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 The goal of this research work was to use an Artificial Neural Network (ANN) 
model to predict the ultimate bearing capacity of circular footing resting on 
recycled construction waste over loose sand. A series of plate load tests were 
conducted by varying the thickness of two sizes of recycled construction waste (5 
mm and 10.6 mm) layer (0.4d, 0.6d, 0.8d, 1d, and 1.2d, d: diameter of footing) 
prepared at different relative densities (30%, 50%, and 70%) overlaying.  The 
ultimate bearing capacity obtained for various combinations was used to develop 
the ANN model. The input parameters of the ANN model were thickness of 
recycled construction waste layer to diameter of circular footing ratio, angle of 
internal friction of sand, unit weight of sand, angle of internal friction of recycled 
construction waste and unit weight of recycled construction waste, and the model's 
output parameter was ultimate bearing capacity. The FANN-
SIGMOD_SYMMETRIC model with topology 3-2-1 provided a higher estimate 
of the ultimate bearing capacity of circular footing, according to the ANN 
findings. The sensitivity analysis also revealed that the unit weight of sand and 
angle of internal friction of sand had insignificant effects on ultimate bearing 
capacity. The estimated ultimate bearing capacity was most affected by the angle 
of internal friction of recycled construction waste. The result of multiple linear 
regression analysis was not as good as the ANN model at predicting the ultimate 
bearing capacity. 
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1. Introduction  

The foundation has always been the most 
crucial component of any construction, as it 
distributes the structural weight to the sub-surface 
soil layers. The weight should be dispersed such 
that neither the foundation nor the earth layers will 
collapse. Therefore, it is essential to evaluate the 
underlying soil's ability to support a load. It is 
crucial to understand how the foundation interacts 
with loose sand strata. The difficulty with building 
on loose sand is that, because of the pressure of the 
overburden, it may experience severe shear stress. 
Furthermore, the underlying structure probably has 
a high settlement value. As a result, before starting 
any project, settlement must be carefully assessed. 
Unsaturated, unconsolidated sediments that, when 
wet, quickly rearrange their particle sizes and 

drastically reduce in volume are referred to as loose 
or collapsible soil. Loose sand is susceptible to 
significant settlements because of its natural 
tendency to drain freely, which creates foundation 
problems. Therefore, a remedy must be used to 
increase the bearing capacity and reduce the related 
settlements [1].  

Many different ground renovation methods are 
being employed to reinforce unstable soil layers 
and make them acceptable for building. 
Vibrolotation [2], grouting [3], cell confinement 
[4], geosynthetic material reinforcement [5], fibre 
reinforcement [6] [7], chemical stabilisation  [8] [9] 
[10], and mechanical stabilization [11] [12] are a 
few of these methods. Blayi et al. [11] improved 
the strength of expansive soil by utilizing waste 
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glass powder. Daraei et al. [13] stabilized the 
problematic soil by four cementitious materials 
including cement, quicklime, gypsum, and NaCl, 
and reported reduction in collapsibility.  Further, 
Daraei  et al. [14] stabilized the soil of swelling soil 
using the cement grout.  

Some of these techniques are too expensive and 
complicated for a big project. Therefore, it is 
essential that sustainable and economical solutions 
be found. Utilising recycled construction waste 
(RCW) is one of the suggested solutions for the 
problem. 

Crushed concrete, fractured and crushed 
masonry, and mixed demolition debris make up 
construction and demolition waste [15]. 
Construction and demolition waste were left 
behind after a structure has been built, restored or 
demolished. Additionally, municipal corporations 
all over the globe, particularly in India, where 
53.13 million tonnes of municipal solid waste were 
created in 2017, are becoming increasingly 
concerned about how to handle and manage 
constructing and demolition waste due to its 
environmental impact. 31% of the total waste 
generated is inert waste, which includes demolition 
and construction debris. India produces 150 MT of 
demolition waste per year or 35–40% of the world's 
construction and demolish (C&D) waste [16]. Only 
around 1% of the construction and demolition 
debris generated in India gets recycled, according 
to the Centre for Science and Environment (CSE). 
Landfills are used to dispose of the remaining 
waste. Finding fresh approaches to re-establish 
ecological balance and safeguard the environment 
is thus crucial. In civil engineering applications, it 
may be obtained by recycling and reusing 
construction and demolition waste [17].  

The usage of RCW fragment made from 
pulverised concrete is advised in building projects 
with several standards [18]. Construction and 
demolition waste's ability to reduce the need for 
raw material extraction is one of its most notable 
benefits. As a result, emissions of greenhouse gases 
and other pollutants have drastically lowered. 
Additionally, waste disposal facilities and related 
costs may be minimised. The replacement of 
unstable soil up to a large depth, low-lying land 
infill, sub-base for road building, etc. are only a few 
geotechnical uses for construction and demolition 
debris. 

Geotechnical uses for C&D waste include fill 
material for retention structures, bank protection, 
subbase course material for paving, and more [15]. 
Arulrajah et al. [19] evaluated the geotechnical and 
geoenvironmental parameters of the C&D waste 

material employed as a pavement subbase. It was 
said that recycled concrete aggregate (RCA) was a 
more geotechnically sound material than 
conventional granular material and that it was also 
ecologically benign. The geotechnical properties of 
clayey soil were enhanced in a study by Jain and 
Chawda [20] by adding well-graded pulverised 
concrete aggregate (0.5%, 10%, and 25%), and the 
results were promising. Henzinger and Heyer [21] 
conducted an experiment to find out what happens 
when recycled demolition material is added to fine-
grained soils. Low, medium, and high plasticity 
clay soils were combined with 50% recycled 
aggregate. With the addition, dry density and 
bearing capacity were observed. The findings 
showed that recycled aggregate functioned better in 
less plastic soils. The unconfined compressive 
strength and California bearing ratio of clay were 
found to be greatly improved by the addition of 
recycled concrete aggregate, dragged asphalt 
fragments, and natural gravel aggregate by Cabalar 
et al. [22]. Iqbal et al. [1] studied the geotechnical 
use of drinking water sludge (DWS) combined 
with crushed concrete (CC) and incinerator ash 
(IA). Among the experiments conducted in the lab 
were the California bearing ratio (CBR), undrained 
triaxial compression, compaction, and 
consolidation. In addition, an empirical equation 
for the maximum dry density and blending 
proportion was created. The consolidated 
undrained triaxial compression test results show 
that the addition of CC/IA to DWS increases 
friction angles but has no effect on the undrained 
shear strength. The compressibility of DWS is 
greatly reduced by the CC mix, especially in 
samples with more than 50% CC and CC/IA, 
according to consolidation experiments. CC and 
DWS are often utilised effectively as a road 
subgrade.  

Recycled crushed concrete (CC), according to 
Karkush and Yassin [23], improved the 
geotechnical and chemical properties of porous 
soil. The porous soil samples underwent CC 
treatments of 5%, 10%, and 15%. The unconfined 
compressive strength (UCS) measurement was 
utilised to determine the shear strength 
characteristics of porous soil. 10% CC increased 
the chemical properties of soft soil, but bigger 
concentrations of CC significantly decreased those 
values even if they were still better than those of 
soft soil. The compaction curve may measure a 
maximum dry density of 1.81 g/cm3 or 15% 
pulverised concrete. Pulverised concrete improved 
soil cohesion by reducing soil expansion and 
compression when mixed with loose soil. The 
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porous soil's shear strength and related 
compressibility increased by 175–193.5% and 25–
31%, respectively. There hasn't been much study 
on the use of C&D residue in stabilising porous 
soil. By placing a CCD sand (CCD-S) composite 
on random sand, Sharma et al. [24] investigated the 
possibility of employing crushed concrete debris 
(CCD) as a foundation material. A direct shear test 
and a modified proctor test were each conducted in 
order to assess the shear strength parameters and 
the ideal CCD-S composite %. Additionally, plate 
load studies were conducted when a non-woven 
geotextile was used at the CCD-S mixture's 
interface. The experimental findings showed that 
the bearing capacity of sand was improved by 3.2 
and 3.26 times, respectively, with the use of CCD-
S composite and the insertion of geotextile at the 
interface. Sharma and Sharma [25] found that 
adding an appropriate amount of construction and 
demolition waste increased clayey soil's 
permeability and strength.  

Old concrete that had been crushed and 
added, lowered the settlement and improved 
stiffness modulus more than bricks. Aljuari et al. 
[26] performed a numerical investigation on 
expanding soil by partially replacing it with 
concrete material using the Geo-Studio 2007 
software. The depth of the crushed concrete layer, 
which varied from 20 to 70 cm with a 10-cm 
increment, and the amount of time needed for full 
expansion were among the several characteristics 
that were examined. Both evaluations of these 
parameters - with and without a footing - were 
performed. According to the research work, the 
thickness and width of the layers of pulverised 
concrete increased while the vertical swelling 
decreased. It was shown that applying pulverised 
concrete strata more successfully prevented the 
vertical expansion of high suction soil than low 
suction soil. Eventually, the vertical expansion 
decreased as the CC layers' thickness climbed. 
Three types of C&D wastes (dragged asphalt, 
crushed brick, and crushed concrete) were tested 
for their influence on the behaviour of a low-
plasticity clay intended for use as a road subgrade 
layer by Al-Obaydi et al. [27] using a field 
California bearing ratio test. Crushed concrete was 
shown to be an effective addition and to increase 
CBR values more so than other debris.  

A study by Shourijeh et al. [28] found that 
incorporating RCA into reinforced clay greatly 
increased its unconfined compressive and tensile 
strength. It was suggested that a mixture of 28-day-
cured clay reinforced with 0.5% fibres and 
stabilised with 10% recycled concrete aggregates 

be used for subbase layers in both flexible and stiff 
pavements. Zhang et al. [29] evaluated the 
efficiency of C&D waste as aggregates in sulfate-
alkali-activated polypropylene-fiber-reinforced 
cement-stabilized soil (CSS). The ideal 
percentages of Portland cement, polypropylene 
fibre, construction and demolition debris, and 
sodium sulphate were found to be 30%, 4%, 20%, 
and 0.8%, respectively. Soni et al. [30] evaluated 
the behaviour of square footing over recycled 
concrete aggregate resting on loose sand, and 
noticed that at a lower relative density, larger size 
aggregate performs better, and at higher relative 
density, smaller size aggregate performs better. 
Previous research has mostly focused on RCW's 
potential as a filler, a substitute for NCA in 
concrete, and a subgrade soil. The RCW has not 
been the subject of much study. The influence of 
RCW size variation has also not been well-
investigated. Therefore, extensive numerical and 
experimental analysis is required to demonstrate 
the viability of using RCW as a foundation 
material.  

Now adays, the use of artificial neural network 
is getting popularity in the civil engineering as 
well. Verma  and Kumar [31] predicted the 
equation for the modified Proctor compaction 
parameters of fine-grained soil, and found that the 
propsed ANN model was more superior to those 
other models mentioned in the literature. Das and 
Basudhar [32] developed an artificial neural 
network model to predict the lateral load capacity 
of piles in clay. Three criteria were selected to 
compare the ANN model with the available 
empirical models: the best fit line for predicted 
lateral load capacity (Qp) and measured lateral load 
capacity (Qm), the mean and standard deviation of 
the ratio Qp/Qm, and the cumulative probability for 
Qp/Qm. Ornek et al. [33] used ANN technique for 
prediction of bearing capacity of circular footings 
on soft clay stabilized with granular soil. Similarly, 
for the prediction of ultimate bearing capacity of 
circular foundation on sand layer of limited 
thickness, Sethy et al. [34] used artificial neural 
network.   

Further, Golewski [35] noticed the 
improvement in the strength parameters and 
microstructural properties of concrete with the 
inclusion of coal fly ash and Nanosilica. Further, 
the combined fly ash, silica fume, and Nano silica 
with ordinary Portland cement on the mechanical 
properties and brittleness of concrete were also 
studied by Golewski [36] [37] [38]. Golewski [39] 
described the main requirements for the 
construction of pocket foundation with particular 
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attention to the type of surface present inside the 
pocket. Wang et al. [40] represented fabrication 
and properties of concrete containing industrial 
waste. Haeri et al. [41] simulated the bluntness of 
TBM disc cutters in rocks using displacement 
discontinuity method. In another work, Haeri et al. 
[42] adopted a multilaminate based model  to 
predict the the elasto-plastic behaviour of rock.  
Sarfarazi et al. [43] evaluated the tensile strength 
of concrete using a novel apparatus called as see -
saw. Fu et al. [44] concluded that compressive 
strength of the of concrete is highly affected by the 
fracture pattern and failure mechanism assuming 
different configurations of the cracks and the hole 
locations. Sarfarazi [45] studied the effect of 
bedding layer on the tensile failure behaviour in 
hollow disc models using particle flow code.  

In the last two decades, the use of recycled 
concrete waste (RCW) in applications such soil 
subgrade, filler material, and as a replacement for 
naturally occurring coarse aggregates (NCA) in 
concrete have been the subject of several research 
works. Regarding the use of RCW as a foundation 
material, research is noticeably lacking. 
Furthermore, the effects of various RCW particle 
sizes have not yet been fully investigated. The 
present study aims to predict the ultimate bearing 
capacity of circular footing resting over an RCW 
layer overlaying loose sand. The data obtained 
through plate load test was used to develop 
Artificial Neural Network (ANN) and multiple 
linear regression (MLR) models. In the plate load 
test, the effects of different parameters on the 
bearing capacity were evaluated including relative 
density (ID = 30%, 50%, and 70%), thickness of 
RCW layer to diameter of circular footing ratio (u/d 
= 0.4, 0.6, 0.8, 1.0, 1.2; d: diameter of footing), and 
size of recycled construction waste (RCW) (5 mm 
and 10.6 mm) on the bearing capacity were 
assessed. 

2. Research Methodology 
2.1 Soft computing techniques  

In this investigation, the ultimate bearing 
capacity of circular footing resting on recycled 
construction waste over loose sand was predicted 
by utilising the two soft computing methodologies. 
The primary purpose of ANN modelling is to 
predict an undetermined outcome based on the 
input data. To predict the outcome, software 
requires a set of variables and the results of 
scientific research. An ANN requires at least three 
layers to function correctly. Information-receiving 
neurons are located in the upper layer. To evaluate 

the accuracy of the network's current operation, 
two sets of data are required. To determine the 
number of concealed layers and neurons, however, 
only a handful of methods were reported in the 
scientific literature. In this investigation, Boger and 
Guttman's [46] rule of thumb was applied. 
According to Boger and Guterman [46], 70% (or 
2/3rds) of the extent of the input layer can be 
assumed to be the number of neurons in the hidden 
layers. The output of a neuron is dependent from 
the activation function chosen. Metrics including 
root mean square error (RMSE), mean absolute 
percentage error (MAPE), mean absolute error 
(MAE), and mean square error (MSE) are used to 
quantify performance, with lower values 
suggesting higher activation function efficacy. 
Accuracy levels are determined by MAPE values. 
The MAPE values of less than 10%, between 10% 
and 20%, between 20% and 50%, and greater than 
50% were considered accurate, good, acceptable, 
and imprecise, respectively [47]. The evaluation of 
ANN models makes use of correlation coefficient 
(r) and the coefficient of determination (R2). The 
error models used to anticipate the ultimate bearing 
capacity using a neural network approach are 
displayed in Table 1. The Agiel neural network 
software was used in this study. 

Multiple linear regression analysis (MLRA) is 
used to determine the optimal relationship between 
a single continuous dependent variable and two or 
more continuous dependent variables. This study 
examined the relationship between the ultimate 
bearing capacity of circular footing (dependent 
variable) and u/d ratio, angle of internal friction 
and unit weight of RCW and sand (independent 
variables) using SPSS 12.0. 

Given n observations, the following is a general 
model for calculating the MLRA. 

µy = βo + β1x1 + β2x2 + β3x3 …+ βnxn (i) 

where µy represents the dependent variable, xi 
represents the independent variables, and βi 
represents the predicted parameters, respectively.  

2.2. Data collection  

A set of plate load tests were carried out in 
laboratory to determine the ultimate bearing 
capacity of circular footing resting over an RCW 
layer overlaying loose sand. The physical 
properties of the sand, and RCW (5 mm and 10.6 
mm) obtained from laboratorial tests performed in 
cord with various Indian Standards is tabulated in 
Table 2.  Figure 1(a) and (b) show the RCW used 
in this study. The friction angle of RCW-II was 
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smaller than RCW-I at RD = 50% and 70%. The 
higher values of friction angle of RCW-I compared 
to RCW-II may be perhaps attributed to better 
interaction among the particles of RCW-I due to 
the large specific surface area. However, further 
investigation is required to be conducted for the in-
depth study. The observed behaviour of RCW 
under shear was contrary to the results reported by 

Islam et al. [48]. The authors observed decrease in 
the angle of internal friction of cohesionless soil 
with the increase of effective size at lower 
densities. Further, at higher density of cohesion 
less soil, an increment in the angle of internal 
friction was seen with the increase of effective 
particle size.  

Table 1 Various statistical parameters and error models 
Statistical parameter Mathematical expression 

Correlation coefficient (r) 푟 =  
∑ 푄 . 푄 − 푛푄  . 푄

(푛 − 1)푆 . 푆
 

Coefficient of determination (R2) 푅 = 1 − 
∑ 푄 − 푄

∑ 푄 − 푄
 

Mean square error (MSE) 푀푆퐸 =  
1
푛

푄 − 푄  

Root mean square error (RMSE) 푅푀푆퐸 =  
1
푛

(푄 − 푄 ) 

Mean absolute error (MAE) 푀퐴퐸 =  
1
푛 푄 − 푄  

Mean absolute percentage error (MAPE) 푀퐴푃퐸 =  
1
푛

푄 − 푄
푄

× 100 

Note: Qut Qup: target and predicted Qu respectively, 푄푢푡, 푄푢푝 : mean of the target and predicted Qu respectively, 
SQut, SQup: standard deviation of the target and predicted Qu and n: is the number of observations 

Table 2 Physical properties of the sand, RCW-I and RCW-II 

Properties Value 
Sand RCW-I RCW-II 

Specific gravity, Gs 2.60 2.65 2.70 
Grain-size distribution     
Clay (< 2 µm) - - - 
Silt (2-75 µm) 2.7 - - 
Sand (0.075- 4.75 mm) 97.3 - - 
Gravel (> 4.75 mm) - 100 100 
Coefficient of curvature, Cc  1.01 0.96 0.93 
Coefficient of uniformity, Cu 1.73 1.55 1.49 
Classification SP GP GP 

Angle of internal 
friction 

Relative density (%)    
30 32.1° 38.3° 40.4° 
50 - 44.8° 41.7° 
70 - 50.2° 49.1° 

Unit weight 
(kN/m3) 

Relative density (%)    
30 13.60 11.63 12.67 
50 - 12.15 13.20 
70 - 12.66 13.75 
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Figure 1 (a) RCW -5 mm; (b) RCW-10.6 mm; (c) Prepared sand test bed, (d) Prepared RCW test bed; (e) Test 

setup 

The model circular footing of cast iron of 80 
mm diameter and 10 mm thickness was used. The 
plate load test was carried out in a testing tank with 

interior dimensions of 700 mm x 450 mm x 600 
mm (as shown in Figure 1(e)). The testing tank was 
filled with two different layers. The loose sand and 
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RCW were poured at the lower and upper layers of 
the tank, respectively. To maintain the loose 
behaviour of the sand, the tank was filled with sand 
in three equal layers using the raining technique up 
to the required height [49] [24] [50]. The upper side 
encompasses RCW was placed over the prepared 
sand bed (Figure 1(d)).  Prior to the experiment, the 
appropriate relative density was established by a 
series of tests with various fall heights. In each trial, 
densities were measured by taking samples in 
known-volume aluminium cups that were 
positioned at various points in the test tank. Based 
on the marked height in the tank and the initial 
density (30%), the weight of the sand was 
determined. The sand was meticulously levelled 
once it had been filled to the desired height of 450 
mm. Standard-sized containers were set up at 
various locations throughout the tank to measure 
the sand's unit weight. After that, the prepared sand 
bed was covered with a layer of RCW. Utilising the 
unit weight and the volume of the RCW, the weight 
corresponding to a certain relative density for each 
RCDW layer was calculated. A 6 N wooden 
rammer was used to manually compress the 
RCDW after it had been manually poured to fill the 

layer from a constant height [50] [30].  The test was 
carried out on the prepared sand bed using a load 
cell and strain-controlled loading frame of capacity 
5 kN and 50 kN, respectively. All tests were 
conducted using a strain rate of 0.24 mm/min. The 
test was carried out up to a settlement of 20% of the 
footing diameter. For more details regarding the 
testing assembly and preparation of testing tank 
have already been published [30]. The influence of 
various parameters such as relative density (ID = 
30%, 50%, and 70%), thickness of RCW layer to 
diameter of circular footing ratio (u/d = 0.4, 0.6, 
0.8, 1.0, 1.2; D: diameter of footing), and size of 
RCW (5 mm and 10.6 mm) on the bearing capacity 
were assessed. The obtained pressure-settlement 
behaviour of circular footing resting on loose sand 
overlaying RCW of 5 mm and 10.6 mm at u/d = 1.2 
is shown in Figure 2(a) and 2(b), respectively. To 
develop the ANN model of the study, the input 
parameters were taken as u/d, ϕ1 (angle of internal 
friction of sand), γ1 (unit weight of sand), ϕ 2 (angle 
of internal friction of RCW), and γ2 (unit weight of 
RCW), and output parameter was ultimate bearing 
capacity. The dataset used for this investigation is 
shown in Table 3. 

  
(a) (b) 

Figure 2 Pressure-settlement behaviour of circular footing resting on loose sand overlaying RCW at u/d =1.2 (a) 
5 mm (b) 10.6 mm 
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Table 3 Data set used for modelling 

Input parameters Output 
parameter 

u/d ϕ1 

(°) 
γ1 

(kN/m3) 
ϕ2 

(°) 
γ2 

(kN/m3) 
qult 

(kN/m2) 
0 32.1 13.86 0 0 62.18 

0.4 32.1 13.86 38.3 11.86 99.8 
0.6 32.1 13.86 38.3 11.86 121 
0.8 32.1 13.86 38.3 11.86 156 
1 32.1 13.86 38.3 11.86 174 

1.2 32.1 13.86 38.3 11.86 198 
0.4 32.1 13.86 44.8 12.39 138 
0.6 32.1 13.86 44.8 12.39 212 
0.8 32.1 13.86 44.8 12.39 241 
1 32.1 13.86 44.8 12.39 285 

1.2 32.1 13.86 44.8 12.39 319 
0.4 32.1 13.86 50.2 12.91 207.1 
0.6 32.1 13.86 50.2 12.91 286.2 
0.8 32.1 13.86 50.2 12.91 339.21 
1 32.1 13.86 50.2 12.91 359 

1.2 32.1 13.86 50.2 12.91 398 
0.4 32.1 13.86 40.4 12.92 108 
0.6 32.1 13.86 40.4 12.92 138.3 
0.8 32.1 13.86 40.4 12.92 161.2 
1 32.1 13.86 40.4 12.92 197 

1.2 32.1 13.86 40.4 12.92 206.5 
0.4 32.1 13.86 41.7 13.46 118 
0.6 32.1 13.86 41.7 13.46 181 
0.8 32.1 13.86 41.7 13.46 210 
1 32.1 13.86 41.7 13.46 244 

1.2 32.1 13.86 41.7 13.46 285 
0.4 32.1 13.86 49.1 14.02 195.8 
0.6 32.1 13.86 49.1 14.02 251.9 
0.8 32.1 13.86 49.1 14.02 291.8 
1 32.1 13.86 49.1 14.02 329.5 

1.2 32.1 13.86 49.1 14.02 365.8 
 

3. Result and Discussion 
3.1. Ultimate bearing capacity equation using 
artificial neural network 

Based on the results obtained through model 
plate load test, the Agiel neural network software 
[51] was employed to predict the ultimate bearing 
capacity of circular footing resting on RCW over 
loose sand. For training and testing purposes, 70% 
and 30% data obtained through numerical analysis 
were taken.  

In this investigation, Boger and Guterman's [46] 
rule of thumb was utilised. The number of hidden 
layers and the number of neurons in each hidden 
layer were determined to be 1 and 4, respectively, 
based on the Boger and Guterman's [46] research 
work. Next, the number of epochs for the neural 

network model must be determined. To avoid 
training-induced noise and poor prediction, it 
became crucial to determine when to stop training. 
A trial-and-error approach was used to determine 
the required number of data training and evaluation 
iterations. The mean square error (MSE) between 
ANN predictions and target values was calculated 
using distinct epoch values. Only the training data 
with the lowest MSE value would be used to 
determine the structure of the neural network 
model. When the values of epochs decreased, 
training was discontinued. Given the 
aforementioned information, 950 epochs and a 5-
4-1 topology ANN model were chosen for training. 
Figure 3 depicts the proposed neural network 
model's topology. This study investigates the 
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performance of artificial neural network structures 
with varying activation functions. The ultimate 
bearing capacity was determined by trial and error 
for both training and testing sets at 950 repetitions. 
It takes longer to accomplish the iteration 

procedure the more trials are conducted. In this 
investigation, the algorithm's default learning rate 
was set to 0.7. As shown in Tables 4 and 5, the 
efficacy of various activation functions was 
predicted for training and assessment datasets. 

 
Figure 3 5-4-1 Topology of the artificial neural network model 

Table 4 Performance measures for various activation function for the training data 

Activation Function r r2 MSE RMSE MAE MAPE (%) 

FANN-Linear 0.78 0.19 4322.08 65.74 53.13 24.08 
FANN-THRESHOD -1.90E-16 -6E+32 30637.87 175.04 155.78 254.42 
FANN-THRESHOD-SYMMETRIC 2.73E-16 -2E+32 218294.7 467.22 460.35 189.18 
FANN-SIGMOID 0.97 0.96 212.62 14.58 11.06 6.08 
FANN-SIGMOD_STEPWISE 0.97 0.97 195 13.96 11.41 6.22 
FANN-SIGMOD_SYMMETRIC 0.97 0.96 222.97 14.93 10.28 5.16 
FANN-SIGMOD_ 
SYMMETRIC_STEPWISE 0.96 0.93 397.99 19.95 14.23 7.23 
FANN-GAUSSIAN 0.99 0.97 201.67 14.2 10.93 5.81 
FANN_GAUSSIAN_SYMMETRIC 0.99 0.96 269.24 16.41 11.44 6.57 
FANN-GAUSSIAN_STEPWISE -1.90E-16 -6E+32 30637.87 175.04 155.78 254.42 
FANN_ELLIOT 0.91 0.91 436.12 20.88 16.39 9.64 
FANN_ELLIOT_SYMMETRIC 0.89 0.85 693.07 26.33 18.81 9.56 
FANN_LINEAR_PIECE 0.32 -14.92 15404 124.11 110.75 35.33 
FANN-LINEAR_ 
PIECE_SYMMMETRIC 0.81 0.35 3508.18 59.23 46.85 21.07 
FANN_SIN_SYMMETRIC 0.97 0.87 860.18 29.33 22.15 12.04 
FANN_COS_SYMMETRIC 0.98 0.95 288.28 16.98 13.14 8.19 
FANN_SIN 1 0.95 307.23 17.53 12.91 7.03 
FANN_COS 0.53 -0.61 4520.35 67.23 44.4 17.87 
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Table 5 Performance measures for various activation function for the testing data 

Activation Function r r2 MSE RMSE MAE MAPE (%) 

FANN-Linear 0.98 0.96 259.85 16.12 12.23 6.61 
FANN-THRESHOD -1.90E-16 -2.71 7310.22 85.5 69.86 26 
FANN-THRESHOD-SYMMETRIC 2.73E-16 -3.05 11101.07 105.36 85.73 28.33 
FANN-SIGMOID 0.97 0.96 205.75 14.34 11.27 6.27 
FANN-SIGMOD_STEPWISE 1 0.99 73.57 8.58 6.34 3.21 
FANN-SIGMOD_SYMMETRIC 1 0.99 51.7 7.19 5.74 2.49 
FANN-SIGMOD_ 
SYMMETRIC_STEPWISE 0.97 0.96 211.48 14.54 10.65 5.28 

FANN-GAUSSIAN 0.99 0.96 239.81 15.49 10.5 5.45 
FANN_GAUSSIAN_SYMMETRIC 0.98 0.96 216.93 14.73 10.43 5.7 
FANN-GAUSSIAN_STEPWISE -1.90E-16 -2.3E+30 7418.6 86.13 70.65 28.33 
FANN_ELLIOT 0.97 0.97 190.72 13.81 11.02 5.96 
FANN_ELLIOT_SYMMETRIC 0.97 0.96 205.96 14.35 11.28 6.22 
FANN_LINEAR_PIECE 0.82 0.49 3226.88 56.81 46.9 18.92 
FANN-LINEAR_ 
PIECE_SYMMMETRIC 0.98 0.95 322.65 17.96 13.45 7.17 

FANN_SIN_SYMMETRIC 0.98 0.95 330.29 18.17 14.76 8.81 
FANN_COS_SYMMETRIC 0.98 0.95 298.16 17.27 14.46 8.56 
FANN_SIN 0.98 0.95 332.28 18.23 14.68 8.8 
FANN_COS 0.6 -0.23 4177.39 64.63 44.75 17.74 

 
The efficacy of each activation function was 

predicted based on Tables 4 and 5 for both the 
training and testing data sets. The FANN-
SIGMOD_SYMMETRIC function had the highest 
correlation coefficient (r), determination 
coefficient (R2), and the lowest MAPE, RMSE, 
MAE, and MAPE values among all the activation 
functions in the current investigation. The 

statistical values for FANN-
SIGMOD_SYMMETRIC training and testing data 
are displayed in Table 6. Figure 4 depicts the 
relationship between the predicted and desired 
ultimate bearing capacity in the training and testing 
data set for the FANN-SIGMOD_SYMMETRIC 
activation function with 5-4-1 topology. 
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Figure 4 Prediction and target ultimate bearing capacity circular footing resting in sand overlying RCDW in the 

training and testing data set using ANN 
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Table 6 Statistical values for the training and testing data for the best activation function 

Statistical Values FANN-SIGMOD SYMMETRIC Function 
Training data Testing data 

r 0.97 0.99 
R2 0.96 0.99 
MSE 222.97 51.70 
RMSE 14.93 7.19 
MAE 10.27 5.73 
MAPE 5.16% 2.48% 

 
Using a technique described by Garson [52], a 

sensitivity analysis was conducted to determine the 
influence of individual parameters on compression 
capacity. This method's output was determined by 
absolute weight. To circumvent this issue, Olden 
and Jackson [53] proposed a new method termed 
"Relative Importance," which computes the total of 
the final weights between hidden layer neurons and 
output neurons based on the weight of the 
connection between the input parameter and hidden 
layer neurons. The calculation is as follows: 

푅퐼 =  푤 × 푤  (ii) 

where:  

RIj = Relative importance of jth input layer 
neuron 

wk  = Weight of connection between kth 
hidden layer neuron and output neuron 

wjk = Weight of connection between jth input 
parameter and kth hidden layer neuron 

h  = Number of neurons in hidden layer 

bhk = Bias at the kth hidden layer neuron 

On the basis of the neural network model's 
weights, the impact of five input variable quantities 
on the predicted capacity was investigated. Table 7 
displays the weight of connection between the 
input parameter and hidden layer neuron, as well as 
between the hidden layer neuron and output 
neuron, for the FANN-SIGMOD_SYMMETRIC 
function. Figure 5 depicts the relative relevance of 
each parameter of the FANN-
SIGMOD_SYMMETRIC function based on the 
ANN model of output ultimate bearing capacity. 
The analysis of Figure 5 reveals that the ϕ 2 is the 
most significant parameter, followed by γ2 and u/d. 
Further, it can be concluded that ϕ1 and γ1 are 
indirectly proportional to the predicted ultimate 
bearing capacity. 

 
Figure 5 Individual variables' relative importance in determining ultimate bearing capacity 
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Table 7 Final weights between the input neuron and hidden neuron as well as hidden neuron and output neuron 

Neuron Weights (wjk) Biases 
qu u/d ϕ1 γ1 ϕ2 γ2 Bhk Bo 

Hidden 1 -1.6249 -0.9873 0.3224 0.3217 -1.7300 -0.3135 0.292864 0.118797 
Hidden 2 -2.9684 -1.1400 1.2321 1.1816 -3.9935 -0.4271 1.10773 - 
Hidden 3 -2.3537 -1.5060 0.7649 0.6486 -2.4040 -0.3581 0.74467 - 
Hidden 4 7.2176 2.3686 -3.2147 -3.3720 7.2871 0.3475 -3.24335 - 

 
The primary equation of the ANN model 

relating the input parameter to the output ultimate 
bearing capacity is: 

푞 = 푓{푏 + (푤 ∗ 푓[푏 + 푤 ∗ 푋  (iii) 

qult = Ultimate bearing capacity 

f = Activation function  

bo = Weight of output layer bias  

bhk = Weight of kth hidden layer neuron  

m = Number of neurons in the output layer  

Xj = standardized input parameter j in ranges 
between (-1 and 1). 

The model equation for the ultimate bearing 
capacity of a circular footing resting on RCW 
laying sand was derived using the weights and 
biases listed in Table 7, and the following 
expressions were drawn: 

 

A = 0.292864 - 0.98738 * u/d + 0.322417 * ϕ1 - 1.73009 * ϕ 2 + 0.321734 * γ1 - 0.31353 * γ2 

B = 1.10773 - 1.14006 * u/d + 1.232151* ϕ1 - 3.99357 * ϕ 2 + 1.181644 * γ1 - 0.42718 * γ2 

C = 0.74467 - 1.50605 * u/d + 0.764958 * ϕ1 - 2.40405 * ϕ 2 + 0.648686 * γ1 - 0.35817 * γ2 

D = -3.24335 + 2.368647 * u/d - 3.214743614 * ϕ1 + 7.287144* ϕ 2 + 23.37206 * γ1 + 0.347514 γ2 

E = 0.118797 - 1.624965{2/(1 + exp(-2 * 0.5 * A)) -1} - 2.968484{2/(1+exp(-2 * 0.5 * B)) -1} - 
2.353736{2/(1+exp(-2 * 0.5 * C)) - 1} + 7.217616{2/(1 + exp(-2 * 0.5 * D)) - 1} 

qult =2/(1+exp(-2 * 0.5 * E)) – 1 (iv) 

 
The value qult determined by Equation (iv) was 

between 0 and 1 for the FANN-
SIGMOD_SYMMETRIC activation function. To 
obtain the actual ultimate bearing capacity, the 
following denormalization of Equation (iv) was 
performed: 
Q(kPa) = 0.5(qult + 1) ( qultmax - qultmin) + (qultmin) (v) 

where qultmax and qultmin are the maximum and 
minimum ultimate bearing capacity, respectively. 

According to the results of the sensitivity 
analysis, ϕ1 and γ1 have a negative impact on the 
predicted ultimate bearing capacity, resulting in a 
low degree of simplification. The neural network 
was modified by ignoring the ϕ1 and γ1. This 
approach is consistent with Dutta et al. [54]. The 
revised neural network input parameters were ϕ2, 
γ2, and u/d, and the ANN model output parameter 
was the ultimate bearing capacity. Two variables 
were eliminated from the revised network. 
Consequently, the number of neurons in the hidden 

layer was revised to two. The topology of the 
revised neural network structure was 3-2-1. The 
training and evaluating dataset used for the revised 
3-2-1 topology model must be identical to that of 
the prior model. 

The previous model's parameters including the 
number of Epochs, learning rate, and activation 
function were retained. The efficacy of the FANN-
SIGMOD_SYMMETRIC activation function was 
predicted for revised models' training and testing 
datasets. Table 8 presents the statistical values of 
training and testing data for the revised topology. 
Table 9 displays the final weight of connection 
between the input parameter and hidden layer 
neuron and the hidden layer neuron and output 
neuron of the revised neural network. Figure 6 
depicts the graphical relationship between the 
predicted and target ultimate bearing capacity of 
circular footing for the training and testing datasets 
of the revised neural network with 3-2-1 topology.  
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Figure 6 Predicted and target ultimate bearing capacity of circular footing resting in sand overlying RCDW in 
the training and testing data set using FANN-SIGMOD_SYMMETRIC activation function with 3-2-1 topology 

Table 8 Revised Statistical values for the training and testing data for the best activation function 

Statistical Values FANN-SIGMOD_SYMMETRIC Function 
Training data Testing data 

r 0.97 0.99 
R2 0.93 0.98 
MSE 348.53 102.79 
RMSE 18.66 10.13 
MAE 12.67 9.38 
MAPE 6.13 4.93 

 
3.2. Proposed model equation for ultimate 
bearing capacity based on revised neural 
network model: 

Using the values of the weights and biases 
shown in Table 9, the revised model equation for 

the ultimate bearing capacity of circular footings 
resting on RCW overlying loose sand was derived 
using the following expressions: 

 

 

A = 7.14334 + 1.989437 * u/d + 5.973646164 * ϕ2 + 0.9220095 * γ2  

B = 0.374737 - 0.58188 * u/d + 0.044099387 * ϕ2 + 1.3622297 * γ2  

C = 3.64839 + 3.735568{2/(1+exp(-2 * 0.5 * A)) - 1} + 0.3828716{2/ (1 + exp(-2 * 0.5 * B)) - 1}  

qult = 2/(1+exp(-2 * 0.5 * C)) – 1 (vii) 

Q(kPa) = 0.5(qult + 1) (qultmax - qultmin) + (qultmin) (vi) 

Table 9 Final weights between the input neuron and hidden neuron as well as hidden neuron and output neuron 
for revised neural network having topology 3-2-1 

Neuron Weights (wjk) Biases 
qu u/d ϕ2 γ2 Bhk Bo 

Hidden 1 3.735568 1.989437 5.973644 -0.9220095 -7.14334 3.648398 
Hidden 2 0.3828716 -0.58118 -0.0440987 -1.3622297 0.374737  
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The limitations of the proposed ANN model 
are as follows:  

 The proposed model is valid for RCW of 5 
mm and 10.6 mm.  

 u/d is limited up to 1.2.  

 The underlaying sand is in loose state (i.e. ID 
= 30%).  

 The bearing capacity offered by the 
underlaying sand was neglected.  

 Proposed model is valid for circular footing 
only. 

 Effect of water table is not considered. 

 

 

 

3.3 Ultimate bearing capacity equation using 
multiple linear regression 

Using the SPSS software, multiple linear 
regression (MLR) was performed on training and 
testing data. The used data was identical to that of 
the artificial neural network model. The multiple 
regression analysis input parameters were ϕ2, γ2, 
and u/d, and the output parameter was ultimate 
bearing capacity.  

Using multiple linear regression analysis, the 
input and output parameters of training data were 
examined. The resulting model equation was: 
qult = 170.781(u/d) + 11.896 ϕ2 - 0.355 γ2 + 17.587 (viii) 

The input variables of the training and testing 
datasets were entered into Equation (vii), and the 
output ultimate bearing capacity was computed. 
Figure 7 depicts the relationship between the 
predicted and target ultimate bearing capacity of 
circular footings resting on RCW and coarse sand 
for the training and testing data sets using multiple 
linear regression. 
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Figure 7 Predicted and target qultp of ultimate bearing capacity in the training and testing data set using multiple 

regression analysis 

3.4. Comparison of regression using neural 
network model and multiple linear regression 

Using the multiple linear regression method, the 
different performance measures were estimated 
based on data from training and testing. 

Performance measures were used to compare the 
updated neural network model and the multiple 
linear regression. Table 10 shows a comparison of 
the statistical values of the updated 3-2-1 topology 
neural network model and the multiple regression 
analysis. 

 

 



Saini, and Singh Yadav Journal of Mining & Environment, Vol. 15, No. 1, 2024 
 

111 

Table 10 Comparison of statistical coefficients between revised neural network model having 3-2-1 topology and 
multiple regression analysis 

Performance 
measures 

Prediction model 
Revised neural network (Topology 3-2-1) Multiple regression analysis 
Training data Testing data Training data Testing data 

r 0.97 0.99 0.88 0.98 
R2 0.94 0.98 0.7 0.82 
MSE 348.54 102.8 1460.15 1162.06 
RMSE 18.67 10.14 38.21 34.09 
MAE 12.68 9.39 34.03 27.63 
MAPE 6.13 4.94 27.32 12.85 

 
Table 10 shows that the performance of an 

updated neural network with structure 3-2-1 is 
better than that of a network made with multiple 
linear regression. R2 and MAPE obtained from 
revised neural network was better than obtained 
from multiple linear regression. R2, for revised 
neural network, was 0.94 for training data and 0.98 
for testing data, whereas for multiple linear 
regression, the values were 0.7 and 0.82, 
respectively. Similar, MAPE, for revised neural 
network was 6.13% for training data and 4.94% for 
testing data, whereas for multiple linear regression, 
the values were 27.32% and 12.85%, respectively. 
Thus, multiple regression analysis was not as good 
as the ANN model at predicting ultimate bearing 
capacity.  

4. Conclusions  

Based upon the above findings, the conclusions 
are as follows:  

 With the increase in the relative density, 
thickness of RCW the bearing capacity 
of loose sand increases. The size of RCW 
also plays a vital role in the improvement 
of bearing capacity as well. 

 The ultimate bearing capacity values 
predicted by the FANN-
SIGMOD_SYMMETRIC activation 
function is closer to the actual ultimate 
bearing capacity. 

 Analysis of sensitivity revealed that the 
angle of internal friction of sand and unit 
weight of ratio has a smaller effect on the 
predicted capacity. 

 Angle of internal friction of RCW 
contributes the most to the predicted 
capacity. 

 The revised neural network model with 
topology 3-2-1 provides superior output 
prediction than multiple regression analysis. 

From the above-mentioned conclusion, it can be 
summarized that the bearing capacity of footing 
resting on RCW underlaying sand is mainly depend 
upon the angle of internal friction of RCW and 
thickness of RCW layer. In the present work, only 
two sizes of RCW were considered, i.e. 5 mm and 
10.6 mm. The effect of brick waste and other type 
of RCW on the bearing capacity need to be 
investigated. The underlaying sand was assumed to 
in loose state (i.e. ID = 30%). Future work 
addressing the effect of medium and dense sand on 
the bearing capacity need to be investigated. 
Insufficient amount of research work has been 
carried out on the combined effect of RCW mixed 
with sand to improve the bearing capacity of soil. 
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  چکیده:

وساز ساخت   نخاله  ياست که رو  ياره یدا  هیپا  یینها  يباربر  تی ظرف  ینیبش یپ  ي) برا ANN(  یمصنوع   ی مدل شبکه عصب  ک یاستفاده از    یقاتیکار تحق نیهدف از ا
)  متری لی م 10.6و   متری لیم  5( یافتیباز یانساختم  نخالهضخامت دو اندازه از  رییبار صفحه با تغ  يهاشیاز آزما ياشن و ماسه شل قرار دارد. مجموعه يرو یافتیباز
 يبه دست آمده برا یینها يباربر تظرفی. پوشش) ٪ 70 و ٪50 ،٪ 30مختلف (  ینسب يها) انجام شد. در تراکمهی: قطر پا1.2d ،d، و 0.4d ،0.6d ،0.8d ،1d( هیلا

 ه یبه قطر نسبت پا یافتیباز یزباله ساختمان هیضخامت لا یمصنوع  یمدل شبکه عصب يورود ياستفاده شد. پارامترها ANNتوسعه مدل  يمختلف برا يهاب یترک
مدل    یو پارامتر خروج  ،ی افتیباز  یساختمان  نخالهو وزن واحد    یافتیباز  یساختمان نخاله  یاصطکاك داخل  هیماسه، وزن واحد شن، زاو  یاصطکاك داخل  هیزاو  ،يارهیدا

 یینها  يباربر تیاز ظرف  يبالاتر  نی تخم 1-2-3 يبا توپولوژ  FANN-SIGMOD_SYMMETRIC، مدل  ANN  يهاافته یبود. با توجه به    یینها  يباربر  تیظرف 
دارد.  یینها يباربر تی بر ظرف يزیناچ ریماسه تأث یاصطکاك داخل هینشان داد که وزن واحد ماسه و زاو نیهمچن تیحساس لیو تحل هیارائه کرد. تجز ي ارهیدا هیپا

چندگانه   یخط ونیرگرس لیتحل  جهیقرار گرفت. نت یافتیساخت و ساز باز يهازباله یاصطکاك داخل هیزاو ریتحت تأث شتریزده شده ب نی تخم یینها يباربر تیظرف 
 نبود.  یینها يباربر  تیظرف ینیبش یدر پ ANNمدل  یبه خوب

  .ANN ،MLR ،يباربر تیظرف ،يا رهیدا هیپا ،یمواد زائد ساختمان کلمات کلیدي:

  

 

 

 


