝 (푥̄, 푦̄, 푡) 푁 (퐷 ) + 푝 (푥̄, 푦̄, 푡)퐷  (19) 

휎 ̄ ̄ (푥̄, 푦̄, 푡) = 휎 ̄ ̄ (푥̄, 푦̄, 푡) 푁 (퐷 ) + 휎 ̄ ̄ (푥̄, 푦̄, 푡) 푁 (퐷 ) + 휎 ̄ ̄ (푥̄, 푦̄, 푡)퐷  

(20) 휎 ̄ ̄ (푥̄, 푦̄, 푡) = 휎 ̄ ̄ (푥̄, 푦̄, 푡) 푁 (퐷 ) + 휎 ̄ ̄ (푥̄, 푦̄, 푡) 푁 (퐷 ) + 휎 ̄ ̄ (푥̄, 푦̄, 푡)퐷  

휎 ̄ ̄ (푥̄, 푦̄, 푡) = 휎 ̄ ̄ (푥̄, 푦̄, 푡) 푁 (퐷 ) + 휎 ̄ ̄ (푥̄, 푦̄, 푡) 푁 (퐷 ) + 휎 ̄ ̄ (푥̄, 푦̄, 푡)퐷  

 
where Dn, Ds, and Df are discontinuities in 

normal and shear displacement and discontinuity in 
flux, respectively. The induced stresses in the jth 
element can be converted to the global coordinates 
using coordinate transformation equations. Pore 
pressure does not require coordinate 
transformation because it is a scalar value, and is 
invariant in all coordinate systems. 

By converting Equations 19 and 20 to the local 
coordinate system of the ith element, the stresses 
induced in the ith element caused by the jth element 
are obtained. 

Normal and shear stresses and pore pressure 
caused by fluid injection/production at a constant 
rate and linear shear and normal displacement 
discontinuities of the j element are created on the 
ith element are 

 

휎 = 퐴 푁 (퐷 ) + 퐴 푁 (퐷 ) + 퐴 퐷  

(21) 휎 = 퐴 푁 (퐷 ) + 퐴 푁 (퐷 ) + 퐴 퐷  

푝 = 퐴 푁 (퐷 ) + 퐴 푁 (퐷 ) + 퐴 퐷  

퐴 푥 ,푦 , 푡 = 푐표푠 훾 휎 ̄ ̄ 푥 ,푦 , 푡 푁 (퐷 ) + 푠푖푛 2 훾휎 ̄ ̄ 푥 ,푦, 푡 푁 (퐷 )  

(22) 

+ 푠푖푛 훾 휎 ̄ ̄ 푥 ,푦, 푡 푁 (퐷 ) 퐴 푥 ,푦 , 푡  

= 푐표푠 훾 휎 ̄ ̄ 푥 ,푦 , 푡 푁 (퐷 ) + 푠푖푛 2 훾휎 ̄ ̄ 푥 ,푦, 푡 푁 (퐷 )  

+ 푠푖푛 훾 휎 ̄ ̄ 푥 ,푦 , 푡 푁 (퐷 )  

퐴 푥 ,푦 , 푡 = 푐표푠 훾 휎 ̄ ̄ 푥 ,푦, 푡 + 푠푖푛 2 훾휎 ̄ ̄ 푥 ,푦 , 푡 + 푠푖푛 훾 휎 ̄ ̄ 푥 ,푦 , 푡  

퐴 푥 ,푦, 푡 = 푠푖푛 훾 푐표푠 훾 휎 ̄ ̄ 푥 ,푦, 푡 푁 (퐷 ) − 휎 ̄ ̄ 푥 ,푦 , 푡 푁 (퐷 )  

− 푐표푠 훾 − 푠푖푛 훾 휎 ̄ ̄ 푥 ,푦, 푡 푁 (퐷 )  
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퐴 푥 ,푦 , 푡 = 푠푖푛 훾 푐표푠 훾 휎 ̄ ̄ 푥 ,푦, 푡 푁 (퐷 ) − 휎 ̄ ̄ 푥 ,푦, 푡 푁 (퐷 )  

− 푐표푠 훾 − 푠푖푛 훾 휎 ̄ ̄ 푥 ,푦 , 푡 푁 (퐷 )  

(22) 

퐴 푥 ,푦, 푡 = 푠푖푛 훾 푐표푠 훾 휎 ̄ ̄ 푥 ,푦 , 푡 − 휎 ̄ ̄ 푥 ,푦 , 푡 − 푐표푠 훾 − 푠푖푛 훾 휎 ̄ ̄ 푥 ,푦 , 푡  

퐴 푥 ,푦, 푡 = 푝 푥 ,푦 , 푡 푁 (퐷 )  

퐴 푥 ,푦 , 푡 = 푝 푥 ,푦, 푡 푁 (퐷 )  

퐴 푥 ,푦, 푡 = 푝 푥 ,푦 , 푡  

 
In the problem, 퐴  is the boundary stress 

influence coefficients. The coefficient 퐴 , for 
instance, gives the actual normal stress at the 
quarter point and three quarter point of the ith 

element (
i

n ) due to a linear normal displacement 
discontinuity applied to the jth element at time t, 

while 휎 ̄ ̄ 푥 ,푦, 푡  are the influence functions 
including both the time-independent and time-

dependent parts. For example, 휎 ̄ ̄ 푥 ,푦 , 푡  

presents local stress  휎 ̄ ̄  at the quarter point and 
three quarter point of the ith element due to a shrea 
displacement discontinuity at the jth element in 

time t, and 훾 = 휃 − 휃  is the angle  between 
element i and j and: 

 

푥 = 푥 − 푥 푐표푠 휃 + 푦 − 푦 푠푖푛 휃  
(23) 

푦 = − 푥 − 푥 푠푖푛 휃 + 푦 − 푦 푐표푠 휃  

 
For the time-dependent part of shear and normal 

discontinuities, Ds and Dn and flux discontinuity 
Df, a time marching method is used. This method 
decomposes time into N fixed steps, and then uses 
superposition to calculate each step change at the 
time it occurs. Except for the first time step, the 
constant step source does not start at time zero (t = 
0). Therefore, In order to be able to use the 
fundamental solution and influence coefficients, a 
time shift is necessary. For example, consider the 
linear amounts Nw(ΔDn)w(x j , y j, τω), Nw (ΔDs)w (x 
j , y j, τω), and ΔDf (x j , y j, τω), which belong to the 
jth element at the time τω are added; it results in the 
induced stresses and pore pressure in Equation 24 
on the ith element at time t. 

 

휎 = 퐴 (푡 − 휏 ) 푁 (훥퐷 ) + 퐴 (푡 − 휏 ) 푁 (훥퐷 ) + 퐴 (푡 − 휏 )훥퐷  

(24) 휎 = 퐴 (푡 − 휏 ) 푁 (훥퐷 ) + 퐴 (푡 − 휏 ) 푁 (훥퐷 ) + 퐴 (푡 − 휏 )훥퐷  

푝 = 퐴 (푡 − 휏 ) 푁 (훥퐷 ) + 퐴 (푡 − 휏 ) 푁 (훥퐷 ) + 퐴 (푡 − 휏 )훥퐷  

 

where 푁 (훥퐷 ) , 푁 (훥퐷 ) , and f

j

D


  are 
shear and normal displacement discontinuities 
increments and flux discontinuity increment of the 

jth element at time τω and the number of elements 
is displayed with M. Finally, by summing the 
influence functions of all time steps ω, the total 
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stresses and pore pressure induced on the ith 
element at time t are obtained.   

6. Expression of numerical formulation of 
poroelastic HODDM 

A set of five integral equations must be solved to 
determine displacement discontinuity and flux 
discontinuity. The dependence of normal and shear 
stresses and pore pressure on the history of 
displacement discontinuities and flux 
discontinuities determines how to choose these 
integrals 

 

휎 (푡) = 퐴
  

(푡 − 휏 ) 푁 (훥퐷 ) + 퐴
  

(푡 − 휏 ) 푁 (훥퐷 ) + 퐴
  

(푡 − 휏 )훥퐷  

(25) 휎 (푡) = 퐴
  

(푡 − 휏 ) 푁 (훥퐷 ) + 퐴
  

(푡 − 휏 ) 푁 (훥퐷 ) + 퐴
  

(푡 − 휏 )훥퐷  

푝(푡) = 퐴
  

(푡 − 휏 ) 푁 (훥퐷 ) + 퐴
  

(푡 − 휏 ) 푁 (훥퐷 ) + 퐴
   

(푡 − 휏 )훥퐷
   

 

휎 (푥, 푡) = 푙 (푥)푙 (푥). 푙 (휁)푙 (휁)휎 (푥, 휁, 푡 − 휏)푁 (퐷 ) (휁, 휏)푑훤(휁)푑휏 

(26) 

+ 푙 (휁)푙 (휁)휎 (푥, 휁, 푡 − 휏)푁 (퐷 ) (휁, 휏)푑훤(휁)푑휏 

+ 푙 (휁)푙 (휁)휎 (푥, 휁, 푡 − 휏)푁 (퐷 ) (휁, 휏)푑훤(휁)푑휏 

+ 푙 (휁)푙 (휁)휎 (푥, 휁, 푡 − 휏)푁 (퐷 ) (휁, 휏)푑훤(휁)푑휏 

+ 푙 (휁)푙 (휁)휎 (푥, 휁, 푡 − 휏)퐷 (휁, 휏)푑훤(휁)푑휏  

휎 (푥, 푡) = 푙 (푥)푙 (푥). 푙 (휁)푙 (휁)휎 (푥, 휁, 푡 − 휏)푁 (퐷 ) (휁, 휏)푑훤(휁)푑휏 

(27) 

+ 푙 (휁)푙 (휁)휎 (푥, 휁, 푡 − 휏)푁 (퐷 ) (휁, 휏)푑훤(휁)푑휏 

+ 푙 (휁)푙 (휁)휎 (푥, 휁, 푡 − 휏)푁 (퐷 ) (휁, 휏)푑훤(휁)푑휏 

+ 푙 (휁)푙 (휁)휎 (푥, 휁, 푡 − 휏)푁 (퐷 ) (휁, 휏)푑훤(휁)푑휏 

+ 푙 (휁)푙 (휁)휎 (푥, 휁, 푡 − 휏)퐷 (휁, 휏)푑훤(휁)푑휏  

 

  

 
 
 

푝(푥, 푡) = 푃 (푥, 휁, 푡 − 휏)푁 (퐷 ) (휁, 휏)푑훤(휁)푑휏 + 푃 (푥, 휁, 푡 − 휏)푁 (퐷 ) (휁, 휏)푑훤(휁)푑휏 (28) 
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+ 푃 (푥, 휁, 푡 − 휏)푁 (퐷 ) (휁, 휏)푑훤(휁)푑휏 + 푃 (푥, 휁, 푡 − 휏)푁 (퐷 ) (휁, 휏)푑훤(휁)푑휏 

+ 푃 (푥, 휁, 푡 − 휏)퐷 (휁, 휏)푑훤(휁)푑휏 

 
and Γ is element locus. The subscripts i, j, k, and 

l vary from 1 to 2, and Einstein's sum convention is 
considered on them. A global coordinate system 
(x,y) and a local coordinate (푥̅ , 푥̅ ) where its axes 

푥̅  and 푥̅  equivalent, respectively, with the 
tangential (s) and normal (n) directions of the 
element are assumed here (see Figure 5). 

 

 
Figure 5. Local and global coordinate systems. 

The coordinate conversion between the global 
and local systems is performed using Equation 
(29). 

푥̄ = 푙 (푥 − 표 ) (29) 

where 푥̄  (푗 =  1, 2 표푟 푛, 푠) is local coordinate 
system , li j is the rotational tensor, xi (i  = 1, 2) are 
global coordinate system, and oi is the origin of the 
local system in global coordinates. Influence 
functions 휎 (푥, 휂, 푡 − 휏) represent stress 
components expressed in local coordinate system 
at point x and time t due to a unit impulse normal 
displacement discontinuity located at η and 
occurring time τ. 휎 and 휎 have similar 
meanings. Ps, Pn, and Pf are influence functions for 
discontinuities 푁 (퐷 ) , 푁 (퐷 )  and Df . 

7. Numerical implementation of linear element 
poroelastic DDM (LEP-DDM) 

The system of equations (26) to (28) can be 
solved numerically using the following method. 

• Initially, the geometry is separated into m elements 
and the time interval from 0 to t into h time steps.  

• Then discontinuities Ds, Dn, and Df  are considered 
over each element λ ∈ [1, m] and  

time step ω ∈ [1, h] using appropriate shape 
functions in time and space. 

• Using numerical integration, the Equations (26) to 
(28), a linear system of equations is generated. 

• At the end of the first stage, the system of equations 
is solved, and leads to the determination of 
discontinuities at the one-quarter point and three-
quarter point of each element (linear elements are 
used). 

• The time march of the solution (Ds, Dn, and Df) is 
found at the end of each time step until the last 
time step is reached. 

Also some simplifications and assumptions are 
considered. 

• As mentioned, linear elements are used. 

• Collocation points are the quarter point and three 
quarter point of each element. 

Element )2y (x 
푥2(푛) 

  

휁 

)1x (x 

푥1(푠) 

Г 
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• Discontinuities are linear over each element.  

• Discontinuities change linearly with time. 

• The time steps Δt are considered constant. 

Equations (26) to (28) can be expressed as a 
double summation of integrals over time and space 
using the above method and assumptions. For 
instance, Equation (27) at points 푥 and 푥  and 
time t may be written as Equation (30). 

 

휎 푥 , 푡 = 푙 푙 푙 푙 × 

(30) 

푁 (퐷 ) (휔 − 1)훥푡 + 휏 휎 푥 , 휁, (ℎ − 휔 + 1)훥푡 − 휏 푑훤(휁) 푑휏 + 

푁 (퐷 ) (휔 − 1)훥푡 + 휏 휎 푥 , 휁, (ℎ −휔 + 1)훥푡 − 휏 푑훤(휁) 푑휏 + 

퐷 (휔 − 1)훥푡 + 휏 휎 푥 , 휁, (ℎ −휔 + 1)훥푡 − 휏 푑훤(휁) 푑휏 + 푙 푙 푙 푙 × 

푁 (퐷 ) (휔 − 1)훥푡 + 휏 휎 푥 , 휁, (ℎ −휔 + 1)훥푡 − 휏 푑훤(휁) 푑휏 + 

푁 (퐷 ) (휔 − 1)훥푡 + 휏 휎 푥 , 휁, (ℎ −휔 + 1)훥푡 − 휏 푑훤(휁) 푑휏 + 

퐷 (휔 − 1)훥푡 + 휏 휎 푥 , 휁, (ℎ −휔 + 1)훥푡 − 휏 푑훤(휁) 푑휏  

휎 , 푥 ; 푡 = 푁 (퐷휆) 휎 푥 , 휁, 푡 푑훤(휁) + 푁 (퐷휆 ) 휎 푥 , 휁, 푡 푑훤(휁) (31) 

 
The above equation is the spatial integral of 

Equation (30). 
The exact solution of these space integrals in a 

local coordinate system (on element domain 훤 , 
which is located on the local axes s) were provided 
and presented in the Appendix B. The time 
integrals are calculated numerically. 

The interpolation of discontinuities between the 
values at the beginning and end of each time step 
is done linearly. 

Substituting Equations (32), (33) and (31) in 
Equation (30) and ordering according to the 
discontinuities results in the following linear 

equation based on unknowns 푁 (퐷 )
,

, 푁 (퐷 )
,

, 

and 퐷 , , where 휎 푥 , 푡  is known boundary 

condition in time h. The values of 푁 (퐷 )
,  

, 

푁 (퐷 )
,  

, and 퐷 ,  are known for time step ω ∈ 
[0, h − 1] from the earlier solutions. Therefore, they 
become clear on the right-hand side  

of Equation (34). As mentioned earlier, the 
superposition of these known parameters from the 
earlier time steps updates the boundary conditions 
(the right-hand of Equation (34) for the new 
equation to be solved. The unknown and known 
coefficients of A and B, respectively, are written as 
follow: 

 

푁 (퐷 ) (휔 − 1)훥푡+ 휏 =
1
훥푡

(훥푡 − 휏)푁 (퐷 , ) + 휏푁 (퐷 , )  (32) 

푁 (퐷 ) (휔− 1)훥푡 + 휏 =
1
훥푡

(훥푡 − 휏)푁 (퐷 , ) + 휏푁 (퐷 , )  

0 ≤ τ ≤ 훥t 
(33) 
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퐴 푁 (퐷 )
,

+ 퐴 푁 (퐷 )
,

+ 퐴 퐷 ,  

(34) 

= 휎 푥 , 푡 − 퐵 , 푁 (퐷 )
,

− 퐵 , 푁 (퐷 )
,

− 퐵 , 퐷 ,    

퐴 = 푙 푙 푙 푙
휏
훥푡
푁 (퐷 ) 휎 , 푥 ;훥푡 − 휏 푑휏 + 

(35) 

푙 푙 푙 푙
휏
훥푡
푁 (퐷 ) 휎 , 푥 ;훥푡 − 휏 푑휏 

퐵 , = 푙 푙 푙 푙
훥푡 − 휏
훥푡

푁 (퐷 ) 휎 , 푥 ; (ℎ − 휔)훥푡 − 휏 +
휏
훥푡
푁 (퐷 ) 푆 , 푥 ; (ℎ − 휔 + 1)훥푡 − 휏 푑휏 

+푙 푙 푙 푙
훥푡 − 휏
훥푡 푁 (퐷 ) 휎 , 푥 ; (ℎ − 휔)훥푡 − 휏 +

휏
훥푡 푁 (퐷 ) 푆 , 푥 ; (ℎ − 휔 + 1)훥푡 − 휏  

푑휏, 휔 ≠ 0 

퐵 , = 푙 푙 푙 푙
훥푡 − 휏
훥푡 푁 (퐷 ) 휎 , 푥 ;ℎ훥푡 − 휏 푑휏 + 푙 푙 푙 푙

훥푡 − 휏
훥푡 푁 (퐷 ) 휎 , 푥 ;ℎ훥푡 − 휏 푑휏 

 
Similar coefficients may be derived for shear and 

flux. 
The Gauss-Legendre quadrature method with 

seven points is used for numerical integration 
required for time integrals. Because of Dirac delta 
function in time kernels, coefficient A is separated 
into two parts before integration, where 퐴  is 

the time-independent part, and can be obtained 
from Equation (37) and 훥 퐴  is the time-
dependent part of the unknown coefficient A and 
can be obtained from Equation 

Coefficient B is also separated into two parts. 

퐴 = 퐴 + 훥 퐴  (36) 

 

퐴 = 푙 푙 푙 푙 푁 (퐷 ) 휎 , 푥 + 푙 푙 푙 푙 푁 (퐷 ) 휎 , 푥  (37) 

훥 퐴 = 푙 푙 푙 푙
휏
훥푡
푁 (퐷 ) 훥 휎 , 푥 ;훥푡 − 휏 푑휏 

(38) 

+푙 푙 푙 푙
휏
훥푡
푁 (퐷 ) 훥 휎 , 푥 ;훥푡 − 휏 푑휏 

퐵 = 퐵 , + 퐵 ,  (39) 

퐵 , = 푙 푙 푙 푙
훥푡 − 휏
훥푡

푁 (퐷 ) 훥 휎 , 푥 ; (ℎ − 휔)훥푡 − 휏 푑휏 

(40) 

+푙 푙 푙 푙
훥푡 − 휏
훥푡 푁 (퐷 ) 훥 휎 , 푥 ; (ℎ − 휔)훥푡 − 휏 푑휏 
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퐵 , = 푙 푙 푙 푙
휏
훥푡
푁 (퐷 ) 훥 휎 , 푥 ; (ℎ −휔 + 1)훥푡 − 휏 푑휏 

(41) 

+푙 푙 푙 푙
휏
훥푡
푁 (퐷 ) 훥 휎 , 푥 ; (ℎ − 휔 + 1)훥푡 − 휏 푑휏 

 
Coefficients 퐴 and 훥 퐴  are independent 

from h, and are determined only once. In each time 
step, only coefficients 퐵 , and 퐵 , are 
evaluated; the other coefficients are determined at 
earlier time steps.  

The discretized Equations (30) are collocated at 
the quarter point and three quarter point of the 
elements for boundary condition σn. Similar 
coefficients can be achieved for σs and p. 
Eventually, for M boundary elements can create 
3M linear equations for 3M unknown 
discontinuities (Dn, Ds, Df ) at time t = h 훥t. We 
consider that the section related to normal and 
shear discontinuities each has two unknown 
discontinuities. The matrix notation for the system 
of linear equations may be expressed as follows: 

퐴퐷 = −( 퐵 퐷 −휎 ) (42) 

The error function erf(x) is expressed in the time-
dependent part of the influence functions in the 
Appendix B. This is a special function (non-

elementary), which is expressed in probability, 
statistics, and partial differential equations 
describing diffusion [67, 68]. The following 
estimation is used for this function with maximum 
error of 1.2 × 10−7 [69]. The estimation is valid 
over the complete range of values. 

푒푟푓(푥) =
−(휏 − 1)    for  x ≥ 0
−(1− 휏 )   for  x < 0 (43) 

8. Validation of developed poroelastic code 
LEP-DDM 

In the following, crack opening displacemen in 
different situations are presented to study the 
performance and accuracy of the proposed code. 
These problems have been previously presented 
analytically. A suddenly pressurized crack in an 
infinite body is used in order to investigate the 
linear element poroelastic DDM (LEP-DDM) code 
developed here. Consider a thin crack under 
constant internal pressure p witha length of 2 L (see 
Figure 6).  

 

휏 = 푡 × 푒푥푝( − 푥 − 1.26551223 + 1.00002378푡 + 0.37409196푡 + 0.09678418푡  
(44) 

−0.18628806푡 + 0.27886807푡 − 1.13520398푡 + 1.48751587푡  − 0.82215223푡 + 0.17087277푡  

푡 =
1

−(−1 − 0.5|푥|) (45) 

 

 
Figure 6. A suddenly pressurized crack. 
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The exact amount of relative normal 
displacement of crack surfaces (crack opening 
displacement) COD in an elastic medium in 
Equation (46) can be calculated [70]. 

퐶푂퐷 =
2푝(1 − 휈)

퐺 퐿 − 푥  (46) 
where −L ≤ x ≤ L. 

In the first time steps in a porous medium, it 
shows undrained behavior because the fluid inside 
the pores cannot escape (elastic response with 
undrained specification), and around the crack, the 
pore pressure increases. Therefore, analytic’s 
solutions must be compared with the results of the 
first time step, which represents an elastic 
behavior. A crack with length 2L = 1 m from x = 
−0.5 m to x = +0.5 m and properties of Table 1 with 
no farfield stress and 25 MPa internal pressure with 
Δt = 0.05 s is used for validation.  

Figure 7 shows crack opening displacement 
(COD) in the direction of x-axis using the 

analytical and numerical methods (LEP-DDM 
code) and 20 linear elements in a short time and a 
long time. As it can be seen, the numerical results 
are in good agreement and coordination with the 
analytical results. The values of the numerical 
results are slightly over-predicted.  The pore 
pressure will dissipate after a long period of 
internal pressure applied to the crack and a drained 
behavior (elastic response with drained 
specification) appears. Figure 7 shows the results 
of the numerical model after 5000 s and analytical 
models using drained Poisson ratio. 

Table 1. Parameters of model. 
Skempton’s coefficient (S) 0.90 
UndrainedPoisson ratio (νu ) 0.29 
Drained Poisson ratio (ν) 0.10 
Permeablity (κ) (mdarcy) 1 
Biot’scoefficient (α) 0.67 
Generelizedconsolidationcoefficient(c)(m2/s) 0.003 
Shear modulus(G) (GPa) 14 

 

 
Crack Horizontal Axis (m) 

Figure 7. Numerical and analytical results of COD in long time and short time. 

Another example is used to illustrate crack 
propagation in poroelastic media. It is important to 
note that once a new element is added, the 
coefficients 퐴 and 훥 퐴  of the previous 
time step are no longer valid, and they must be re-
assessed because each new element adds 3 new 
unknowns Dn, Ds, and Df (section related to normal 
and shear discontinuities each has two unknown 
discontinuities) to the set of linear equations. The 
following fourteen steps describe the procedure for 
performing crack-propagation analysis in LEP-
DDM. 

1. Start 

2. We define geometry 

3. We solve the linear elastic system at zero time 

4. We update the boundary conditions 

5. We solve the linear elastic system in the new 
time step 

6. We calculate the stress intensity factor 

7. We check whether crack propagation occurs or 
no 

8. If the answer is negative, we go back to step 4; 
otherwise, we go to step 9 

9. Have we reached the length described? 
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0.0007
0.0009
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0.0015
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10. If the answer is negative, we go to step 7; 
otherwise, we go to step 11 

11. A new element is added 

12. Solving the same time step for the new 
unknown achieve 

13. We return to step 9 

14. End 

To demonstrate crack-propagation in a 
poroelasticity, two parallel cracks in a porous rock 
under far-field compressive stresses σx = 57 MPa, 
σy = 47 MPa with the initial length and the same 
distance of 50 cm have been used. An internal 
pressure of 60 MPa is applied to the cracks. Sub-
critical crack propagation is used. In geological 
formations, the velocity of crack propagation 
varies based on temperature and grain size from 10-

10 to 10-16 m/s in sub-critical propagation [71]. 

Crack propagation velocity of 10-11 m/s along with 
sub-critical index n = 25 were used for this 
demonstration. Figure 8 depicts crack-propagation 
in a poroelastic rock after 100, 200, 400, and 4000 
time steps. The cracks start to diverge from each 
other at first and over time; they align with the 
maximum far-field stress.  

To show the time-dependent SIF, a pressurized 
crack (by applying internal pressure 60 MPa) with 
similar properties to the previous example was 
modeled. Figure 9 depicts the variations of Mode I 
SIF with time for 500 s. As it can be seen, SIF is 
high at the beginning and gradually reduces as time 
passes; the reducing trend is much faster after 400 
s. SIF would reach 0 if the model were run 
indefinitely (since no far-field stress or pore 
pressure was considered) and the internal pressure 
of the crack would completely dissipate. 

 
Figure 8. Crack-propagation in a poroelastic rock after various time steps. 
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Figure 9. Variations of normal SIF with time for a pressurized crack by applying internal pressure P = 60 Mpa. 

9. Conclusions 
The present study introduced linear higher-order 

elements, and newly developed a higher-order 
numerical code (LEP-DDM) using linear 
displacement discontinuity in poroelastic medium. 
Since the fundamental solutions in the 
displacement discontinuity method (DDM) involve 
a displacement jump, this method is suitable for 
problem involving fractures and discontinuities. 
However, the original DDM and its higher-order 
extensions are all restricted to elastic problems. In 
geo-mechanics, many situations such as hydraulic 
fracturing, in-situ stress measurement, and geo-
thermal occur in a poroelastic media.  

Since the porous media are affected by the 
deformation-diffusion behavior, it is necessary to 
use the theory of poroelasticity. The possibility of 
developing boundary element methods for porous 
media can be achieved when the fundamental 
solutions of poroelastic media are presented. In 
order to derive the fundamental solutions for the 
porous higher order displacement discontinuity, 
the fundamental solutions of the higher order 
displacement discontinuity of the impulse point 
and the source were used. The fundamental 
solution creates the influence function in the final 
DDM formulation. To use these functions, the 
boundary field is divided into several boundary 
sub-elements. 

Field and geometric variables are interpolated by 
piecewise polynomials.  

After numerical formulation and implementation 
for the poroelastic HODDM in LEP-DDM code 
was provided. At this stage, the equations are 
numerically integrated and the solution of the 
linear form including discrete variables in space is 

produced. Integral equations have a time part and 
the time integral is solved. 

The accuracy and validity of the new formulation 
and numerical implementation were proved using 
the analytical solutions. The response at t = 0 and 
long duration is obtained using the undrained and 
drained Poisson's ratio for analytical solutions after 
applying internal pressure. These results showed 
good agreement and coordination with numerical 
results at first time step and a long time (t = 5000 
s) later. Crack-propagation, which enables the code 
to pursue crack propagation issues in time and 
space, is described in 14 steps. In the following, an 
example for crack propagation simulation in a 
poroelastic rock was provided and crack 
propagation was showed. At the end, the time 
dependency of SIFs in a poroelastic medium was 
illustrated by mentioning another example. Since 
the crack propagation velocity must be determined 
for this part. As a result, poroelastic problems 
depend on time. 
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Time-independent part of influence functions 
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Continuous of Appendix B 
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((푥 + 2푎 ) + 푦 )
× (푥 − 2푎 )((푥 − 2푎 ) − 3푦 ) 1 − (1 + 휉 )푒 +2(푥 − 2푎 )푦 휉 푒
− (푥 + 2푎 )((푥 + 2푎 ) − 3푦 ) 1− (1 + 휉 )푒 + 2(푥 + 2푎 )푦 휉 푒

+
1

((푥 − 2푎 ) + 푦 ) −
1

((푥 + 2푎 ) + 푦 )
× (푥 − 2푎 )((푥 − 2푎 ) − 3푦 ) 1 − (1 + 휉 )푒 +2(푥 − 2푎 )푦 휉 푒

− (푥 + 2푎 )((푥 + 2푎 ) − 3푦 ) 1 − (1 + 휉 )푒 + 2(푥 + 2푎 )푦 휉 푒  

(B11) 

훥휎 , =
퐺푐(휈 − 휈)

휋(1− 휈 )(1− 휈)
1

((푥 − 2푎 ) + 푦 ) −
1

((푥 + 2푎 ) + 푦 )
× (푥 − 2푎 )((푥 − 2푎 ) − 3푦 ) 1 − (1 + 휉 )푒 +2(푥 − 2푎 )푦 휉 푒
− (푥 + 2푎 )((푥 + 2푎 ) − 3푦 ) 1− (1 + 휉 )푒 + 2(푥 + 2푎 )푦 휉 푒

+
1

((푥 − 2푎 ) + 푦 ) −
1

((푥 + 2푎 ) + 푦 )
× (푥 − 2푎 )((푥 − 2푎 ) − 3푦 ) 1 − (1 + 휉 )푒 +2(푥 − 2푎 )푦 휉 푒

− (푥 + 2푎 )((푥 + 2푎 ) − 3푦 ) 1 − (1 + 휉 )푒 + 2(푥 + 2푎 )푦 휉 푒  

(B12) 

  

  

  
Continuous of Appendix B  

훥휎 , =
퐺푐(휈 − 휈)

휋(1 − 휈 )(1− 휈)
1

((푥 − 2푎 ) + 푦 ) −
1

((푥 + 2푎 ) + 푦 )

× (푥 − 2푎 )(3푦 − (푥 − 2푎 ) ) 1− (1 + 휉 )푒 +2(푥 − 2푎 ) 휉 푒

− (푥 + 2푎 )(3푦 − (푥 + 2푎 ) ) 1− (1 + 휉 )푒 + 2(푥 + 2푎 ) 휉 푒

+
1

((푥 − 2푎 ) + 푦 ) −
1

((푥 + 2푎 ) + 푦 )
× (푥 − 2푎 )(3푦 − (푥 − 2푎 ) ) 1− (1 + 휉 )푒 +2(푥 − 2푎 ) 휉 푒

− (푥 + 2푎 )(3푦 − (푥 + 2푎 ) ) 1− (1 + 휉 )푒 + 2(푥 + 2푎 ) 휉 푒  

(B13) 
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훥휎 , =
퐺푐(휈 − 휈)

휋(1 − 휈 )(1− 휈)
1

((푥 − 2푎 ) + 푦 ) −
1

((푥 + 2푎 ) + 푦 )

× 푦(3(푥 − 2푎 ) − 푦 ) 1 − (1 + 휉 )푒

− 2(푥 − 2푎 ) 푦휉 푒 − 푦(3(푥 + 2푎 ) − 푦 ) 1 − (1 + 휉 )푒

− 2(푥 + 2푎 ) 푦휉 푒 +
1

((푥 − 2푎 ) + 푦 ) −
1

((푥 + 2푎 ) + 푦 )
× [ 푦(3(푥 − 2푎 ) − 푦 ) 1 − (1 + 휉 )푒
− 2(푥 − 2푎 ) 푦휉 푒 − 푦(3(푥 + 2푎 ) − 푦 ) 1− (1 + 휉 )푒

− 2(푥 + 2푎 ) 푦휉 푒  

(B14) 

훥휎 , =
퐵퐺(1 + 휈 )
6휋(1− 휈 )

휋
((푥 − 2푎 ) + 푦 ) 휉푒푟푓

(푥 − 2푎 )휉
(푥 − 2푎 ) + 푦

푒 ( )⁄

−
(푥 − 2푎 )

(푥 − 2푎 ) + 푦
1 − 푒

−
휋

((푥 + 2푎 ) + 푦 )휉푒푟푓
(푥 + 2푎 )휉

(푥 + 2푎 ) + 푦
푒 ( )⁄

−
(푥 + 2푎 )

(푥 + 2푎 ) + 푦
1 − 푒

+
휋

((푥 − 2푎 ) + 푦 ) 휉푒푟푓
(푥 − 2푎 )휉

(푥 − 2푎 ) + 푦
푒 ( )⁄

−
(푥 − 2푎 )

(푥 − 2푎 ) + 푦
1 − 푒

−
휋

((푥 + 2푎 ) + 푦 )휉푒푟푓
(푥 + 2푎 )휉

(푥 + 2푎 ) + 푦
푒 ( )⁄

−
(푥 + 2푎 )

(푥 + 2푎 ) + 푦
1 − 푒  

(B15) 

  

Continuous of Appendix B 

훥휎 , =
퐵퐺(1 + 휈 )
6휋(1− 휈 ) 1 − 푒

(푥 − 2푎 )
(푥 − 2푎 ) + 푦

−
(푥 + 2푎 )

(푥 + 2푎 ) + 푦

+
(푥 − 2푎 )

(푥 − 2푎 ) + 푦
−

(푥 + 2푎 )
(푥 + 2푎 ) + 푦

 
(B16) 
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훥휎 , = −
퐵퐺(1 + 휈 )
6휋(1− 휈 ) 1− 푒

푦
(푥 − 2푎 ) + 푦

−
푦

(푥 + 2푎 ) + 푦

+
푦

(푥 − 2푎 ) + 푦
−

푦
(푥 + 2푎 ) + 푦

 
(B17) 

훥푃 = −
2퐵퐺푐(1 + 휈 )

3휋(1− 휈 ) 휉 푒
푦

((푥 − 2푎 ) + 푦 ) −
푦

((푥 + 2푎 ) + 푦 )

+
푦

((푥 − 2푎 ) + 푦 ) −
푦

((푥 + 2푎 ) + 푦 )  
(B18) 

훥푃 = −
2퐵퐺푐(1 + 휈 )

3휋(1− 휈 ) 휉 푒
(푥 − 2푎 )

((푥 − 2푎 ) + 푦 ) −
(푥 + 2푎 )

((푥 + 2푎 ) + 푦 )

+
(푥 − 2푎 )

((푥 − 2푎 ) + 푦 ) −
(푥 + 2푎 )

((푥 + 2푎 ) + 푦 )  

(B19) 

훥푃 =
퐵 퐺(1 − 휈)(1 + 휈 )
9휋(1− 휈 )(휈 − 휈)

휋
2((푥 − 2푎 ) + 푦 ) 휉푒푟푓

(푥 − 2푎 )휉
(푥 − 2푎 ) + 푦 푒 ( )⁄

−
휋

2((푥 + 2푎 ) + 푦 )휉푒푟푓
(푥 + 2푎 )휉

(푥 + 2푎 ) + 푦 푒 ( )⁄

+
휋

2((푥− 2푎2)2 + 푦2)휉푒푟푓
(푥 − 2푎)휉

(푥 − 2푎2)2 + 푦2 푒 − 푦2 (푥−2푎2)2+푦2 휉2

−
휋

2((푥+ 2푎2)2 + 푦2) 휉푒푟푓
(푥+ 2푎2)휉

(푥+ 2푎2)2 + 푦2 푒 − 푦2 (푥+2푎2)2+푦2 휉2
 

(B20) 

and 휉 =  
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   چکیده:

 يکاربر يها. استخراج مجموعه دادهشودیمعدن استفاده م طینظارت بر مح ياست که برا ياطلاعات نقشه بردار يهابخش نیترياز ضرور یکی) LU( نیزم يکاربر
 ریاز تصاو LUs يبندحال، طبقه نیبه خود جلب کرده است. با ا یرا در جامعه منطقه معدن یسنجش از راه دور، توجه قابل توجه ياماهواره ریاز تصاو نیزم

 یاهرم بزرگ قیعم يریگادی يهاکننده است. روشکار خسته کیسنگ کارآمد، مرتبط با استخراج زغال يهادر دسترس نبودن مجموعه داده لیبه دل ياماهواره
 یبه طور قابل توجه قیعم يریادگی يطبقه بند کردیرو کی عملکرد ن،ی. علاوه بر اکندیبا وضوح بالا فراهم م ياماهواره ریاز تصاو داریاستخراج اطلاعات معن يبرا

 یمبتن يریادگی يهاتمیعملکرد الگور لیتحل يبر ماهواره را برا ینداده مبت يهامجموعه دیتا تول کندیدارد. کار حاضر تلاش م یها بستگمجموعه داده تیفیبه ک
 يهانیزم ییبه مناطق مجزا يبصر یبر اساس بازرس ینشان دهد. مناطق معدن به طور کل یمعدن طقمنا LU يهايبند) در طبقهDNN( قیعم یعصب يهابر شبکه

 یینمونه فضا 100روش و راه از  کیما،  ی. در کار تجربشوندیم يزغال سنگ فعال طبقه بندو معادن  یاهیپوشش گ ،یمناطق ساخت و ساز شده، بدنه آب ر،یبا
مختلف مجموعه داده  يهايریپذ اسیاثرات مق ن،ی. علاوه بر اشودیم دی] تول3×10×10] و [3×5×5]، [3×1×1عنوان [به اس،یقدر سه م یژگیاز پنج و کیهر  يبرا

 یمناطق معدن يبرا ياماهواره ریتصاو يهابزرگ مجموعه داده اسیمق اریمع يبرا يمطالعه مورد نیا نی. همچنشودیم لیتحل و هیتجز زین يبر عملکرد طبقه بند
 .استفاده شود یدر مناطق مورد مطالعه مربوطه در زمان واقع LU يطبقه بند يبرا تواندیکار م نیا نده،یشده است. در آ جراا

  .شکست سنگ یکانتشار ترك، مکان ی،اساس يهاراه حل یک،مرتبه بالا، پوروالاست يهاالمان یی،جاجاب یوستگیروش ناپ کلمات کلیدي:
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