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 This study aims to develop an empirical correlation model for estimating the uranium 
content of the G-V in the Gabal Gattar area, northeastern desert of Egypt, as a function 
of the thorium content and the total gamma rays. Using the recent MATLAB software, 
the effect of selecting tan-sigmoid as a transfer function at various numbers of hidden 
neurons was investigated to arrive at the optimum Artificial Neural Network (ANN) 
model. The pure-linear function was investigated as the output function, and the 
Levenberg-Marquardt approach was chosen as the optimization technique. Based on 
1221 datasets, a novel ANN-based empirical correlation was developed to calculate the 
amounts of uranium (U). The results show a wide range of uranium content, with a 
determination coefficient (R2) of about 0.999, a Root Mean Square Error (RMSE) equal 
to 0.115%, a Mean Relative Error (MRE) of -0.05%, and a Mean Absolute Relative Error 
(MARE) of 0.76%. Comparing the obtained results with the field investigation shows 
that the suggested ANN model performed well. 

Keywords 

ANN 
Uranium and thorium 
concentrations 
Total gamma-ray 
Modelling 
Gattar area 

1. Introduction 

Artificial neural networks (ANNs) are presently 
utilized in a wide range of applications like reserve 
estimation, optimal estimation, real-time data 
analysis, non-linear problems, and problem 
prediction. ANNs are data processing systems that 
consist of a large number of interconnected 
processing elements that simulate biological neural 
networks. 5 models of ANNs are being used for a 
wide variety of tasks in many different fields of 
business, industry, and science, particularly mining 
and geology. In this technique, there is one input 
and one output layer, and at least one hidden layer 
that permits ANNs to define non-linear systems [1] 
and [2].  

Natural radiations are generally divided into 
two categories: terrestrial and cosmic. The most 
significant naturally occurring radioisotopes are 
those from U238 and Th232, as well as their 

breakdown products. These radionuclides are 
found at variable concentrations in the Earth's 
crust. As a result, natural radiation varies from one 
location to another, with minimal variances [3], [4] 
and [5]. 

In the field of mining and geology, many 
researchers have used ANNs as a new technique for 
determining and forecasting the ore grade [5-16]. 

Based on the remote sensing and mineral 
exploration data put in a GIS database [6] 
suggested a back-propagation ANN model to 
determine the high-grade gold zones and potential 
in the Rodalquilar gold field, south-east Spain. A 
neural network model with three hidden units the 
trained network efficiently predicted a gold 
potential map, showing a good agreement with the 
available data.  [7] used ANNs to evaluate the 
distribution of Fe content within the iron ore body 
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of Choghart in the Yazd Province of Iran. The 
deposit was classified into four homogenous zones, 
and the analysis was performed on each zone as 
well as the whole zone. The results show that the 
ANNs performed on the four zones were 
effectively higher than the ANNs applied to the 
overall ore body.  [8] employed support vector 
machine (SVM) and ANN methods to characterize 
the organic richness of the source rock from well 
log data. The results from ANN and SVM 
decreased the computational time, and highly 
repeatable results were obtained. 

Radioactive concentrations in Hazar Lake in 
Turkey were studied by  [5] using an ANN model 
and geographical maps. The 226 Ra, 232Th, and 238U 
activity concentrations in water samples collected 
from the lake were 1.439 Bq/L, 4.508 Bq/L, and 
14.682 Bq/L, respectively. The generated results 
have mean square errors that are fewer than 1.5%. 
The model for this investigation is valid, as 
evidenced by the correlation coefficient being near 
+1. 

[9] used the ANN method to determine the link 
between the concentration of radon and various 
geo-physical, geological, and climatic 
characteristics that affect gas emissions from soil 
222Rn data collected over a period of seven years in 
Campi Flegrei, an Italian volcanic caldera near 
Naples. The results show that radon follows the 
times of caldera agitation, as shown by a 
comparison with earlier investigations using 
different methodologies, and that the ANN method 
is effective. 

Various quantities of radioactive materials are 
contained in geological structures, and the source 
of this natural radioactivity is the existence of 
radionuclides in the earth's crust. Among these 
radioactive materials is uranium, of which nearly 

all uranium is present in nature as the isotope U238. 
Uranium minerals are formed as a result of 
combining with different processes. It is found in 
almost all types of rocks and water in trace 
quantities [17], [18], [19] and[20]. Uranium ore in 
Gattar-V (G-V), located in the G. Gattar area, is 
associated with granite and Hammamat sediment 
rocks. Uranium ore deposits in the studied area 
have been examined by the Egyptian Nuclear 
Materials Authority (ENMA). 

The goal of this work is to propose, firstly, a 
new empirical correlation based on non-linear 
multiple regression (NLMR), and secondly, a new 
ANN-based model to determine the U 
concentration as a function of thorium and total 
gamma-ray contents in Gattar-V (G-V) U 
occurrences. 

2. Location and Geologic Setting 

The studied area is located about 35 kilometers 
west of Hurghada city on the Red Sea coast, which 
is a part of the G. Gattar area, in the Egyptian 
Eastern Desert. (Figure 1). The studied area is 
bounded by latitudes 27° 07' 00" and 27° 07' 47" N 
and longitudes 33° 16' 50" and 33° 18' 00" E. 

The G. Gattar area is located in the North Estern 
Desert of Egypt; it is deserted, and is mostly 
covered by basement rocks. As part of the G. Gattar 
area, the G-V uranium occurrence is mostly hosted 
in late Neoproterozoic granite with accompanying 
dikes and veins, as well as late Precambrian 
Hammamat sedimentary rocks (HSR) [21], [22] 
and [23]. Previous geological investigations 
classified these rock types as HSR (oldest), Gattar 
granite, acidic dikes, and basic dikes (youngest) in 
order of their age (Figure 2). 
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Figure 1. Geological map of Gattar granite, showing the country rocks location of the mineralized site aftar [24]. 
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Figure 2. Deatiled geological map of G – V occurrence after [25] and [26]. 

G-V uranium occurrence can be considered a 
possible potential deposit for uranium, thorium, 
and yattrium (U, REE, and Y) and other rare metals 
mineralization. The mineralizations are caused by 
alkaline and oxidizing hot fluids, with the 
contribution of meteoric water. The hot fluids 
flowed up along the ENE-WSW and NE-SW faults 
to cause a rather complicated series of metasomatic 
reactions. The rare metals were mobilized from the 
younger granite pluton of Gattar and concentrated 
at the contact with Hammamat sediments. The 
reaction of the mineralizing solutions with the wall 
rocks and the pseudomorphic oxidation of pyrite 
caused the reduction and fixation of uranium [27]. 
[28] and [29] used the X-ray diffraction technique 
to identify uranophane and tyuyamunite as 
secondary uranium minerals in the studied area. 

The mineralizations are structurally controlled 
and located along the contact shear zone of the W. 
Belih area, where they record a complex history of 
deformations. The uranium mineralization is 
located along the footwall of a shear zone striking 
ENE-WSW to NE-SW and dips 45◦- 73◦ to SE. This 
shear zone was reactivated during its tectonic 
history, starting from compression trending NW-
SE and NE-SW, respectively, to younger 
extensional events trending NW-SE  [30]. Detailed 

subsurface structural studies of GV occurrence in 
mining works revealed the presence of major sub-
surface uranium mineralized trends recorded in the 
main fracture, and the fualts mostly had ENE-
WSW and NE-SW directions in the mine [31]. 

3. Methodology of Study 
3.1. Data gathering 
3.1.1 Measurements and field data gathering 

In the current research work, the fieldwork has 
been completed with the geologist of the G. Gattar 
project to complete the lacking geological 
information. Gamma-ray measurements, sampling 
for geo-chemical analysis and small-scale 
documentation for the radioactive anomaly zones 
are all included in this data. 

At this occurrence, a grid with intervals of X 
axis = 20 meters and Y axis = 10 meters is carried 
out, covering a space that is 320 meters wide and 
720 meters long (Figure 3). The profiles have a 
N27°W direction, running through the HSR in the 
north, crossing the contact zone between G. Gattar 
granite and Hammamat sediments. This grid is 
primarily used to monitor topography and 
radioactivity. The total number of these points is 
1221, where uranium and thorium are expressed in 
equivalent concentrations (eU and eTh). 
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Figure 3. The grid pattern for 1221 datasets that are constructed in the G-V uranium occurrence, G. Gattar 

area. 

3.1.2. Radioactivity 

Data point coordinates, rock type, total gamma-
ray (cps), eU (ppm), and eTh (ppm) are utilized in 
this work. Radioactivity is the result of the 
spontaneous disintegration of some unstable 
atomic nuclei. The nucleus produces alpha and beta 
particles, as well as electromagnetic rays, during 
this process. Natural background radioactivity is 
produced by the combined decay of uranium (U238, 
U235, and U234), thorium (Th232), and potassium 
(K40) isotopes that emit gamma rays. Gamma-ray 
radiation measurement, which is the most practical 

approach for radiometric exploration surveys, is 
required for detection by different apparatuses. In 
the field, scintillometers are used to detect and 
measure gamma-ray intensity. Total gamma-ray 
radiation is detected in the field using a portable 
gamma-ray scintillometer detector, model RS-230 
(Figure 4), which detects total gamma-ray in counts 
per second (cps), eU part per milion (ppm), and eTh 
(eTh) (ppm). The spectrometer was calibrated in 
the NMA's laboratory. An exhaustive ray survey is 
performed on the different rock types in the 
research region, inside the specified grid pattern, to 
detect surface concentrations of radio elements. 
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Figure 4. Field in situ measurements of gamma activity by a scintillometer detector (model RS-230). 

3.1.3. Statistic evaluation 

The G-V occurrence is a part of the G. Gattar 
area that is loacted in the northern part of the 
Egyptian Eastern Desert, where 1221 datasets were 
measured. The statistical analysis shown in Table 1 
reveals the extensive range of the used data, with 
total γ-ray values ranging from 140 to 349 (ppm), 
eTh content values ranging from 5 to 38.9 (ppm), 
and eU values ranging from 4 to 37.9 (ppm). Figure 
5 displays the 0.83 correlation coefficients between 
the output parameter (uranium content) and the 
input parameters (total gamma-ray and thorium 

content), respectively. The coefficient of 
correlation is used to measure how strong a 
relationship is between two variables. There are 
several types of coefficients of correlation, but the 
type used in this paper is Pearson’s. Pearson’s 
coefficient of correlation is commonly used in 
linear regression. To calculate Pearson’s 
coefficient of correlation, we use this equation: 

ݎ =
(ݕݔ)∑݊ − ∑)(ݔ∑) (ݕ

ඥ⌊݊∑ݔଶ − ݊]⌊ଶ(ݔ∑) ଶݕ∑ − [ଶ(ݕ∑)
 (1) 

Table 1. The datasets used in the investigation. 
Statistical parameters total γ-ray(cps) eTh (ppm) eU (ppm) 

Mean 227.1 21.26 12.75 
Standard error 1.45 0.23 0.15 
Median 219 21.7 12.9 
Mode 216 12.2 7.2 
Standard deviation 50.78 8.12 5.31 
Sample variance 2578.56 65.93 28.22 
Kurtosis -0.4 -0.84 3.07 
Skewness 0.63 -0.03 1.06 
Range 209 33.9 33.9 
Minimum 140 5 4 
Maximum 349 38.9 37.9 
Count 1221 1221 1221 
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Figure 5. Correlation coefficients between eU (ppm) and input parameters (total γ-ray (cps) and eTh (ppm). 

3.2. Development of new correlation using 
NLMR 

Using non-linear multiple regression (NLMR) 
to determine the uranium concentration as a 
function of thorium and total gamma, a novel 

mathematical association was given in this paper. 
Seventy percent (855 datasets) were used for 
training the model, and 366 datasets (30%) were 
used for validation and testing the model.  

The developed correlation can be expressed as: 

 

Uோ = a଴ାaଵG + aଶT + aଷGଶ + aସTଶ + aହGଷ + a଺Tଷ + a଻GT + a଼GଶT+ aଽGTଶ (2) 

 
The coefficients of the suggested correlation are 

shown in Table 2. With a 0.99 determination 
coefficient, 3.85 standard deviation, 0.518 RMSE, 
-0.22% average percentage error, and 2.61% 
average absolute percentage1 error. This 
connection accurately predicts the uranium 
content. Figure 6 displays the cross-plots that 
analyze the behavior of this correlation. For hand 
calculations that facilitate and give a quick picture 
of the uranium content, this correlation can be used. 

Table 2. NLMR-based proposed correlation 
coefficients. 

ܽ଴ 72.85978 ܽହ 0.000011 
ܽଵ -0.870365 ܽ଺ -0.00392 
ܽଶ 4.650621 ܽ଻ 0.000059 
ܽଷ 0.000897 ଼ܽ -0.00022 
ܽସ -0.057115 ܽଽ 0.001628 

3.3. Development of ANN-based empirical 
model 

An ANN-based empirical model was proposed 
to calculate the U concentration as a function of 
total γ-ray and Th concentration. For this model, 
855 datasets (70 percent of total datasets) were 
used for training, and 366 datasets (30 percent) 

were used for validation and testing. We examined 
the tan-sigmoid function of various numbers of 
hidden neurons in order to reach the best model. 
The pure-linear output function and the Levenberg-
Marquardt training algorithm were both chosen in 
this approach. 

3.4 Levenberg-Marquardt technique  

An optimization method called the Levenberg-
Marquardt Technique (LMT) was used to handle 
non-linear least squares issues. These 
miniaturization issues are particularly prevalent 
when fitting least-squares curves. The Gauss-
Newton Algorithm (GNA) and the gradient color 
(GC) technique are interpolated by LMT. Since 
LMT is more resilient than GNA, it frequently 
finds a solution even when it begins very far from 
the final minimum. LMT typically runs slower than 
GNA for well-behaved functions and suitable 
beginning values. In many software programs, 
LMT is utilized to address general curve-fitting 
issues. It frequently converges more quickly with 
GNA than first-order techniques. LMA only 
discovers a local minimum, not necessarily a global 
minimum, like other iterative optimization 
techniques [32]. 
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Figure 6. Using the suggested NLMR-based colouring, compare the estimated data with the actual data for eU 

(ppm). 

4. Findings and Analysis 
4.1. TIN forecasting maps of total gamma 
radioactivity, equivalent uranium, and 
equivalent thorium  

The Geographic Information System (GIS) 
software projected the triangulated irregular 
network (TIN) map of total gamma radiation in G. 
Gattar based on 1221 datasets in Figure 7. It is 
possible to pinpoint exactly where the total gamma 
radiation is high and low in G. Gattar, as well as 
where it is distributed. As can be seen in Figure 7, 
the total gamma radioactivity of the G. Gattar 
ranged from 140 to 349 cps, showing localized 
total gamma radioactivity, particularly in the south 
and southwest. 

While Figure 8 shows a TIN map of eU in G. 
Gattar that an ARc map, the GIS program 
predicted. It is possible to pinpoint exactly where 
high and low eU areas are located in G. Gattar, as 
well as where they are distributed. According to 

Figure 8, the eU of the G. Gattar ranged from 4 to 
37.9 ppm, showing selective eU in various places, 
particularly in the areas of the south and south-
west, as well as the south-east, whereas the area of 
the east had a low concentration. 

The TIN map of eTh in G. Gattar shown in 
Figure 9 was predicted using a GIS program. It is 
possible to pinpoint exactly where total gamma 
activity is high and low in G. Gattar, as well as 
where it is distributed. The equivalent thorium of 
the G. Gattar ranged from 5 to 38.9 ppm, as shown 
in Figure 9, showing selective eTh in various 
places, particularly in the areas of the south and 
south-west, as well as the south-east, whereas the 
area of the east had a low concentration. 

This behavior demonstrates the concentration of 
eU and eTh in the total gamma radiation. As a 
result, this can assist project engineers in 
forecasting the high and low activity levels in G. 
Gattar as well as in determining whether or not the 
area will need to be developed for industry. 
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Figure 7. Map for prediction of the total gamma radioactivity concentrations (cps) measured over 1221 points. 

 
Figure 8. Map for prediction of the eU concentrations (ppm) measured over 1221 points. 
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Figure 9. Map for prediction of the eTh concentrations (ppm) measured over 1221 points. 

4.2. Model enhancement and description 

The input layer, hidden layer, and output layer 
are all parts of the suggested model. The total γ-ray 
and Th content are the two neurons that make up 
the input layer's input parameters. There are eight 
neurons in the buried layer. One neuron for the 
output parameter, the U content, is present in the 
output layer. We investigated the tan sigmoid as a 
transfer function for various numbers of hidden 
neurons (4, 5, 6, 7, 8, 9, and 10) in order to arrive 

at the ideal ANN model, as shown in Table 3. We 
discovered that n = 8 had both the highest 
coefficient of determination and the lowest RMSE. 
To prove this, a Levenberg-Marquardt technique 
was chosen as the training procedure, and the 
output function's pure-linear function was 
scrutinized. The characteristics of the suggested 
models are listed in Table 4, and Figure 10 (a, b) 
depicts the recommended ANN model's 
architectural layout. 

Table 3. Evaluation of model accuracy at various numbers of hidden-layer neurons. 
 Four neurons Five 

neurons 
Six 

neurons 
Seven 

neurons 
Eight 

neurons 
Nine 

neurons 
Ten 

neurons 
R2 0.997139 0.999028 0.997422 0.99784 0.999529 0.998401 0.999343 
SD 3.429524 1.705442 3.102467 2.239395 1.203021 1.906754 1.539997 
RMSE 0.283365 0.165337 0.267381 0.246299 0.115109 0.212715 0.13593 
RE -0.3403 -0.00401 -0.13114 -0.00786 -0.07779 -0.05588 -0.09827 
AE 1.963738 1.154657 1.969398 1.387439 0.761271 1.145853 0.959828 

Table 4. Features of the suggested ANN model. 
Parameter Value 

Model layers Three 
Neurons of the input layer Two 
Neuronsof hidden layer Eight 
Optimization technique Levenberg-Marquardt 
Activation function of hidden layer Tan-Sigmoid 
Transfer functionof output layer Pure-linear 
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Figure10 a. The suggested architecture of the ANN model for computing uranium content. 

 
Figure10 b. The suggested architecture of the ANN model for computing uranium content. 

4.3. Suggested ANN model 

We substitute real GR and Th content in the 
following equations (Eqs. 3 and 4) to normalize 
them to be used in Equeation 5. 

GR୬ = 0,009569GR − 2,339713 (3) 

TH୬ = 0,058997eTh − 1,294985 (4) 

 

The inputs of the selected eighth hidden layer 
are calculated using the following formula using 
the normalized parameters for each dataset and the 
neuron-specific model coefficients (Table 5): 

௜ܵ = ௡W௜ଵܴܩ + ௡W௜ଶܪܶ + ܾ (5) 

To determine the U content for each dataset, 
the following mathematical expression can be 
used: 

 

Uோ = 16,95 ൤෍൬
2

1 + eିଶ×ୗ೔
− 1൰w୦୧ + b୦൨ + 20,95 (6) 

 

Table 5. The proposed model's coefficients. 
i ܟ૚ ܟ૛ b ࢎ࢈ ܐܟ 
1 -1.542 2.4188 5.096 0.8786 1.2144 
2 -0.7686 -0.313 1.2914 -1.117  
3 6.4385 -7.324 -2.379 1.8542  
4 4.8988 -6.764 -1.736 -1.316  
5 10.005 -5.89 1.9553 0.4661  
6 -7.0944 2.1264 -4.524 -1.815  
7 3.6362 -2.573 0.9424 -0.998  
8 -1.7142 -2.094 -3.419 2.5518  
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Figure 11 depicts the calculated values of 
uranium content as a function of the actually 
measured ones. All the data points fall near the 
unit-slope straight line with coefficients of 
determination values greater than 0.999. This 
indicates that the proposed model is a reliable 
predictive tool. 

The use of the neural network method is 
justified from two reasons: first, this study proves 
the ability to develop an ANN-based empirical 
correlation capable of predicting the uranium 
content. Second, the ANN-based correlation is 
more accurate to predict the uranium content, 
especially in large datasets. 

 

  

  
Figure 11. Cross-plots of training, validation, and testing of the proposed model for eU (ppm). 

5. Conclusions 

From this work, the following conclusions can 
be drawn: 

During orecast concentration maps, using GIS 
in the G-V located in the G. Gattar area of the 
Eastern Desert of Egypt, total gamma, eU and eTh 
map analyses were successfully built, allowing the 
low and high concentrations to be identified. The 
high concentration of total gamma radioactivity in 
the studied area is located in the south and south-
west. Uranium is concentrated in different parts of 
the studied area. In the south parts, they show a 
high concentration, while it shows a low 
concentration in the east of the studied area. 
Thorium shows a high concentration in the south, 
south-west, and south-east parts of the studied area, 
but it shows a low concentration in the east of the 

studied area. For the purpose of forecasting 
uranium concentration as a function of the total γ-
ray and thorium contents, a non-linear multiple 
regression (NLMR)-based model was created. The 
results show that the determination coefficient (R2) 
between the estimated and actual eU was 0.99. This 
correlation was used to simplify and provide a fast 
overview of uranium through manual 
computations. In addition, a complete ANN-based 
approach was presented to determine the uranium 
concentration as a function of thorium and total γ-
ray contents, where ANNs are very accurate. The 
proposed model is a fast, reliable, not expensive, 
and powerful predictive tool. This model can be 
used through software for more accurate results. 
Moreover, any alternative dataset from a different 
place may be used with the proposed models. 
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  چکیده:

از  یمصـر، به عنوان تابع یشـمال شـرق يدر منطقه گابل گتار، صـحرا G-V  ومیاوران  يمحتوا  نیتخم يبرا  یتجرب  یمدل همبسـتگ کیمطالعه با هدف توسـعه  نیا
 دنیرس  يپنهان برا  يهامختلف نورون  دبه عنوان تابع انتقال در تعدا  tan-sigmoidانتخاب   ریتأث  ،و کل اشعه گاما است. با استفاده از نرم افزار متلب میتور  يمحتوا

ــب نهیبه مدل به ــبکه عص ــنوع  یش  ــANN(  یمص  ــ یخالص به عنوان تابع خروج یقرار گرفت. تابع خط ی) مورد بررس - لونبرگ  کردیقرار گرفت و رو یمورد بررس
  ومیاوران  ریمحاسـبه مقاد يبرا دیجد ANNبر   ینمبت  یتجرب  یهمبسـتگ کیمجموعه داده،   1221انتخاب شـد. بر اسـاس  يسـازنهیبه  کیارکوارت به عنوان تکنم
)U(  نییتع بیرا با ضـر  ومیاوران  ياز محتوا یعیوس ـ  فیط ج یشـد. نتا جادی) اR2  مربعات خطا (  نیانگیم  شـهی، ر0.999) حدودRMSE  نی انگ می  ،٪0.115) برابر با  

ان م  نیانگیو م  0.05٪- (MRE) ینسـب يخطا که   دهدینشـان م  یدانیم یآمده با بررس ـدسـتبه ج ینتا سـهی. مقا0.76٪ (MARE) ینسـب يدهد. خطایمطلق را نشـ
 داشته است. یعملکرد خوب يشنهادیپ ANNمدل 

  .گتار هیناح ،يسازکل، مدل يپرتو گاما م،یو تور ومی، غلظت اورانANN کلمات کلیدي:

  

 

 

 


