
 
 

Journal of Mining and Environment (JME), Vol. 14, No. 3, 2023, 981-997 

 Corresponding author: a.imamalipour@urmia.ac.ir (A. Imamalipour) 

 

 
Shahrood University of 

Technology 

 
Journal of Mining and Environment (JME) 

 
Journal homepage: www.jme.shahroodut.ac.ir 

 
Iranian Society of 

Mining Engineering 
(IRSME) 

 
Application of Fuzzy Gamma Operator for Mineral Prospectivity 
Mapping, Case Study: Sonajil Area 
 
Samaneh Barak1, Ali Imamalipour1*, and Maysam Abedi2 

1. Department of Mining Engineering, Faculty of Engineering, Urmia University, Urmia, Iran 
2. School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran 
 

Article Info  Abstract 

Received 18 April 2023 
Received in Revised form 13 June 
2023 
Accepted 23 June 2023 
Published online 23 June 2023 
 
 
 
 
DOI:10.22044/jme.2023.12954.2352 

 The Sonajil area is located in the east Azerbaijan province of Iran. According to 
studies on the geological structure, the region has experienced intrusive, subvolcanic, 
and extrusive magmatic activities, as well as subduction processes. As a result, the 
region is recognized for its high potential for mineralization, particularly for Cu-Au 
porphyry types. The main objective of this research work is to utilize the fuzzy gamma 
operator integration approach to identify the areas with high potential for porphyry 
deposits. To carry out this exploratory approach, it is necessary to investigate several 
indicator layers including geological, remote sensing, geochemical, and geo-physical 
data. The analysis reveals that the northeastern and southwestern parts of the Sonajil 
region exhibit a greater potential for porphyry deposits. The accuracy of the resulting 
Mineral Potential Map (MPM) in the Sonajil region was evaluated based on data from 
20 drilled boreholes, which showed an agreement percentage of 83.33%. Due to the 
high level of agreement, certain locations identified in the generated MPM were 
recommended for further exploration studies and drilling. 
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1. Introduction  
The exploration process comprises multiple 

stages that begin at a small scale and gradually 
expand to larger scales, ultimately leading to the 
identification of drilling locations that entail high 
costs and risks. The probability of successful 
exploration increases when geologists and 
engineers employ a comprehensive plan that 
encompasses different stages of exploration [1-9]. 

Common techniques used in mineral potential 
mapping within the ArcGIS environment or other 
software are closely associated with their 
conceptual models, allowing for flexibility in their 
application to various types of mineral deposits [8, 
10].McCuaig et al. (2010) presented a realistic 
exhibition of the technique of the system to carry 
out exploratory goals [11]. With consideration of 
the common MPM (Mineral prospectivity map) 
application projects, the harness of restrictions in 
exploratory data investigation can be recognized 

[8, 12]. Geologists propose valuable approaches to 
adapt the MPM technique to address the challenges 
posed by imperfect real-world exploration data 
[10].  They suggest dividing mineral deposits into 
multiple studyable criteria, assessing the 
occurrence possibility of each criterion 
individually, and ultimately integrating them for 
the best possible outcome. 

Hence, exploration experts strive to leverage all 
available data, maps, and the capabilities of 
Geographic Information Systems (GIS). Various 
integration methods have been proposed by 
different researchers to combine exploratory 
indicator layers and generate a Mineral Potential 
Map as part of the multi-criteria decision-making 
(MCDM) approach [12-19]. The MPM utilizes 
factor maps that encompass the factors influencing 
mineralization. This technique involves employing 
different methods to combine fuzzy maps using 
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operators such as AND, OR, PRODUCT, SUM, 
GAMMA, and others, either directly or through 
inference networks [15, 16, 20]. 

Two main groups, namely knowledge-driven and 
data-driven approaches, have been proposed for 
MPM to identify highly prospective areas for 
exploring specific ore deposits [21, 22]. In these 
approaches, the allocation of weights to evidential 
layers is based on the judgments of decision makers 
(DMs) [14, 15, 16, 23]. 

In the data-driven approach, mineral deposits 
under investigation are used as "training points" to 
capture spatial relationships within mineral geo-
data sets including geology, alterations, 
geochemistry, and geophysics. The interactions 
between the input data and training data are utilized 
to determine the importance of each layer, which 
are then combined to generate a unified Mineral 
Potential Map (MPM). On the other hand, 
knowledge-driven approaches involve 
incorporating prior studies of the target area and the 
insights provided by expert geologists [21, 22]. 

According to the evidence such as remote 
sensing studies conducted on the Sonajil area by 
[24],  the existence of Cu-Au porphyry deposit in 
the NE and NW parts was confirmed. By 
considering the available data gamma fuzzy 
function was employed for generating MPM in the 
Sonajil area [25], and the results were approved via 
field observation, surface sampling, and drilling.  

The objective of this research work is to utilize 
the fuzzy gamma operator in the Sonajil area, as a 
knowledge-driven method, to integrate various 
data sets and generate MPM using ArcGIS 10.8 
software for depicting more accurate results in the 
smaller areas. The data sets used in this study 
include geological layers (a combination of fault 
and rock units), remote sensing (alteration), 
geophysics (return to pole), and geo-chemistry (a 
combination of two layers indicating copper and 
gold anomalies). Each layer was assigned weights 
based on the conceptual model of porphyry 
deposits [15, 16]. The accuracy of the final MPM 
was assessed through 20 drilled boreholes in the 
area, and eventually, 83.33% agreement percentage 
was achieved. 

2. Geological setting of Sonajil area 
The Sonajil area is situated in the central part of 

the forest village of Haris city, located at the 
geographical coordinates of 38° 11' 51'' north 
latitude and 47° 17' 14'' east longitude. It is 
positioned approximately 17 kilometers away from 
Heris and directly 36 kilometers from Ahar city. 

Moreover, the Sonajil area is situated in the 
northeastern region of the 1:100,000 geological 
map of Ahar. 

The Sonajil porphyry deposit lies in an area of 
widespread Cenozoic volcanic, sub-volcanic and 
plutonic rocks at the southeast corner of Alborz-
Azerbaijan magmatic-metallogenic zone, which 
also are known as Aahar-Jolfa (Arasbaran) 
metallogenic zone. The geodynamic evolution of 
this belt that begun with Jurassic-Cretaceous 
compressive tectono-magmatism was followed by 
the post-collisional, extensional Neogene tectono-
magmatism. 

The Ahar-Jolfa zone is one of the richest Tertiary 
metallogenic zones of Iran. Mineralization of 
copper, molybdenum, gold, silver, iron, lead-zince, 
arsenic, antimony, and mercury has resulted in 
porphyry, skarn and epithermal vein deposits [19]. 
There are more than 10 known porphyry copper 
deposits and prospects this metallogenic zone 
including the Sungun, Masjed Daghi, Haft 
Cheshmeh, Saheb Divan, Sonajil, Niaz, Miveh 
Rud, Kighal, and Ali Javad deposits and other 
prospects [27]. 

Based on [28], the spatial distribution of the ore 
deposits follows three metallogenic sub-zones 
including (A) Ghareh Dagh, (B) Meshkin Shahr-
Siahrud and (C) Sabalan-Kiamaki. The Sonajil and 
Mirkuh-e-Ali Mirza Cu-Au deposits lie in the 
eastern part of the sub-zone (C) are synchronous 
with Mivehrud hydrothermal system [30], which 
related to the Upper Miocene adakitic magmatic 
events [31].  

Based on the geological structure of the region 
and the presence of a subduction zone, along with 
the occurrence of magmatic activities such as 
intrusive, subvolcanic, and particularly extrusive 
activities along the subduction zone, it is evident 
that the Sonajil area holds significant potential for 
mineralization, especially in relation to copper-
porphyry types. The extensive magmatism 
activities, both in terms of temporal and spatial 
distribution, as well as the variation of rocks at 
different depths, including intrusive, subvolcanic, 
and extrusive rocks, further enhance the prospects 
of mineralization in the area. Additionally, this 
prospect increases more with the alteration 
development in the region [32, 33]. 

The outcrops of the Sonajil are mainly composed 
of Cenozoic deposits. The rock outcrops in the area 
can be divided into; (1) Eocene volcanic rocks: (a) 
Andesite unit, which seems to be the oldest 
lithologic unit of the area, is vastly observed in 
south and northwest portions. From a microscopic 
point of view, this unit has a porphyry texture. (b) - 
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- Apophyses and dykes with dioritic- granodioritic 
and even diabasic composition are intruded into 
this unit. (c)- Mega-porphyry andesite unit and 
porphyry andesite, (2) Oligo-Miocene intrusive 
masses: granitoid unit 3) Quaternary volcanic 
rocks: Basalt unit of quaternary, this unit is the 
youngest unit present in the area. A general 
geological map of the region is shown in Figure 1a 

The volcanic-sedimentary rocks of the Eocene 
have spread widely in the area, and they have 
included about 50% of the rock outcrops in the 
Sonajil region. These rocks are exposed in the 
area's northern, eastern, and southern parts, 
including a massive sequence of volcano-
sedimentary rocks left in the marine and 
continental environment [32, 33]. 

The most crucial alteration phases in the area 
include Potassic alteration, Argillic alteration, 
phyllic, Carbonization, and silicic alteration 

Two characteristics are visible within the 
intrusive northern bodies of the area. The bodies 
that intruded into the upper members of volcanic 
and volcano-clastic rocks (related to the Eocene 
period) exhibit no extensive hydrothermal 
alteration halo. However, the bodies that intruded 
into older units and possess suitable lithologic 
cover display a vast alteration halo. These bodies 
have a higher potential for the formation of Cu-Mo 
and/or copper-porphyry gold deposits. 

In this manner, mineralized veins are directed in 
E-SE, W-NW, and NW-SW strikes, while faults 
and fractures are directed in E-SE and W-NW 
strikes. Dykes with Monzodiorite composition and 
NE-SW trend have intercepted the altered intrusive 
bodies. Some silicic veins intruded into the 
alteration zone, parallel to mineralized veins. 

3. Geological investigation 
The Sonajil region is acknowledged as a 

promising area for porphyry Cu deposits. 
According to [34], host rocks and faults are two 
crucial factors in porphyry deposit exploration and 
play vital roles in determining the precise location 
of mineralization. The conceptual model of 
porphyry copper deposits was utilized to assign 
suitable weights for generating the rock unit 
indicator layer in the Sonajil area. In accordance 
with [34], granitoid units such as quartz monzonite, 
granite, and granodiorite received the highest 
scores, while basaltic lava flows/young alluvium, 
old/young terraces, and river sediments received 
the lowest scores. This information is presented in 
Table 1 and depicted in Figure 1b. The classes were 
fuzzified using the large membership embedded in 
ArcGIS 10.8. In the subsequent analysis, the 
buffering of faults was taken into consideration to 
assign weights and fuzzify the data. The areas in 
close proximity to faults were identified as the most 
influential regions and received the highest weights 
(as shown in Table 1 and Figure 1c). Subsequently, 
two indicator layers were created, one representing 
faults and the other representing rock units. These 
layers were then integrated using the weighted 
overlay option in ArcGIS 10.8, with 70% influence 
attributed to rock units and 30% influence 
attributed to region faults. The final geological map 
(Figure 1d) was generated based on this 
integration. 

A weight of 30% was assigned to the region 
faults. Ultimately, the final geological map (Figure 
1d) was generated. 
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Figure 1. Detailed geological map of the Sonajil with a scale of 1:10,000 [32], rock units’ evidential layer (b), 

faults evidential layer (c), the final geological map (d). 

4. Geochemical investigation 
Litho data were utilized to investigate and study 

the geo-chemical behavior of the Sonajil area. A 
total of 1248 samples were collected by [32]. The 
data underwent analysis for 44 elements, for 43 of 
them the ICP-Mass machine was used, while the 
F.A. machine was used for Au analysis. Censored 
values in the dataset were handled by applying the 
¾ method, which replaces them based on the 
measurement limits provided by the laboratory. 
Descriptive statistics for 16 trace elements 
associated with copper porphyry deposits (Ag, Au, 
As, Bi, Cu, K, Mn, Mo, Pb, Rb, Re, Sb, Sn, Te, W, 
and Zn) are summarized in Table 2. Statistical 
charts including histograms, boxplots, and q-q 
plots for Cu are displayed in their non-normalized 
form in Figure 2. After adjusting the outlier values, 
the data was normalized. The set of 44 elements 
underwent factor and cluster analysis as part of the 
multivariate statistical processing. 

Regarding the factorial analysis [35], the 
components were determined, the factor loadings 

after rotation was examined for the first 7 factors. 
Table 3 presents the analysis after rotation, yielding 
the following results: 

The first component shows that elements (Be, K, 
Rb), (Th, U), and (Ba, W) have a strong positive 
loading (> 0.6), while Cr and Sr exhibit a 
significant negative loading. This factor indicates 
potassium-enriched zones and the abundance of 
common elements in economic mineralization. It 
also suggests the presence of felsic rocks as a 
predominant rock type. 

The second component reveals that elements (Ce, 
La), Nb, and P display a significant positive 
loading. This component also points to another 
type of rocks, primarily consisting of felsic rocks 
in the region. These elements indicate late 
magmatic alkaline phases. 

In the third component, the elements Bi, As, Mo, 
S, and Te exhibit a strong positive loading, while 
Ca and Na, which are prominent elements in 
plagioclase feldspars, show a significant negative 
loading. This suggests that mineralization 
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throughout the Sonajil area is characterized by an 
increase in the four variables of S, Te, Bi, Mo, and 
As, as well as a decrease in the Ca and Na elements. 
Consequently, this component can help identify 
areas that are more favorable for mineralization.  

The fourth component highlights the significance 
of elements Co, Fe, Mn, Sc, and V, which are 
associated with rock-forming components 
(alkaline rocks). However, this component may not 
be crucial for exploring high-potential areas and 
mineralization in the Sonajil region. 

Table 1. Assigned weights to the factor layers in Kahang area. 
Layer Class Assigned weight 

Rock units Andesite to hornbland andesite 4 
 Basaltic lava flows 1 
 Diabasic dike 2 
 Megaporphyritic andesite 4 
 Microdiorite to microgranite dike 4 
 The Sonajil granitoid (Quartz monzonite-Granite-Granodiorite) 9 
 The Sonajil porphyritic andesite 8 
 Tuff and andesitic breccia 3 
 Young alluvium and old terraces 1 
 Young terraces and river sediments 1 

Faults (40 meters buffering) 
 5 meters 9 
 10 meters 8 
 20 meters 6 
 30 meters 3 
 40 meters 2 
 background 1 

Geo-chemistry  
Cu Probable anomaly 9 
 Possible anomaly 8 
 Threshold  4 
 Background  1 
Au Probable anomaly 8 
 Possible anomaly 6 
 Threshold  3 
 Background  1 

Alternation  
 Potassic 9 
 Phyllic  8 
 Argillic  7 
 Propylitic  3 
 background 1 

Geo-physics 
 High  9 
 Medium  7 
 Low  4 
 Very low 2 
 background 1 

 
In the fifth component, the elements Au, Cd, Re, 

and Sb demonstrate a relatively significant loading. 
These elements are typically associated with super-
mineral and epithermal mineralization. This factor 
may indicate the upper parts of porphyry 
mineralization. 

The sixth component shows the individual 
occurrence of the Hg element with a high loading, 
indicating the extensive erosion in this particular 
part. The seventh factor exhibits the highest factor 
loading for the Cu and Zn elements. Consequently, 
this factor can be regarded as a crucial indicator for 
copper mineralization. 

The dendrogram generated from cluster analysis 
(Figure 3) reinforces the findings obtained from the 
factorial analysis, with some slight variations. The 
first branch of the dendrogram corresponds to the 
first and second factors. Within this branch, the 
elements Nb, La, and Ce form one group, while the 
elements Th, U, K, Rb, and Be comprise another 
group that is associated with rock formation 
components. Another branch of the dendrogram 
corresponds to the fourth factor, which includes the 
elements Sc, V, Fe, and Mn, indicating their 
relationship with petrification processes. The third 
factor is represented by the elements Bi, Te, As, S, 
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and Mo, indicating their association with 
molybdenum mineralization. Furthermore, this 
analysis confirms the strong correlation between 
Cu and Au among all the elements.  

Based on the dendrogram data and the results of 
the factor analysis, the following eleven elements 
(As, Au, Bi, Cd, Cu, Mo, Re, S, Sb, Te, and Zn) can 
be considered as areas susceptible to exploring 
porphyry deposits in the Sonajil area.  

The concentration-number (C-N) fractal method, 
as utilized in previous studies [36, 37, 38, 39, 40, 
41], was employed to distinguish Cu and Au 

anomalies from the background in the Sonajil area. 
This fractal technique resulted in the classification 
of the area into four zones: background, threshold, 
possible (high) anomaly, and probable (very high) 
anomaly. Fuzzifying maps were generated to 
produce Cu and Au geochemical indicator layers. 
The assigned weights for the classified zones are 
presented in Table 1. Eventually, these two 
indicators (Figures 4a-d) were integrated using the 
OR operator to create the final geochemical layer 
(Figure 4e). 

 
Figure 4. (a) Logarithmic diagram of concentration – number for copper, and (b) for gold, (c) the evidential map 

of copper and (d) gold, (e) the final geochemistry map of the Sonajil area. 
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Table 2. Descriptive Statistics of geo-chemical elements of Sonajil area. 
 Minimum Maximum Mean Std. Deviation Skewness Kurtosis 

Ag 0.00 8890.00 24.39 283.48 26.16 781.87 
As 0.00 5210.00 650.37 405.69 2.34 16.62 
Au 0.00 76.00 14.31 14.45 1.34 0.72 
Bi 0.80 3920.00 927.12 312.57 1.98 14.76 
Cu 26.00 177000.00 23331.50 17660.31 1.20 4.86 
K 0.00 349.00 113.53 52.52 0.88 0.95 

Mn 0.00 47500.00 1450.30 3745.57 6.00 47.09 
Mo 0.00 382.00 98.29 59.54 0.98 1.80 
Pb 0.20 227.00 20.28 18.36 4.85 40.03 
Rb 0.00 4.40 0.15 0.40 5.72 40.70 
Re 0.20 37.80 10.96 6.40 0.38 -0.24 
Sb 0.30 151.00 4.73 6.85 10.05 177.75 
Sn 1.00 939.00 73.07 41.82 7.69 148.25 
Te 0.30 25.40 3.31 2.72 2.46 9.91 
W 0.40 285.00 64.27 48.88 1.12 1.18 
Zn 0.61 26.50 10.80 4.49 0.31 0.18 

 
5. Alteration investigation 

Alteration zones are formed as a result of 
hydrothermal fluid interaction with geological 
units and exhibit distinct characteristics compared 
to their surroundings. These zones typically 
surround the core, which is the productive intrusive 
mass, and can be identified using specific patterns. 
Porphyry copper deposits are often associated with 
alteration zones such as potassic, phyllic, argillic, 
and propylitic. In porphyry mineralization, a quartz 
core and potassium minerals are surrounded by 
clay minerals and other hydroxyls that exhibit 
unique absorption characteristics in visible and 
near-infrared wavelengths [34, 42]. Detecting these 
alteration zones is crucial for successful 
exploration of the deposit. This technique offers 
advantages over other exploration methods due to 
its lower cost and ability to cover a larger area. 
Remote sensing methods, including the use of the 
ASTER (Advanced Spaceborne Thermal Emission 
and Reflection Radiometer) satellite sensor on the 
TERRA platform, have proven to be critical for 
identifying alterations [12, 15, 16]. Prior to data 
processing and analysis in the remote sensing 
environment, operational steps, known as pre-
processing, are applied to ensure the data is suitable 
and useful. Typically, image pre-processing 
involves radiometric correction, geometric 
correction, atmospheric correction, and cropping 
the image to the desired area [43]. In the case of the 
Sonajil studied area, all these pre-processing steps 
were conducted on the ASTER image using the 
ENVI 4.8 (Environment for Visualizing Images) 
software. Both image-based and spectrum-based 

techniques were applied to analyze the Sonajil 
ASTER image. 

3.2. Image-based processing methods and 
analysis 

Image analysis involves the discrete and selective 
selective recognition of phenomena based on their 
spectral reflection in various wavelengths. 
Statistical techniques such as band rationing, 
principal component analysis (PCA), and false 
color composite (RGB) are commonly employed 
for this purpose. Different color and grayscale 
images can identify various phenomena through 
these methods, considering factors such as color, 
texture, shape, topography, waterway patterns, 
geological location, and more. In this study, band 
rationing is utilized as the image-based technique, 
as it enables the identification of minerals based on 
their unique absorption and reflection features in 
different wavelength bands. By applying band 
ratios that depict absorption and reflection, an 
output image representing the targeted mineral can 
be generated. The ASTER satellite images' VNIR 
and SWIR bands are combined in various 
permutations to create different band ratio 
combinations [12, 15, 16]. In this study, this 
technique is applied to the ASTER image of the 
Sonajil region to detect phyllic, argillic, and 
propylitic alterations, as shown in Figures 5a, 5b, 
and 5c, respectively. Furthermore, based on the 
spatial distribution of silicate and carbonate 
minerals in the thermal bands (8-12 micrometers); 
as presented by [44], the presence of quartz, which 
exhibits absorption in the 10 and 12 bands and 
reflection in the 11 band, can be indicative of the 
potassic alteration zone. Therefore, by using the 
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inverse of the Qi ratio, the potassic alteration in 
porphyry deposits can be detected [45], as shown 
in Figure 5d. 

3.3. Spectrum-based image processing methods 
and analysis 

To implement this approach, a spectral reference 
or spectral curve is necessary. In this procedure, the 
software compares the characteristics of the target 

spectrum with the satellite data set, identifies the 
target spectra, and extracts them. In the case of 
detecting porphyry copper alterations, spectral 
analysis can be applied to the minerals listed in 
Table 4. Moreover, each spectral signature can be 
extracted from the Spectral Library within the Envi 
4.8 software. 

Table 3. Rotated matrix of the factor analysis in the Sonajil area. 
 Component 

1 2 3 4 5 6 7 
Ag 0.128 0.378 -0.211 -0.117 0.201 0.406 0.013 
Al 0.259 0.398 0.241 0.339 -0.385 -0.165 -0.203 
As 0.207 -0.542 0.554 -0.008 0.307 0.081 -0.090 
Au 0.o75 -0.156 0.062 -0.059 0.671 -0.133 0.234 
Ba 0.672 0.008 -0.025 0.024 -0.047 -0.207 -0.009 
Be 0.800 0.137 -0.074 -0.081 0.023 0.036 0.127 
Bi 0.038 -0.123 0.678 0.062 0.010 -0.152 0.214 
Ca -0.393 0.336 -0.583 0.414 -0.009 -0.088 0.067 
Cd 0.176 -0.012 -0.089 -0.112 0.634 0.224 0.207 
Ce 0.170 0.897 -0.096 -0.035 -0.028 0.050 -0.004 
Co -0249 0.193 -0.397 0.730 -0.048 -0.113 0.21l6 
Cr -0.621 0.445 0.038 0.194 -0.105 -0.121 0.183 
Cs 0.407 -0.346 -0.079 0.172 0.102 -0.181 0.118 
Cu 0.123 -0.160 0.095 0.223 0.334 0.067 0.565 
Fe -0.1es -0.110 0.067 0.805 -0.061 -0.014 0.148 
Hg 0.073 -0.016 0.094 0.183 -0.045 0.772 -0.037 
K 0.866 0.033 -0.156 -0.225 0.001 0.090 0.058 
La 0.165 0.918 -0.114 -0.021 -0.037 -0.004 -0.072 
Li -0.135 -0.021 0.529 0.132 0.502 0.136 -0.372 

Mg -0246 0.382 -0.416 0.584 -0.152 -0.258 0.105 
Mn 0.106 -0.124 -0.511 0.609 0.118 0.052 0.085 
Mo 0.219 -0.078 0.627 -0.213 0.365 0.205 0.195 
Na -0.101 0249 -0.669 0.169 -0.440 -0.175 0.200 
Nb 0.343 0.619 -0.21l6 -0.219 -0.197 0.369 0.042 
Ni -0.484 0.558 -0.247 0.174 -0.028 -0.218 0.227 
P -0.317 0.623 -0.075 0.387 -0.353 0.090 0.081 

Pb 0.167 0.104 0.526 -0.364 -0.030 0.040 0.337 
Rb 0.888 0.051 -0.023 -0.176 0.114 0.127 0.042 
Re 0.381 0.100 0.172 0.103 0.589 -0.178 -0.057 
S -0258 -0.006 0.745 0.016 -0.027 -0.082 -0.175 

Sb 0.302 -0.411 0.305 -0.223 0.593 -0.025 -0.072 
Sc -0.066 0.128 -0.030 0.860 -0.048 0.083 -0.026 
Sn 0.571 0.106 0.181 -0.096 0.138 0.457 0.225 
Sr -0.611 0.393 0.060 0.283 -0.324 -0.045 -o.1n 
Te -0.171 -0.161 0.760 0.047 -0.011 0.004 -0.124 
Th 0.727 0.479 0.081 -0.082 0.193 0.233 -0.109 
Ti -0.311 0.467 -0.185 0.566 -0.398 0.018 0.076 
Tl 0.631 -0.270 0.251 -0.131 0234 -0.211 0.287 
U 0.765 0204 0.162 -0.167 0.162 0.279 -0.162 
V -0.152 -0.235 0.192 0.848 -0.076 0.052 0.002 
W 0.699 -0.126 0.133 -0.192 0.391 0.335 -0.010 
Y 0.635 0.360 -0.281 0.281 0264 0.162 -0.094 
Zn -0.014 0.165 -0.269 0.361 0.139 -0.088 0.635 
Zr 0.320 0.508 -0.345 -0.169 -0.136 0.500 -0.168 

Table 4. Indicator minerals for the alterations of copper porphyry deposits. 
Alterations Minerals 

Propylitic Chlorite, Epidote, Calcite 
Argillic Kaolinite, Montmorillonite, Illite 
Phyllic Sericite, Quartz, Pyrite 
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The Spectral Information Divergence (SID) method 
is utilized for spectral classification by calculating the 
divergence between pixels and known spectra. Lower 
divergence values indicate a higher likelihood of 
pixel similarity. Pixels with a divergence 
measurement exceeding a specified threshold are not 
classified [46]. The SID method is employed to 
distinguish phyllic, argillic, and propylitic alterations 
in the Sonajil area, represented in Figures 5e, f, g. 

Linear Spectral Unmixing (LSU) involves 
decomposing the target spectrum of a mixed pixel 
into its constituent spectra, known as endmembers, 
and creating an image fraction collection that 
indicates the proportion of each endmember present 
in the pixel. LSU operates under the assumptions that: 
1) each endmember is known, 2) multiple scattering 
among different endmembers is negligible, 3) 
endmembers have sufficiently distinct spectral 
characteristics to allow separation, and 4) a pixel is a 
linear combination of its constituent endmembers 
[47]. LSU is also employed to identify phyllic, 
argillic, and propylitic alteration zones in the Sonajil 
area, depicted in Figures 5h, i, j. 

The Binary Encoding (B.E.) classification 
approach transforms the data and endmember spectra 
into binary values (zeros and ones). This 
transformation is performed based on whether a band 
value falls below or above the average spectrum 
value. An Exclusive OR (XOR) operator compares 
each encoded reference spectrum with the encoded 
data spectra and generates a classification image. All 
pixels are classified to the endmember with the 
highest number of matching bands, unless a minimum 
match threshold is set, in which case some pixels may 
remain unclassified if they do not meet the criteria 
[48]. B.E. is the final technique employed for 
detecting phyllic, argillic, and propylitic alterations in 
the Sonajil area, illustrated in Figures 5k, l, m. 

Based on the exported maps (Figure 5a-m), a 
general alteration map of the Sonajil area was 
generated (Figure 5n). This map classifies the area 
into four alteration classes: potassic, phyllic, argillic, 
and propylitic. To create the final indicator map of 
alteration, fuzzification was applied, taking into 
account the conceptual model of porphyry deposits. 
Table (1) presents the assigned weights for the 
classified zones. 

6. Geophysical investigation 

In the Sonajil area, magnetometry studies were 
conducted to measure the intensity of the Earth's 

magnetic field. These studies are useful for exploring 
mineral resources that contain magnetite iron ore, as 
they provide insights into the characteristics of these 
resources through measurements of the total intensity 
of the magnetic field and analyzing the rate of change 
in this intensity using mathematical methods. 

The surveying grid used in the Sonajil area had 
dimensions of 20 × 50 meters, with 20 meters for the 
east-west direction and 50 meters for the north-south 
direction. The recorded magnetic data showed a 
significant difference between the minimum and 
maximum values, amounting to approximately 2,400 
nT. The Earth's magnetic field intensity in the region 
was measured to be around 48,920 nT. 

The SCINTREX ENVI pro-Proton Magnetometer 
device was used to record the magnetic data. To 
process the data, IGRF (International Geomagnetic 
Reference Field) and diurnal correlations were 
applied using the Geosoft_Oasis montaj 6.4.2 
software. This processing allowed for the creation of 
a total field magnetic (residual) map. 

The bipolar nature of magnetic anomalies can 
complicate the analysis of magnetic maps, as the 
origin of the anomaly is typically located between the 
positive and negative poles. To address this issue, the 
"return to the pole" filter is commonly used. At the 
magnetic north pole of the Earth, the magnetic vector 
enters the Earth vertically, causing the positive pole 
to strengthen and align directly above its origin, while 
the negative pole weakens and migrates towards the 
edges of the anomaly. This filter helps reduce the 
complexity of the magnetic field intensity map, and 
the locations of magnetic origins coincide with the 
positive pole. 

In the Sonajil area, the reduced-to-pole (RTP) 
transformation was applied to the residual magnetic 
data. This transformation removes the inclination 
effect of the induced magnetic field by relocating it to 
the magnetic north pole. Additionally, weights were 
assigned to different magnetic rate classes based on a 
given criteria (as shown in Table 1). Fuzzification was 
then applied using a Gaussian membership type to 
generate the final indicator geophysical (RTP) map, 
as depicted in Figure 6. 

According to previous studies [15, 16], areas with 
high magnetic intensity levels are typically associated 
with unaltered rocks, while regions with low 
magnetic intensity levels are linked to regional 
sediments. These areas may not exhibit significant 
relevance to mineralization. The geophysical (RTP) 
map can help identify potential mineralization zones 
based on the locations of medium anomalies. 
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Figure 5. Output alterations of phyllic, argillic, and propylitic by using various techniques of band rationing (a) 

to (d), SID (e) to (g), LSU (h) to (j), BE (k) to (m), the final alteration map (n). 
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Figure 5. (continued). 

 
Figure 6. Geophysical magnetometery layers of the reduced to pole (RTP). 
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7. Layer fusion using the fuzzy gamma operator 
The fuzzy set theory, introduced by [49], 

provides a mathematical framework for 
investigating natural phenomena in the 
environment. In this theory, a fuzzy set represents 
an object classified by graded sequences of 
membership. Membership values are assigned 
between 0 and 1, indicating the level of certainty or 
degree of belongingness of an object to a particular 
class or category. Fuzzy set theory allows for a 
more flexible representation of uncertainty and 
ambiguity in data analysis. 

In the context of this study, fuzzy set theory is 
employed to integrate multiple indicator maps with 
fuzzy membership functions using the fuzzy 
gamma operator. The fuzzy gamma operator is a 
combination of the fuzzy algebraic product and the 
fuzzy algebraic sum, controlled by the gamma 

parameter, which ranges from 0 to 1. It provides a 
flexible approach for integrating weighted maps 
and can be easily implemented using software such 
as ArcGIS. 

In this study, the fuzzy gamma operator is used to 
to fuse the fuzzy membership functions and create 
a mineral potential map. The selection of 
membership weights is determined by the geo-
expert based on their expertise and understanding 
of the study area. The gamma value, which controls 
the degree of influence of each membership 
function, is determined through a trial-and-error 
approach. In the Sonajil area, the gamma value of 
0.87 is chosen, and the final Mineral Potential Map 
(MPM) is generated, as depicted in Figure 7. 

It's important to note that the selection of fuzzy 
membership weights and the gamma value requires 
expert judgment and can be tailored to the specific 
study area and objectives of the analysis. 

 
Figure 7. Final mineral prospectivity map in the Sonajil area using fuzzy gamma operator. 

8. Discussions 
In this study, Mineral Prospectivity Mapping 

(MPM) is conducted to identify potential regions 
for porphyry copper mineralization in the Sonajil 
area. The MPM approach integrates various 
geospatial datasets including geology, remote 
sensing, geochemistry, and geophysics to analyze 

and fuse the information and identify areas with a 
high likelihood of hosting economically viable 
mineralized targets. 

The geospatial database used in this study 
consists of four main criteria: geology (rock units 
and faults), remote sensing (alteration), 
geochemistry (Cu and Au anomalies), and 
geophysics (RTP). These criteria provide valuable 
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information related to the presence of porphyry 
copper mineralization. Expert knowledge from 
experienced professionals in porphyry mineral 
exploration is also incorporated into the analysis. 

Six evidential layers are generated from the 
geospatial database, and the fuzzy gamma operator 
technique is applied to combine these layers and 
create the final MPM. The fuzzy gamma operator 
approach allows for the integration of weighted 
maps and the incorporation of expert knowledge. 
The gamma value, determined through a trial-and-
error approach, controls the influence of each 
evidential layer in the final MPM. 

The Jenks's natural classification method is used 
to classify the MPM into different classes. This 
classification technique aims to minimize variance 
within classes while maximizing variance among 
classes. It provides a meaningful representation of 
the data and generates thematic layer maps that 
accurately depict patterns and trends in the 
potential for porphyry copper mineralization. 

The selection of the Jenks's natural classification 
method is based on its suitability for the study area 
and its ability to effectively represent the data 
according to the literature and the author's 
experience in the Sonajil area. 

In order to assess the accuracy of the Mineral 
Prospectivity Mapping (MPM) results, information 

from 20 drilled boreholes in the Sonajil area was 
used. The boreholes were classified into five 
categories: very low, low, average, high, and very 
high, based on their mineralization potential. 

The MPM, which was divided into five classes 
using the Jenks classification approach, was 
compared to the borehole classification. The 
comparison showed that there was an 83.33% 
agreement between the determined classes in the 
MPM and the actual mineralization situation in the 
boreholes (Table 5). This high agreement 
percentage indicates the reliability and accuracy of 
the MPM in identifying potential mineralized 
areas. 

Based on the analysis of the Mineral 
Prospectivity Mapping (MPM), it is evident that 
the north-east and south-west portions of the 
Sonajil area exhibit a higher potential for 
mineralization. These regions show favorable 
characteristics and indicators according to the 
MPM results. 

The fuzzy gamma operators utilized in the MPM 
analysis have demonstrated a high agreement 
percentage, further supporting the reliability of the 
findings. As a result, the red areas identified in the 
MPM (as shown in Figure 7) are considered highly 
promising for future exploration studies and 
drilling activities. 

Table 5. Comparison between obtained MPM and Jenk classification approach. 

Score 
Status of 

classification 
to 5 groups 

Status of borehole 
classified to 5 

groups 
Borehole Score 

Status of 
classification 
to 5 groups 

Status of borehole 
classified to 5 

groups 
Borehole 

0 Very low Very low 12 -1 Very high High 1 
-1 Low Very low 13 -1 High Average 2 
0 Very low Very low 14 0 Very high Very high 3 
0 Low Low 15 0 High High 4 
0 Very low Very low 16 -1 Very high High 5 
0 Low Low 17 -1 Very high High 6 
0 Very low Very low 18 -1 Average Low 7 
0 Very low Very low 19 2 Very low Average 8 
0 Very low Very low 20 -1 Low Very low 9 
    1 Very low Low 10 

83.33% Agreement percentage  0 Very low Very low 11 

 
9. Conclusions 

In conclusion, this study aimed to identify 
promising areas for Cu-Au porphyry 
mineralization in the Sonajil area. The 
conventional and popular fuzzy gamma operator in 
MPM was chosen as the integrated approach, 
allowing for flexible integration of weighted maps 
from various data sets including geology, remote 
sensing, geochemistry, and geophysics. Two main 
distinct zones, the north-east (N.E.) and south-west 

(S.W.) portions were highlighted as promising ore 
trapping regions that are closely associated to the 
fault mechanism of the studied area as well. 

The accuracy of the map was acknowledged 
through previous drillings, which implies that 
complementary drilling can be suggested aiming at 
reservoir modelling. Based on the 83.33% 
agreement percentage, the red zones identified in 
the MPM were recommended as promising areas 
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for further exploration studies and drilling 
activities. 

Note that a study of this kind presented here 
would improve our knowledge about main 
controllers of Cu-Au mineralization and serve as a 
reference for further exploration for not only in this 
area but also for investigating other similar areas. 
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  چکیده:

نفوذي،  ي ماگماییهاتیفعال يمنطقه دارا ،یشناس نیساختار زم يقرار دارد. بر اساس مطالعات انجام شده بر رو رانیا یشرق جانیدر استان آذربا لیمنطقه سوناج
-Cu يریپورف انواع يبرا ژهیبه و ،يساز ینکا يآن برا يبالا لیپتانس لیمنطقه به دل نیا جه،یفرورانش بوده است. در نت يندهایفرآ نیو همچن کم ژرفا و آتشفشانی

Au يریپورف کانسار روي بالا بر لیمناطق با پتانس ییشناسا يبرا يفاز يگاما عملگر تلفیقی کردیاستفاده از رو یقاتیکار تحق نیا یشناخته شده است. هدف اصل 
و  هیزاست. تج يضرور کیزیو ژئوف ییایمیسنجش از دور، ژئوش ،یشناسنیزم يهااز جمله داده شاهد هیلا نیچند یبررس ،یاکتشاف کردیرو نیانجام ا ياست. برا

) MPM( یمعدن لینقشه پتانس دقتباشد. می لیپتانس لیمنطقه سوناج یو جنوب غرب یشمال شرق يبخش ها در حاکی از پتاسیل بالاي کانسار پورفیري هالیتحل
تطابق بالاي مدل . با توجه به دهدمیدرصد را نشان  83.33 تطابقشد که درصد  یابیشده ارز يگمانه حفار 20 يهاهبر اساس داد لیحاصل در منطقه سوناج

  .شوندیم هیتوص شتریب يو حفار یمطالعات اکتشاف ياند براشده ییشناسا MPMکه در  یخاص يها، مکانبررسی شده

  .لی، سوناجتلفیقطلا،  -مس يریپورف ،يفاز ي)، عملگر گاماMPM( پتانسیل معدنی ينقشه بردار کلمات کلیدي:
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