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Abstract 

The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest 

neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For 

this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, 

total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, and Cr(VI) from 41 wells and springs 

were used during an eight-year time period (2006 to 2013). The cluster analysis was used, leading to a 

dendrogram that differentiated two distinct groups. The factor analysis extracted eight factors 

accumulatively, accounting for 90.97% of the total variance. Thus the variations in 17 variables could be 

covered by just eight factors. K-NN and SVMs were applied for the classification of the aquifer under study. 

The results of SVMs indicated that the best performed model was related to an exponent of degree one with 

an accuracy of 94% for the test data set, in which the sensitivity and specificity were 1.00 and 0.87, 

respectively. In addition, there was no significant difference among the results of different kernels, indicating 

that an acceptable result can be achieved by selecting the optimum parameters for a kernel. The results of K-

NN showed roughly a lower efficiency compared with those of SVMs, where the sensitivity and specificity 

was reduced to 0.90 and 0.88, respectively, although the accuracy of the model was 93%. A sensitivity 

analysis was performed on the groundwater quality variables, suggesting that calcium next to nitrate were the 

most influential parameters in the classification of this aquifer.  
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1. Introduction 

During the last few decades, a rapid population 

growth has put pressure on the groundwater 

resources in Iran, especially in the arid and semi-

arid areas, where the surface water resources 

cannot obviate the requirements of the people for 

domestic, industrial, and agricultural activities. 

The over-exploitation of groundwater resources 

besides the recent drought in the regions that 

began from 2007 resulted in a precipitous 

depletion of this valuable resource [1, 2]. In 

addition, the quality of the water resources has 

aggravated in the recent years [3, 4]. In this 

regard, the groundwater quality classification is a 

tool for the local managers to use in land-use 

management decisions. For instance, one of the 

possible applications of aquifer classification is to 

locate activities in the areas where groundwater is 

already poor [5]. A classification task usually 

involves separating data into the training and 

testing sets. Each instance in the training set 

contains one "target value" (i.e. the quality rating 

in this case) and several "attributes" (i.e. 

groundwater quality variables). There are many 

classification methods that can be applied for this 

purpose such as K-nearest neighbor (K-NN) [6], 

support vector machines (SVMs) [7], discriminant 

analysis [8], classification trees [9], and 

probabilistic neural networks [10].  

Among these methods, SVM is one the most 

recently applied classification methods in 
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environmental researches [e.g. 11-13]. SVMs, 

which is based upon the structural risk 

minimization (SRM) principle [14], seems to be a 

promising method for data mining, and have been 

used for both the classification and regression 

problems. The goal of SVMs is to produce a 

model (based on the training data) that predicts 

the target values of the test data, given only the 

test data attributes [15]. SVMs, essentially a 

kernel-based procedure, creates very competitive 

results with the best accessible classification 

methods, and needs only the smallest amounts of 

model tuning [16]. To the contrary, as mentioned 

by Akay [17], the type of kernel function, the 

optimum number of input features for SVM, and 

how to tune kernel parameters to reach the best 

generalization are the three problems during the 

SVMs model development. 

On the other hand, as explained by Rokach [18], 

the nearest neighbor classifier method has many 

advantages over other ones. For instance, the 

generalization ability of a relatively small amount 

of data set is better in comparison with other 

classifiers such as the decision trees or neural 

networks. Moreover, new information can be 

incrementally incorporated at runtime, a property 

it shares with neural networks. Consequently, the 

nearest neighbor classifier can achieve a 

performance that is competitive to more modern 

and complex methods such as decision trees and 

neural networks. 

SVMs has been utilized earlier for the prediction 

of nitrate levels in groundwater [7] and 

groundwater level predictions [12]. However, to 

the best of our knowledge, there is just one 

published literature [10] on the usage of SVMs for 

the groundwater quality classification. Thus the 

objective of this work to examine the feasibility of 

the SVMs and K-NN classifiers for the 

classification of an aquifer in the Khuzestan 

province in Iran based on the pollution level. 

2. Materials and method 

2.1. Studied area 

Andimeshk is located in the northern part of the 

Khuzestan Province, south of Iran, with an area of 

3100 km
2 

(Figure 1). According to the latest 

census by the Iranian Statistical Center in 2012, 

the total population of this city is 167126, among 

which, 128774 inhabitants live in the urban areas 

and 34985 live in the rural areas. The average 

annual precipitation in the region is about 353 

mm, and the average exploitation from the 

groundwater resources was 133981 thousand 

cubic meters/year in 2012, according to the report 

prepared by Khuzestan Water and Power 

Authority. The major irrigated broad-acre crops 

grown in the region are wheat, barley, and maize, 

in addition to fruits, melons, watermelons, and 

vegetables such as tomatoes and cucumbers [19]. 

The average water-level fluctuations between the 

dry and wet seasons are very low (about 0.5-1 m) 

because of the continuous recharge with the Dez 

and Karkhe Rivers [20]. The groundwater 

resources in the region are used for both the 

drinking and irrigation purposes. 

2.2. Data pretreatment and Cluster analysis 

Seventeen groundwater quality variables 

including EC, TDS, Turbidity, pH, total 

hardness(TH), Ca, Mg, total alkalinity (TA), 

sulfate, nitrate, nitrite, fluoride, phosphate, Fe, 

Mn, Cu and Cr (VI), associated with 41 wells and 

springs in Andimeshk were utilized in this study 

during an eight-year time period (2006 to 2013). 

The descriptive statistics related to these 

parameters are presented in Table 1. 

Since the original variables were in different units, 

the operations involving the trace of the 

covariance matrix had no meaning. Therefore, the 

solution was to make the variances the same (i.e. 

use standard units), making the covariance matrix 

into a correlation matrix. Standardization of the 

data (i.e. data having zero mean and unit standard 

deviation) was implemented according to the 

following equation:  

i i i iZ (x x ) / s   (1) 

where  ̅  and    are the mean and standard 

deviations of the observed variables, respectively. 

Cluster analysis was used to consider the 

similarity among the sampling stations. 

Dendrograms could be useful for classification of 

the aquifer by the respective classifiers. In the 

cluster analysis, the objects (e.g. sampling 

stations) are grouped based on the similarities 

within a class and dissimilarities among the 

different classes [21]. A distance measure is used 

to examine the similarity and/or dissimilarity 

among the objects of interest. The most prevalent 

distance measures are Euclidean and Manhattan 

[22]. In order to cluster the sampling stations with 

respect to the seventeen stated groundwater 

quality variables, the average linkage method with 

Manhattan distance measure was utilized to 

produce the resultant dendrogram using the 

MINITAB (R2013b) software. 
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Figure 1. Location of studied area and sampling stations in Andimeshk aquifer,Iran. 

 

Table 1. Descriptive statistics of groundwater quality data set used for classification. 

Standard deviation Min. Max. Average Groundwater quality parameter 

161.23 270.00 850.00 552.68 EC (µs/Cm) 

82.70 130.00 439.23 291.35 TDS (mg/L) 

4.58 0.00 21.15 1.47 Turbidity (NTU) 

0.34 6.22 8.14 7.68 pH 

63.67 95.76 349.46 246.09 Total hardness (mg/L) 

17.76 22.40 105.65 64.24 Ca (mg/L) 

7.10 7.77 35.17 20.39 Mg (mg/L) 

41.39 48.00 240.80 124.36 Total alkalinity (mg/L) 

54.82 7.00 193.75 95.68 Sulfate (mg/L) 

18.51 5.05 84.90 26.68 Nitrate (mg/L) 

0.01 0.00 0.06 0.02 Nitrite (mg/L) 

0.17 0.17 0.86 0.37 Fluoride (mg/L) 

0.05 0.03 0.24 0.14 Phosphate (mg/L) 

0.02 0.01 0.09 0.03 Fe (mg/L) 

0.03 0.00 0.15 0.05 Mn (mg/L) 

0.07 0.015 0.41 0.08 Cu (mg/L 

0.02 0.00 0.08 0.05 Cr (mg/L) 
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2.3. Factor analysis 

In order to examine the suitability of the data for 

factor analysis/principal component analysis, the 

Kaiser-Meyer-Olkin (KMO) and Bartlett’s tests 

were performed. Factor analysis based on the 

principal component analysis was utilized to study 

the main factors responsible for the variation in 

the groundwater quality parameters in the studied 

area. The Vartimax rotation method was used to 

facilitate interpretation of the results obtained 

from the factor analysis. 

2.4. Support Vector Machines (SVMs) 

SVM is a supervised learning technique. In the 

linearly separable data set, all the patterns can be 

separated by a straight line or a hyper plane. In 

SVMs, it is implemented through maximization of 

the margin around a hyper plane that separates 

two classes by mapping the input space into a 

high dimensional space or feature space. The 

mapping is determined by a kernel function [13].  

There are two stages in order to create and apply a 

SVMs classifier: training and prediction. In the 

training (or learning) stage, pairs of features and 

desired outputs (xi, yi) are given in order to design 

support vectors, which are used to predict the 

desired outputs. These support vectors constitute 

the prediction model. Later, after learning in the 

prediction phase, the prediction model is applied 

to predict outputs, yi, for the previously unseen 

input feature vectors, xi = (x1, x2,..., xn). Let (w, b) 

denote the weight vector, w = (w1, w2,...,wn), and 

bias, b, of the hyper plane that splits the data from 

both classes. At the training phase, the objective is 

to determine the separating hyper plane, later used 

to classify the unseen data [23]. 

The set of vectors is said to be optimally separated 

by the hyper plane if it is separated without error, 

and the distance between the closest vectors to the 

hyper plane is maximal. A separating hyper plane 

in the canonical form must satisfy the following 

constraints: 

  [〈    〉   ]             (2) 

That is to say, in SVMs the training data points 

satisfying the constraints that f(xi) = 1 if yi = 1, 

and f(xi) = −1 if yi = −1 are called the support 

vectors (SVs). In other words, the training points 

with non-zero weight are called the support 

vectors [24]. 

As a whole, as mentioned by Hsu et al. [15], given 

a training set of instance-label pairs 

(        =1,…,  where      and y {    } , 
the support vector machine (SVM) require the 

solution to the following optimization problem: 

   
     

 
 ⁄      ∑  

 

   

 (3) 

subject to   ( 
  (            

     
(4) 

In the above equation,    is the penalty 

parameter of the error term, and    is a non-

negative slack variable to allow mis-classification 

of difficult or noisy data points. 

Hence, the hyper plane that optimally separates 

the data is the one that minimizes: 

 (   
 

 
‖ ‖  (5) 

It is independent of b because, provided that 

equation (2) is satisfied (i.e. it is a separating 

hyper plane), changing b will move it in the 

normal direction to itself. Accordingly, the margin 

remains unchanged but the hyper plane is no 

longer optimal in that it would be nearer to one 

class than the other. 

The solution to the optimization problem of 

equation (5) under the constraints of equation (2) 

is given by the saddle point of the Lagrange 

functional [25]. 

 (       
 

 
‖ ‖ 

 ∑  

 

   

(  [〈    〉   ]     
(6) 

where w and α are the Lagrange multipliers. After 

some modifications and substitutions, the final 

solution is: 

 (       (〈    〉     (7) 

in which    ∑       
 
    

Here, if f (x) is positive, the new input data point 

x belongs to class 1 (yi = 1), and if f (x) is 

negative, x belongs to class 2 (yi = −1). However, 

in case of non-linear separation, the original input 

data is projected into a high dimensional feature 

space: ϕ: Rn→ Rd, n << d. i.e. x → ϕ(x), in which 

the input data can be linearly separated. In such a 

space, the dot-product from Eq. (7) is transformed 

into ϕ(xi). ϕ(x), and the non-linear function can be 

expressed as [11]: 

 (       (∑      (     )    

 

     

 (8) 

in which  (     )  (  (     (  )  is the 

kernel function. In the case of a linear kernel, k is 
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the dot product. It may be useful to think of the 

kernel, (     )  as comparing patterns or 

evaluating the proximity of objects in their feature 

space. Thus a test point is evaluated by comparing 

it with all training points [24]. Since choosing a 

suitable kernel for SVM comprises the building 

blocks of the machines, it is one of the most 

important steps in the SVMs model development 

[7].  

Since the most common kernels stated in the 

literature that obtained the best improvements 

were RBF, polynomial, and linear, while other 

known kernels achieved surprisingly poor results 

[26], therefore, the following three basic kernels 

were utilized in this study: 

 linear:  (     )    
    (9) 

 polynomial: (     )  (  
    

         
(10) 

 radial basis 

function(RBF): (     )  

   (  ‖     ‖
 
)       

(11) 

In the above equations,   and   are the kernel 

parameters. The optimum kernel function is 

generally selected through a trial and error 

procedure [27]. The original data matrix centered 

at their mean, and was scaled to have unit 

standard deviation before training. 

2.5. Parameter optimization 

There are two parameters for the radial basis 

function (RBF) kernel [28]: C (penalty parameter) 

and γ (a tuning parameter controlling the width of 

the kernel function). The correct choice of these 

parameters has a great influence on the stability 

and generalizing performance of the model. 

 It is not known beforehand which C and γ values 

are best for a given problem. Consequently, some 

kinds of model selection (parameter search) must 

be done. The goal is to identify good values for 

these parameters (C; γ) so that the classifier can 

accurately predict the unknown data (i.e. testing 

data). The γ value is important in the RBF model, 

leading to under- or over-fitting of the prediction 

model. An improved version of finding the 

optimum values for these parameters is through 

cross-validation [29, 30]. Since no assumption has 

been made about the data or noise distributions, 

cross-validation can be robust for tuning 

parameter selection [31]. The cross-validation 

procedure can prevent the over-fitting problem. In 

this research work, various pairs of values (C; γ) 

were tried, and the one with the best 5-fold cross-

validation accuracy was picked. We used the 

simplex search method [32] for this purpose. 

For the case of a polynomial kernel function, the 

only optimized parameter was the order of the 

equation. A good way of choosing the value ford 

(degree of the exponent in a polynomial kernel) is 

to start with 1 (a linear model), and increment it 

until the estimated error ceases to improve [13, 

33]. This was implemented jointly with 5-fold 

cross-validation, and the value with the minimum 

out-of sample mis-classification error was 

selected as the optimum degree of the exponent 

value. The sequential minimal optimization 

(SMO) algorithm [34] was employed to train the 

SVMs model. In this algorithm, analytical 

solution of a subset can be obtained directly 

without invoking a quadratic optimizer, which is 

regarded as the main advantage of this method 

[12].  All of the required computations were done 

using MATLAB (R2013b). 

2.6. K-nearest neighbor (K-NN) 

The most basic and simplest instance-based 

method is the nearest neighbor (NN) inducer, 

which was first examined by Fix and Hodges [35]. 

It can be represented by the following rule: to 

classify an unknown pattern, choose the class of 

the nearest example in the training set as 

measured by a given distance metric. A common 

extension is to choose the most common class in 

the k-nearest neighbors (K-NNs) [18]. Its appeal 

stems from the fact that its decision surfaces are 

non-linear, there is only a single integer parameter 

(which is easily tuned with cross-validation), and 

the expected quality of predictions improves 

automatically as the amount of training data 

increases [36]. In the absence of a prior 

knowledge, most K-NN classifiers use simple 

euclidean distances to measure the dis-similarities 

between the examples represented as vector 

inputs. In this method, an unknown pattern is 

classified according to the majority of the class 

memberships of its K-nearest neighbors in the 

training set [37]. One of the most important 

optimization parameters in this modeling 

procedure is the number of nearest neighbors (k) 

because it should be the maximum number of 

neighbors with the minimum possible error [38]. 

This method has been utilized earlier in water 

quality researches [e.g. 6, 39, 40]. The 

mathematical detail of this method, though 

simple, is out of the scope of this work; however, 

interested readers can refer to the vast references 

existing in this field [e.g. 41]. 
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2.7. Model evaluation 

Having trained an optimized model, we applied it 

to the data in the model-testing data set to 

estimate several measures in order to evaluate the 

effectiveness of our method. These measures are 

classification accuracy, sensitivity, specificity, 

positive predictive value, and negative predictive 

value. A confusion matrix [42] contains 

information about the actual and predicted 

classifications done by a classification system. 

Table 2 shows a typical confusion matrix for a 

two class classifier. Each one of the model 

evaluation criteria has been defined using 

elements of confusion matrix as: 

TP
Positive predictive value

TP FP



  (12) 

TN
Negative predictive value

FN TN



  (13) 

TP
Sensitivity

TP FN



  (14) 

TN
Specificity

FP TN



  (15) 

 
TP TN

Accuracy % 100
TP FP FN TN


 

  
  (16) 

 

Table 2. A typical confusion matrix. 

T
es

t 
o

u
tc

o
m

e
 

 
Condition 

Condition positive Condition negative 

Test outcome positive True Positive False positive(Type I error) 

Test outcome negative False negative (Type II error) True negative 

2.8. Sensitivity analysis 

The relative importance of each groundwater 

quality parameter in the classification of aquifer 

was considered using a sensitivity analysis. In the 

model building studies, sensitivity analysis 

generally refers to assessment of the importance 

of predictors in the fitted models. During this 

process, the variables are usually ranked 

according to the deterioration of the model 

performance criterion (e.g. specificity in this case) 

if a variable is removed from the model. This 

analysis is helpful for the identification of less 

important variables to be removed or ignored in 

the subsequent studies, in addition to the most 

essential variables [43]. The leave-one-out method 

was applied with SVMs, which corresponds to 

assess the changes in the error that would be 

obtained if each input variable was removed at a 

time. Each model was trained for ten times, and 

the average specificity was used for the sensitivity 

of each parameter.  

3. Results and discussion 

3.1. Cluster analysis 

In this study, cluster analysis was used to 

categorize the groundwater quality sampling 

stations into appropriate clusters. The results 

obtained are expected to reveal the characteristics 

and extent of pollution for each cluster so that the 

spatial distribution of water pollution can be 

evaluated to implement the classification of the 

aquifer by other classification methods [44]. A 

dendogram, which clearly differentiates groups of 

objects, has small distances in the far branches of 

the tree, and large differences in the near 

branches. 

Considering Figure 2 (dendrogram with average 

linkage method and Manhattan distance as 

similarity measure), it can be concluded that two 

groups can be identified. Cluster I (stations 1, 3, 7, 

8, 10, 14, 19, 20, 22, 25, 26, 28, 37 and 40), which 

was called group A, and ClusterII (stations 2, 4, 5, 

6, 9, 11, 12, 15, 16, 17, 18, 21, 23, 24, 27, 29, 30, 

31, 32, 33, 34, 35, 36, 38, 39 and 41) that was 

called group B. In order to consider the difference 

between these two groups with respect to 17 

groundwater quality variables, the Box-and-

Whisker plots related to these stations were 

drawn. With respect to Figure 3a and Figure 3b, it 

can be concluded that, except for Cr and Mn, the 

amounts of other groundwater quality variables 

were higher in group B compared with those of 

group A. The different groups have been 

illustrated in Figure 3 (a, b).In addition, the 

location of sampling stations has also been given 

in Figure 4. 
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Figure 2. Dendrogram of sampling wells and springs produced by average linkage method and Manhattan 

distance measure. 

 
Figure 3. a). Box-and-Whisker plot of groundwater quality variables produced based on groups of cluster 

analysis(groundwater parameters are nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu and Cr). 

 
Figure 3. b). Box-and-Whisker plot of groundwater quality variables produced based on groups of cluster 

analysis(groundwater parameters are EC, TDS, turbidity, pH, TH, Ca, Mg, TA and sulfate). 
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Figure 4. Difference in location of groundwater sampling stations for each group in studied area. 

 

The water depth in the northern part of the studied 

area is higher than that in the southern part, 

ranging from 88m in the north western part of the 

area around Do-Koheh to about 3 m in the 

southern part around Haft-Tapeh [45]. The higher 

penetration of contamination to the shallow 

aquifer in the southern part may be one of the 

contributing factors for the concentration of group 

B in the southern part of the studied area. In 

addition, some of the stations in group A are 

located along the Dez River, which has an 

influence on the dilution of groundwater and 

reduction of the contamination level of these 

wells. In the next step, given the class for each 

groundwater station, K-NN and SVMs were 

applied for classification of the considered 

aquifer. 

3.2. Factor analysis 

Tke Kaiser-Meyer-Olkin (KMO) test is a 

representative test of the sampling adequacy to 

conduct factor analysis. There is no cut-off point 

associated with this test; however, if the test result 

is smaller than 0.5, the factor analysis is not 

suitable [46]. The result of KMO test was 0.703, 

indicating the suitability of factor analysis. In 

addition, chi-square distribution (χ2) of Bartlett’s 

test of sphericity was high (647.59), and highly 

significant, implying the existence of a common 

factor among the relevant matrices of the parent 

population [46]. The results of factor analysis 

using principal component analysis and Varimax 

rotation method are given in Tables 3 and 4, 

respectively. 

 
Table 3. Results of factor analysis. 

Components Eigenvalues % of variance explained Cumulative % of variance explained 

1 5.59 32.88 32.88 

2 3.25 19.13 52.01 

3 1.24 7.31 59.32 

4 1.22 7.16 66.48 

5 1.17 6.86 73.34 

6 1.08 6.35 79.69 

7 1.01 5.94 85.63 

8 0.91 5.34 90.97 
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Table 4. Rotated component matrix for each heavy metal in studied area. 

Heavy metals Component 

 
1 2 3 4 5 6 7 8 

EC .956 -.079 .182 .031 -.052 .099 .013 .049 

TDS .929 .262 .080 -.032 -.077 .032 .013 .033 

Turbidity -.121 .196 -.028 -.067 -.007 -.953 -.069 -.006 

pH -.059 .336 -.587 -.417 .432 .231 -.091 -.079 

TH* .973 .103 .031 .009 -.008 .067 .040 .099 

Ca .900 -.070 .008 .070 .038 .056 .085 .283 

Mg .839 .333 .054 -.056 .140 .033 .040 -.066 

TA** .443 .754 .085 -.139 .041 -.059 -.142 -.020 

Sulfate .873 -.135 -.276 .007 -.112 -.040 -.016 .225 

Nitrate .165 -.436 .728 -.237 .153 .168 .090 .226 

Nitrite .093 -.196 .079 -.133 .079 .072 .950 .074 

Flouride .304 .686 -.378 .155 -.074 -.021 -.104 -.071 

Phosphate .144 -.846 .060 .223 .220 .224 .044 -.062 

Fe .045 .205 -.030 -.183 -.901 .010 -.089 -.074 

Mn .006 -.080 -.062 .910 .172 .084 -.136 -.010 

Cu .477 -.011 .191 -.008 .089 .002 .101 .825 

Cr .006 -.921 .216 -.007 .037 .039 .076 .031 

*:TH stands for total hardness. 

**:TH stands for total alkalinity. 

 

There are many criteria for retaining the number 

of factors. For instance, according to Kaiser 

Criterion [47], only factors with eigenvalues 

greater than 1 are retained. However, Jolliffe [48] 

believed that Kaiser’s criterion was too large, and 

suggested using a cut-off of 0.7 on the 

eigenvalues instead. Therefore, based on the 

Jolliffe's criterion, eight components were kept 

accounting for 90.97%of the total data variance. 

The first factor encompasses 32.88%of the total 

variance, and has an eigenvalue of 5.59.Moreover, 

it is highly loaded with EC, TDS, total hardness, 

Ca, Mg and sulfate. In natural waters, EC depends 

mainly on the concentration of major ions such as 

Ca
2+

, Mg
2+

, Na
+
, Cl

-
, SO4

2-
, and HCO3

-
 [49]. 

Moreover, electrical conductivity of water is a 

direct function of its total dissolved salts [50]. On 

the other hand, hardness is a property of cations 

(Ca
2+

 and Mg
2+

), while alkalinity is a property of 

anions (HCO3
–
 and CO3

2–
). The simultaneous high 

loading of EC, TDS, total hardness, Ca, Mg, and 

sulfate on the first factor might be due to the 

above-mentioned reasons. The first factor mainly 

implies the parameters that emanate from the 

geogenic sources in the aquifer. The second factor 

comprised 19.13%of the total variance, and has a 

highly positive loading with total alkalinity and 

fluoride, while a highly negative loading with 

phosphate and chromium. Chromium is one of the 

heavy metals that is included in phosphorus 

fertilizers as impurities, as has been proved by the 

results of the previous researches [e.g. 51-53].The 

high positive loading of this factor with phosphate 

and chromium may denote the role of agricultural 

activities on the contamination of groundwater 

due to the application of phosphorus fertilizers. 

The third factor accounting for 7.31%of the total 

variance has both a high negative loading with pH 

and a high positive loading with nitrate. It may 

indicate the role of pH on the nitrification of 

nitrogenous forms in the aquifer. Nitrate (NO3
-
) is 

one of the several inorganic pollutants contributed 

by the nitrogenous fertilizers, organic manures, 

human and animal wastes, and industrial effluents 

through the biochemical activities of 

microorganisms. Excessive use of nitrogenous 

fertilizers in agriculture has been one of the 

primary sources of high nitrate in groundwater 

[54]. Nitrification is relatively sensitive to pH, in 

part, because of the generation of ammonia (NH3) 

under alkaline conditions and nitrous acid (HNO2) 

under acidic conditions [55]. It is reasonable to 

infer that pH 6.58 is the optimum pH range for 

nitrification but rates are likely to significantly 

decreased below pH 6.0 or above pH 8.5 [55]. The 

fourth and fifth factors have a high positive and 

negative loading with manganese and iron 

variables. The main sources of iron in ground 

water are natural as a mineral from sediment and 

rocks or from mining, industrial waste, and 

corroding metal [56]. To the contrary, natural 

sources of manganese are more common in deeper 
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wells where the water has been in contact with 

rock for a longer time. In these anaerobic 

conditions, manganese is released from minerals, 

and reduced to its more soluble form, Mn (II). 

This form is apparently the most soluble one in 

most waters [57]. The sixth and seventh factors 

encompass high negative and positive loadings 

with turbidity and nitrite, respectively. Finally, 

copper was highly loaded with the eighth factor. 

The last factor just accounts for 5.34%of the total 

variance, implying the minor importance of this 

factor in comparison with that of the other factors. 

These eight factors accumulatively account for 

90.97%of the total variance, thus the 

variationsin17 variables can be covered by just 

eight factors.  

3.3. Support vector machines (SVMs) 

Referring to SVMs, as stated earlier, there were 

two parameters to be optimized for the radial basis 

function (RBF), kernel (C and γ), and one 

parameter for polynomial kernel (d). For the RBF 

method, the optimum values for penalty parameter 

(C) and gamma (γ) that yielded the minimum 

value of kernel function were 10.49 and 0.54, 

respectively. On the other hand, for the case of 

polynomial kernel, a trial and error procedure was 

followed to obtain the optimum polynomial 

exponent. The results obtained are given in Table 

5. 

 

Table 5. Performance of SVMs for polynomial kernel function with respect to degree of exponent. 

Degree of exponent 
Performance 

Sensitivity Specificity Positive predictive value Negative predictive value Accuracy 

1 1.00 0.87 0.92 1.00 0.94 

2 1.00 0.64 0.83 1.00 0.86 

3 0.99 0.66 0.88 0.90 0.90 

4 0.92 0.55 0.85 0.72 0.80 

5 1.00 0.55 0.74 1.00 0.82 

 
These results indicated that the best performed 

model was related to an exponent of degree one 

with an accuracy of 94% for the test data set, in 

which the sensitivity and specificity were 1.00 and 

0.87, respectively. This shows that linear SVMs 

has out-performed compared with that of non-

linear models. Using other exponents of the 

polynomial kernels (non-linear kernels) increased 

the risk of over-fitting, leading to a poor out-of-

sample prediction. Moreover, as it can be seen in 

Table 5, there is no significant difference among 

the results of different kernels, indicating that an 

acceptable result can be achieved by selecting 

optimum parameters of a kernel. The same results 

were obtained by Sadeghi et al. [13] in their work 

on the use of SVMs to predict distribution of an 

invasive water fern in Anzali wetland, Iran. 

In addition, another decision that had to be made 

was the subdivision of the data set into different 

subsets, which were used for training and testing. 

In order to examine the generalization ability of a 

model, a separate data set had to be used for 

training and testing the model [58]. The best 

option was to divide the data randomly into two 

parts. This procedure of partitioning data is 

sometimes named the hold-out procedure [59]. 

Different data divisions were tried in this study to 

find the optimum method based on the out-of-

sample generalization error of the model, and the 

performances for ten times retraining of each 

model are rendered in Table 6 [43]. 
 

Table 6. Results of different division of original data set for SVMs and K-NN methods. 

Percent of 

training data 

Training 

method 

Performance 

Sensitivity Specificity 
Positive 

predictive value 

Negative 

predictive value 
Accuracy 

75% 

SVMs 

1.00 0.97 0.98 1.00 0.99 

65% 0.98 0.94 0.97 0.95 0.95 

55% 0.98 0.85 0.93 0.95 0.93 

75% 

K-NN 

0.97 0.90 0.94 0.94 0.94 

65% 0.91 0.87 0.94 0.77 0.89 

55% 0.87 0.77 0.88 0.76 0.83 
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According to this table, the best data division 

was75% for the training part, and 25% for the 

testing part, leading to an accuracy of 99%. 

Moreover, this data division resulted in sensitivity 

(rate of correctly classified objects for each class) 

and specificity (rate of correctly rejected objects 

for each class) of 1.00 and 0.97 for SVMs, 

respectively. The same results were obtained for 

the K-NN method, resulting in 94% accuracy in 

predictions besides sensitivity and specificity of in 

turn 0.97 and 0.90. The overall results of SVMs 

for each kernel method using optimum parameter 

values and ten-times retraining of each model are 

given in Table 7. 

The performance of this table is based upon the 

test data set. The results show that the 

performance of the three models is nearly the 

same. In view of sensitivity, for instance, the 

polynomial kernel yielded the highest value, 

indicating perfect classification of sampling 

stations. The sensitivity in this case is high 

because the true negative result in this prediction 

is high as it does not wrongly predict the data that 

was not supposed to be predicted in a wrong class; 

however, the accuracy shows that the prediction is 

roughly accurate for all the classes. In studies 

carried out by other researchers such as Najah et 

al. [60] and Liu et al. [61] using SVMs for the 

classification of water quality data, small values 

of error were produced, and an accuracy above 

70% was obtained. RBF kernel non-linearly maps 

samples into a higher dimensional space, thus 

unlike the linear kernel, it can handle the case 

when the relation between the class labels and 

attributes is non-linear [15]. However, as 

concluded in the above-mentioned section, linear 

SVMs have been able to discriminate between the 

classes efficiently, and so the performances of 

these two models havenot been that much 

different. 
 

Table 7. Comparison of results of SVMs and K-NN for ten-times retraining of each model. 

Model evaluation 
Model types 

Accuracy Negative predictive value Positive predictive value Specificity Sensitivity 

0.95 0.93 0.96 0.91 0.97 SVMs(RBF) 

0.94 1 0.92 0.87 1 SVMs(Polynomial) 

0.95 0.89 0.92 0.97 0.93 SVMs(Linear) 

0.93 0.88 0.93 0.88 0.90 K-NN 

3.4. K-NN classifier 

One of the most important parameters to optimize 

for the K-NN method is the tuning of the nearest 

neighbors involved in the k-nearest neighbor 

classifiers, which clearly constrains over-fitting. 

Both lower and higher than enough number of 

nearest neighbors may contribute to over-fitting 

and under-fitting, respectively [62]. The problem 

of over-fitting in classification problems is that 

perfect training performance by no means predicts 

the same performance of the trained classifier on 

unseen objects [62]. In addition, the basic 

assumption underlying over-fitting prevention 

schemes is that simpler classification models are 

better than the more complex ones(especially in 

situations where the errors on the training data are 

equal). The results of this study showed that the 

best mis-classification error was for five nearest 

neighbors, which mis-classified 7%of the test 

dataset (Figure 5).  

 
Figure 5. Number of nearest neighbors versus amount of mis-classification error for K-NN method. 
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Given this optimum value, the data was trained by 

the k-NN classifier for which the results are 

rendered in Table 7.These results showed a lower 

efficiency compared with those for SVMs, where 

sensitivity and specificity reduced to 0.90 and 

0.88, respectively, although the accuracy of this 

model was93%. The same result has beenobtained 

by Modaresi and Araghinejad [10] in their study 

for water quality classification using K-NN, 

SVMs, and probabilistic neural network (PNN), in 

which the best results were yielded by SVMs 

followed by PNN, and the worst performing 

model was K-NN. 

3.5. Comparison of methods 

As it is obvious from the results of this study, and 

also confirmed by Khalil et al. [7], the SVM 

model is characterized by a highly effective 

mechanism for avoiding over-fitting that results in 

a good generalization. It can be a plague when 

working with a small number of data records like 

the case of this study. However, generalization of 

this method proved the feasibility of this modeling 

procedure for working with such data set [13]. 

This is especially important as the high cost of 

sampling and analysis of water quality parameters 

is an obstacle for gathering a large water quality 

data set, especially in developing countries. As 

mentioned by Vapnik [14],one of the reasons for 

better generalization of SVMs compared with that 

of other classifiers is that SVMs simultaneously 

minimizes the empirical classification error, and 

maximize the geometric margin. Thus the larger 

the margin, the better the generalization error of 

the classifier would be [14].  

To consider the importance of water quality 

variables in classification of the studied aquifer, 

sensitivity analysis was implemented. In this field, 

the variables that change the output more when 

tweaked are more sensitive, and, therefore, more 

important. On the other hand, the features for 

which the predictions do not vary a lot when they 

are tweaked are considered less important, and 

can be disregarded for the following monitoring 

programs or pruned out during modeling as a 

method of feature selection. 

3.6. Sensitivity analysis  

The results of sensitivity analysis are illustrated in 

Figure 6. With respect to this figure, it can be 

concluded that calcium next to nitrate are the most 

influential parameters in the classification of 

groundwater with SVMs using specificity as mis-

classification criterion. In general, agricultural 

lands cover over 80% of the studied area, and this 

aquifer is dominantly an unconfined aquifer [63]. 

Nitrate concentration is the greatest in these areas, 

especially if they are heavily irrigated, as most 

parts of this aquifer are well-drained. In the recent 

years, the application of fertilizers and manure in 

agricultural fields of the studied area has 

significantly increased, resulting in the elevated 

levels of nitrate in groundwater resources [64]. In 

addition, the low correlation coefficient between 

nitrate and calcium revokes the hypothesis that 

they have originated from the same source (e.g. 

agricultural fields). Referring to geological 

formations in the studied area (Figure 7), it can be 

concluded that different kinds of limestone 

including Gachsaran formation, which mainly 

consists of argillaceous limestone and limestone, 

are prevalent in the studied area. These geological 

formations are most likely the main contributing 

factors for the concentrations of calcium in 

groundwater. Since the dominant groundwater 

flow direction is from the north to the south, 

probably, the upper area has a significant 

influence on the lower parts of the aquifer. 

  

 
Figure 6. Sensitivity of 17 groundwater quality variables based on specificity using SVMs as base classifier. 
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Figure 7. Dominant geological formations in studied area. 

4. Conclusions 

Groundwater quality classification is a tool for 

local managers to use in land-use management 

decisions. Among these methods, support vector 

machines (SVMs) is one the most recently applied 

classification methods in environmental 

researches. In this study, the performance of 

SVMs for classification of a groundwater quality 

data set (2006-2013) in Andimesk Aquifer was 

compared with that of K-NN. As a whole, SVMs 

proved to have both a better performance and 

better generalization ability, especially for small 

data set. 
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 چکیده:

 یک آبخووان در اسوتان زوزسوتان اسوت      یبند کلاسه برایهمسایه  نیتر کینزد Kماشین بردار پشتیبانی و الگوریتم  یها روشکارایی  یبررس تحقیق،هدف از این 

 ،سوولفات  کول،  تیو ایقل ،میزیمن ،میکلس سختی کل، ، pH،کدورت جامدات محلول، کل آب زیرزمینی شامل هدایت الکتریکی، تیفیک پارامتر 51 ،این منظور یبرا

موورد   5935 توا  5981 هوای سال ساله بین 8یک دوره  طول درشده  یبردار نمونهچاه و چشمه  15در  کرومو  مس ،منگنز ،آهن ،فسفات ،دیفلورا ،تیترین ،تراتین

 8د  تحلیل عامل منجر به اسوتخرا   کر یبند میتقسموجود را به دو گروه کلی  یها ستگاهیاشد که  یا درزتوارهمنجر به تولید  یا زوشه لیتحل  گرفت قراراستفاده 

عامول   8تنهوا بوا    تووان  یمپارامتر کیفی را  51تغییرات موجود بین  شد  بر این اساس،اولیه  یها دادهدرصد از واریانس  31.31عامل شد که در مجموع دربرگیرنده 

  نتوای  روش  گرفتنود  قورار آبخوان تحت مطالعوه موورد اسوتفاده     یبند هکلاس برایهمسایه  نیتر کینزد Kماشین بردار پشتیبانی و الگوریتم  یها روشپوشش داد  

 و 5حساسیت و وضوو  بوه ترتیو      از وآزمون  یها دادهدرصد برای  31ماشین بردار پشتیبانی نشان داد که بهترین مدل از نوع نمایی درجه یک بوده که از کارایی 

را  قبوول   قابول مودل   دهد یممختلف با تعداد متفاوت کرنل مشاهده نشده است که نشان  یها مدلتای  بین ن یدار یمعنبرزوردار بوده است  همچنین تفاوت  1.81

ماشین بردار پشوتیبانی   یها روشاز کارایی کمتری نسبت به  همسایه نیتر کینزد Kآورد  نتای  الگوریتم  دست بهبا انتخاب پارامترهای بهینه جهت کرنل  توان یم

 یرو بور درصد بود  آنالیز حساسیت  39کاهش یافتند هرچند که میزان کارایی مدل برابر با  1.88 و 1.31برزوردار بودند که میزان حساسیت و وضو  به ترتی  به 

  روند یمآبخوان به شمار  یبند طبقه یرو بر رگذاریتأثی پارامترها نیتر مهمپارامترهای کیفیت آب زیرزمینی انجام گرفت که نشان داد کلسیم در کنار نیترات 

  کرنل توابع همسایه، نیتر کینزد Kآب زیرزمینی، ماشین بردار پشتیبانی، الگوریتم  کلمات کلیدی:

 

 


