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Abstract

One of the most important parameters used for determining the performance of tunnel boring machines
(TBMs) is their penetration rate. The parameters affecting the penetration rate can be divided in two
categories. The first category is the controllable parameters such as the TBM technical characteristics, and
type and geometry of the tunnel, and the second one is the uncontrollable parameters such as the intact rock
properties and characteristics of the rock mass discontinuities. The aim of this work was to investigate the
effects of rock mass properties on the penetration rate, and to present a new mathematical equation based on
a statistical approach to estimate the TBM performance. To achieve this aim, the Monte-Carlo (MC)
simulation method was used to model the TBM performance. Accordingly, the database consisting of the
rock mechanics information such as the uniaxial compressive strength, Brazilian tensile strength, toughness
and hardness of rock, spacing and orientation of discontinuities, and measured TBM penetration rate in 151
points out of a water tunnel was collected. Next, using the dimensional analysis, a comprehensive
mathematical equation was obtained to calculate the TBM penetration rates using the developed database.
Finally, using the MC simulation method, the probability distribution function of the TBM penetration rate
was studied. The validation results obtained showed that the root mean square error (RMSE) of the proposed
relationship was less than 0.3. The MC simulation results showed that hardness and density had the most and
least effects on the penetration rate, respectively.

Keywords: TBM, Penetration Rate, Monte-Carlo (MC) Simulation, Dimensional Analysis.

1. Introduction

One of the most important parameters used for
determining the performance of tunnel boring
machines (TBMs) is the penetration rate. Many
factors are involved in the operation of rock
excavation machines [1-5]. Among these, the
major factors are rock mass characteristics, intact
rock properties, geological properties, machine
characteristics, operator skills, and expert
knowledge. Moreover, the interaction between the
machines and rock masses is dynamic, uncertain,
complex, and non-linear. Furthermore, in most
cases, rock masses are anisotropic, non-linear, and
discontinuous. Generally, the most relevant
factors influencing the penetration rate can be
classified into three categories: rock mass
properties, machine characteristics, and geometry

of the tunnel [6]. Rock mass properties are
determined by the intact rock and discontinuity
structure of the rock mass. The most important
intact rock parameter that influences the

penetration rate is the rock strength (UCS); the
greater the rock strength, the lower the penetration
rate is. In some cases, the presence of
discontinuities weakens the rock mass, increasing
the penetration rate. The most important machine
technical characteristics that affect the TBM
penetration rate are the type and diameter of cutter
disk, thrust force of each disk, cutter spacing, and
operator skills. Geometry of the tunnel has turned
out to be a very important parameter. Many
parameters such as RPM, torque, and total power
consumption are influenced by the geometry of
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the tunnel. In general, it can be said that the
penetration rate per length decreases with increase
in diameter [7]. Figure 1 shows the main factors
influencing the penetration rate .

Taking the highly important TBM penetration rate
into consideration, a considerable amount of study
has been carried out by so many researchers to
find a relationship between the aforementioned
parameters in order to predict this rate. Tarkoy
(1973) has presented a model to predict the
penetration rate, which uses only the total
hardness as a predictor parameter [8]. A major
disadvantage of the Tarkoy's model is that it
considers neither the rock mass characteristics nor
the machine characteristics, which are very
important in the overall performance of TBMs.
Graham (1988) has introduced a model in which
the penetration rate is computed as a function of
the normal force per cutter, the RPM, and the
unconfined compressive strength of the tunneled
rock. The model considers neither the
discontinuities nor the cutter properties [9].
Bruland et al. (1988) have, however, indicated
that zero and ninety degrees are the only extreme
values, and that the discontinuity effects can be
more influential between these two angles.
Furthermore, the spacing of the planes of
weakness influences the penetration rates
considerably [10]. Innaurato et al. (1991) have
introduced an updated version of the method
presented by Cassinelli et al. (1982). The method
includes the rock structure rating (RSR) of
Wickham et al. (1974). The major change in the
updated method is the incorporation of the
unconfined compressive strength of the rock [11-
13]. Chiaia (2001) has incorporated a lattice
model into the FEM program to model the
penetration process in a heterogeneous material by
a hard-cutting indenter. It has been revealed that
the dominant modes of the indentation
mechanisms are the plastic crushing and brittle
chipping [14]. Using the discrete element method
(DEM), Gong et al. (2005) have presented a series
of 2D numerical modeling to explore the effect of
joint orientation on rock fragmentation by a TBM
cutter. The results obtained show that the joint
orientation can significantly influence the crack
initiation and propagation as well as the
fragmentation pattern, and hence affect the
penetration rate of TBM [15]. Gong and Zhao
(2006) have analyzed the influence of rock
brittleness on the rock fragmentation process
using the UDEC modeling. The results obtained
show that with increase in the rock brittleness
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index, the crushed zone and radial cracks increase.
The failure element induced by the cutter
increases almost linearly with increasing rock
brittleness index. It clearly indicates that with this
increase, the rock breakage process becomes
easier. By the statistical analysis of the rock mass
properties and TBM performance in the study, it
was found that the TBM penetration rate
increased with increasing rock brittleness index
[16]. Ma et al. (2011) have investigated the effect
of confining stress on the rock fragmentation
under TBM cutters by numerical simulation. The
results obtained show that the confining stress has
a significant impact on the key factors for rock
fragmentation including the chipping force, crack
angle, effective crack length, and energy
dissipation. Specifically, the chipping force and
crack angle increase with the rising confining
ratio [17]. Khademi hamidi et al. (2011), in their
research work, have investigated the recent
penetration rate estimation attempts [18].
Hassanpour et al. (2011) have presented a bore-
ability classification system and a new empirical
chart for the preliminary estimation of rock mass
bore-ability and TBM performance [19]. Farrokh
et al. (2012) have presented a new equation to
estimate the TBM penetration rate [20]. Medel-
Morales and Botello-Rionda (2013) have used the
discrete element method (DEM) to build models
that simulate the rock cutting process under a
cutting disk, and measure the interaction between
forces and hard rock, which is essential for the
design of TBMs [21].

Although numerous methods have been proposed
for predicting the performance of TBM, it is
evident that there is no unique and comprehensive
approach to model the performance of TBM in
real-world projects. Often, the disadvantages of
these methods are that they neglect the rock mass
characteristics, which are very important in the
overall performance of TBMs. The most
appropriate  method used for the effective
estimation of the penetration rate of TBM must
consider all the parameters that influence the
penetration rate simultaneously.

This study attempts to develop a new practical
predictive equation, especially for estimating the
TBM penetration rate, using the dimensional
analysis and MC simulation methods. In order to
validate the provided mathematical equation, the
simulation results obtained for the penetration rate
by the MC method were compared with the values
measured for the TBM penetration rate in the
studied area.
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Figure 1. Main factors influencing penetration rate.

2. Methodology

2.1. Dimensional Analysis

Dimensional analysis is an engineering method
used for creating equations that simplify the
analysis of complex multivariable systems [22—
25]. Dimensional analysis has its origin in the
work of Maxwell, who used the symbols [F], [M],
[L], [T], and [Q] to denote force, mass, length,
time, and charge, respectively. Lord Rayleigh has
used it extensively in his ‘theory of sound’,
calling it “principle of similitude’ or ‘method of
dimensions’ [24]. He was famous for writing the
following statement, testifying the power of the
method: “‘It happens not infrequently that results
in the form of laws are put forward as novelties on
the basis of elaborate experiments, which might
have been predicted a priori after a few minutes
consideration’’. Applications of the dimensional
analysis to the engineering problems have been
conducted by well-known scholars such as
Einstein and Reynolds. The method of dimensions
was developed over time to include many sub-
techniques. First, it was used to derive the
dimensionless groups. Then it was utilized for
scale-up purposes so that small-scale models can
be extrapolated to real-life models. This evolved
to the point where the dimensional analysis was
used for appropriate scaling. Through scaling, it is
possible to judge. Scaling leads to the useful
concept of the order of magnitude. It is useful
because it is possible to compare two phenomena
and decide whether they are relevant, comparable
or irrelevant. This engineering judgment is critical
in reducing the physical complexity of the
problem to be solved [26]. For example, when a
process involves a number of factors, the order of
magnitude helps in finding which factors are
dominant and which ones are irrelevant or
negligible.

One of the best techniques or variations used for
carrying out a dimensional analysis is the
Buckingham z-theorem. This theorem (also
written as the Pie-theorem) states that if n
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measurable quantities (or variables) form a
complete functional relationship ¢(«,f,7,...)=0,

then the solution has the form f (7, 7,,7,)=0,

where the m’s are then the n—m independent
products of the arguments «, 3,y , etc., which are

dimensionless in the fundamental units required to
measure the quantities. It is called complete
because the relationship consists of sufficient
fundamental dimensions to describe the
magnitude of the quantity of interest. Thus the
dimensionally homogeneous equation

¢(ct, B,7,...)=0 is reduced to a relationship

among a complete set of dimensionless products,
referred to as the m terms, and the number of
members (terms) of the set is equal to the number
n of measurable quantities/variables minus the
number of fundamental units m involved in
measuring the variables. The dimensional matrix
has the variables as the column/row headings and
the fundamental dimensions forming the
rows/columns.

The application of dimensional analysis goes
through several steps. First, all the variables
involved in the phenomenon are listed. Since the
dimensional analysis finds the minimum number
of groups based on primary dimensions, close
attention needs to be paid to make sure that only
relevant quantities are included and physical
irrelevant independent variables are discarded. A
physically irrelevant variable has a sufficiently
small influence on the dependent variable (the
target variable). We can also recognize a
physically irrelevant variable through physical
insight of the problem at hand or through
experimental investigations. At this stage, one has
to be careful about the linear dependency among
parameters, after which, the dimensional matrix is
assembled (sometimes called the constitutive
matrix). Once the matrix is assembled, a number
of techniques and conditions help one proceed,
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and these depend on the number of dimensions
involved with respect to the number of variables.
When the equations governing the process are
provided, then the dimensionless groups can be
set to 1 for scale factors, and to zero for reference
factors. This usually leads to the minimum
parametric representation. The =’s include
dimensionless groups which are made from
combining the geometric and physical quantities
and other dimensionless independent variables.
Figure 2 shows the algorithm of the dimensional
analysis method.
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Figure 2. Dimensional analysis method algorithm.

2.2. MC Simulation

The MC method is one of the most capable
approaches used for solving and analyzing the
complex problems. This method is applicable in
various fields of mining engineering. It has many
advantages in comparison to the traditional
methods, among which the following can be
pointed out: its independence with respect to time,
its ease of application, and its ability to combine
the experience and statistical observations.
Moreover, in the traditional methods, analyzing a
complex process with numerous uncertain
variables is impossible but the MC simulation
method has the ability to solve these problems and
to investigate the effects of interactions between
its parameters. The algorithm for the TBM
penetration rate simulation using the MC method
is shown in Figure 3.
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Figure 3. Algorithm of TBM penetration rate
simulation.

3. Numerical Analysis

In this section, at first, a new mathematical
equation is suggested to calculate the TBM
penetration rate using the dimensional analysis,
and then the penetration rate distribution function
is determined using the MC simulation approach.

3.1. Data Collection

In order to develop a mathematical equation for
calculating the TBM penetration rate, the data sets
from Queens Water Tunnel # 3, stage 2, located in
the New York City in USA were used. These data
sets have been published in Yagiz (2008) [27].
The tunnel being about 7.5 km long and 7 m in
diameter was excavated beneath Brooklyn and
Queens at an average depth of 200 m below the
sea level in the west-central Queens County using
a high power TBM [27].

In the studied area, the geological formations are
highly complex, and are composed of different
metamorphosed igneous rock with shear zones,
joint, faults, and other local weakness zones. Five
main geological formations have been identified
in the studied area as follows: the Manhattan
schist is composed of gray, medium to coarse-
grained layered schist and gneiss. The Inwood
formation includes different types of marble units
of white coarse-grained calcite—dolomite marble.
Hartland formation mainly consists of gray and
gray-weathered  thinly-laminated  muscovite—
biotite—quartz schist with minor garnet. The
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Fordham gneiss is a highly complex unit that
includes black hornblende—biotite gneiss and
white quartz plagioclase moderately banded
gneiss [28].

In order to carry out intact rock property tests
including the BTS, UCS, and punch penetration
tests, rock cores were taken from the tunnel side at
151 different locations throughout the fractured
hard rock tunnel. Intact rock strength tests (UCS
and BTS) were employed in accordance with the
procedures suggested by ASTM [29-31]. The
punch penetration test, used for investigating rock
brittleness and toughness, was performed
according to the recommended industrial testing
standard previously discussed by different
researchers [32-34]. The punch penetration test
apparatus consisted of a stiff machine with
hydraulic ram that pressed a tungsten carbide
indenter into a saw cut surface of the sample.
While performing the test, the displacement of the
indenter into the sample and the load on the
indenter were monitored, and consequently, the
load versus penetration graph was made. On this
graph, the ratio of the maximum load (in kN)
applied to the specimen to the corresponding
displacement (in mm), named as peak slope index
(PSI), was used to quantify the rock brittleness
and toughness.

The type and density of discontinuities have a
crucial importance on both the behavior of a rock
mass and machine advancement. In order to be
able to quantify the influence of discontinuity
properties on TBM performance, the alpha angle,
which is the angle between the tunnel axis and the
planes of weakness, was used. To calculate the
alpha angle, the orientation of discontinuities and
the driven direction of TBM were measured in the
field. The alpha (o) in degrees can be calculated
using the following equation [27]:

a=arcsin(sin(e; ).sin(e, -a)) (D)
where «; and «, are the dip and strike of the
encountered planes of weakness in rock mass, and

a, is the direction of the tunnel axis in degrees.

Furthermore, NTNU developed a fracture class
(FC) system for investigating the complex rock
mass structures to be excavated by a TBM. In the
Queens tunnel, the regional jointing pattern was
not separated from the shear zones and faults, and
thus combined effect of faults, shear zone,
fissures, and joints on TBM penetration rate were
evaluated. The FC system was slightly modified
and used in the established database. In order to
calculate the joints, spacing effect was used for
the average distance between planes of weakness-
DPW (m) [27]. The datasets used are shown in
Table 1.

Table 1. Engineering rock properties, rock types, and measured ROP in the field [23].

Type of rack ROP a DPW PSI BTS uUCs
(m/h) (9 (m)  (KN/mm) (MPa) (MPa)
Granitoid (felsic) gneiss and orthogneiss 219 25 0.80 55 9.3 199.7
Mafic-to-mesocratic orthogneiss 1.88 20 2.00 55 9.1 199.0
Mafic-to-mesocratic gneiss, amphibolite, and schist 220 40 2.00 56 9.0 189.0
Massive garnet amphibolite and larger mafic dikes 287 29 0.20 46 10.6 188.3
Rhyodacite dike rocks 2.47 15 0.10 36 7.7 140.7

3.2. Development of mathematical equation

In order to provide a mathematical relationship to
calculate the penetration rate of TBM using the
dimensional analysis, the input and output
parameters were collected and presented in Table
2.

In the dimensional analysis, it is necessary to
select a unit system, i.e. mass or force. In this
paper, the mass system was chosen. In the next
stage, all of the dimensional parameters had to be
converted to the reference parameters.
Accordingly, the dimensions of each input and
output variable could be defined as follow:

[ROP]=LT *, [a]=l, [DPW]=L, [y]J=ML>3,
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[BTS]=ML™T 2, [UCS] =ML , and [PSI] =
MT 2, where M, T, and L represent the mass,
time, and length, respectively. Since the alpha
angle is without unit, this factor is a dimensionless
parameter, and so in the calculation process was
assigned the amount of 1. With the available
variables, a lot of dimensionless combinations of
complete sets could be constructed. However, as a
first step, to make the dimensional matrix, the
variables had to be arranged correctly. The
dimensional matrix for ROP may be considered as
follows (Table 3).
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Table 2. Input and output parameters.

Parameters Symbol for parameters Unit
Uniaxial compressive strength ucCs MPa
Brazilian tension strength BTS MPa
Input parameters Rock density Y Kg/m’
Brittleness and hardness of intact rock PSI KN/mm
Distance between plates of weak DPW m
Alpha angle a -
Output parameters TBM penetration rate ROP m/h
Table 3. Dimensional matrix.
ROP DPW PSI a« BTS UCS v
M 0 0 1 0 1 1 1
L 1 1 0 0 -1 -1 -3
T -1 0 -2 0 -2 -2 0

To determine the rank of the matrix, the
determinant parameters UCS, PSI, and y were
calculated.

1 1 1
0 -1 -3|=-2%0
2 2 0

The determinant was not equal to zero. Therefore,
it could be concluded that the variables were
selected correctly, and that the rows of the matrix
were not linearly dependent.

The dimensional matrix included seven variables,
and the rank of this matrix was 2. According to
the m theorem, in a complete set, there should
exist four dimensionless terms (7 - 3 = 4). © and
homogeneous algebraic equations can be written
by the dimensional matrix as follow:

m=a 2

7, ZHREP =(MT ) x (ML ) o

(ML) x(LT )

75 = mopw =(MT 2)*x(MLT 2)

(ML) x(L) ®
=, =(MT 2)7 x(MLT 2)°

ma =7 =(MT )7 x| )" )

(ML) (ML 2)

The summation of the powers in Egs. (3-5) had to
be equal to zero. The summations of the powers of
each parameter in Eq. (3) were as follow:

For T: —2K, -2K,-1=0
For M: Ki+K,+K;=0
For L: -K, -3K;+1=0
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By solving the above equations, the powers were:

1 1

K,=0, K,=—=, K;==
1 2 2 3 2
The summations of power for each parameter in

Eq. (4) were as follow:

For T —2K, -2K; =0
For M: K, +K;+Kg=0
For L: -Kg5 —-3Kg +1=0

By solving the above equations, the powers are:
K,=-1 K;=1 K;=0

The summations of power for each parameter in
Eq. (5) were as follow:

For T: —2K, -2Kg-2=0
For M: K; +Kg+Kg+1=0
For L: -Kg—-3Ky-1=0

By solving the above equations, the powers are:
K,=0, Kg=-1 Ky=0

By applying the power coefficients obtained, the
relations 3 to 5 could be rewritten as the following
forms:

7, =ROP xUCS 2 x 32 (6)
7, =PSI 7 xUCS x DPW (7
7, =BTS xUCS ! (8)

In the next stage, it was considered whether the
relationship was linear or non-linear. With the
help of multivariable regression analysis from the
collected data, the unknown coefficients could be
determined. With a comparison made between the
correlation coefficients (R?) of the linear and non-
linear equations obtained by SPSS version 20, it
was concluded that the non-linear equation was
more suitable:
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In(ROP\/%]:A In(ar)+

B In[ucs x DPW j+c In(BTS ]+D
PSI uUcs

(9)

Eq. 10 was obtained by the simplification of Eq.
9:

UCS

ROP = xa™ x
e ] (10)
UCS x DPW BTS D
X xe
PSI UCS

These formulas showed that UCS and PSI from
the intact rock characteristics, and DPW and y
from the rock mass characteristics, as the
sensitivity analysis, played a very important role
in predicting ROP. The unknown coefficients
were calculated by SPSS 20. Finally, the
relationship between the input parameters and
TBM penetration rate could be given as Eq. 11:

Mesured ROP (m/h)
35

ROP =0.006« +0.032PSI —0.002D —
0.003JCS —0.007BTS —0.202DPW +1.429

(11)
Root mean square error (RMSE) of Eg. 11 was
0.29. Also the correlation coefficient obtained for
this equation was 0.81, which was comparable
with the correlation coefficient obtained by Yagiz
(r=0.82) [27].

According to the amount of correlation coefficient
of this equation, it can be concluded that the
presented relationship can estimate the penetration
rate of TBM correctly.

In order to validate the suggested equation, 20
percent of datasets were selected randomly. A
graphic comparison of the measured and predicted
ROP is shown in Figure 4. As seen in this figure,
a very high conformity exists between the
measured and predicted ROP. Also a correlation
between the measured and predicted ROP is
shown in Figure 5. In this figure, it can be seen
that the correlation coefficient is high.

Predicted ROP (m/h)

15

Rate of Penectration (m/h)

0.5

123 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Dataset number

Figure 4. Comparison between measured and predicted ROP.
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0 1

2
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3 4

Figure 5. Correlation between measured and predicted ROP.
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3.3. Simulating TBM penetration rate

For determining the probability distribution
function of the TBM penetration rate, it was
necessary to initially calculate the distribution
functions of all the input parameters. For this
purpose, @risk version 6 was used. Table 4 shows
the most appropriate distribution functions of the
input parameters.

The probability distribution function of the TBM
penetration rate could be calculated by locating
the distribution functions obtained (Table 4 and
Eg. 11) and using the MC simulation (Figure 6).
According to Figure 6, the average penetration
rate of TBM in the mentioned tunnel was
approximately 2.1 m/h.

Table 4. Probability distribution functions of input
parameters.

Parameter Distribution function
ucCs Weibull (1.4492,35.47)

BTS Weibull (8.5514,6.522)
Density Loglogistic (2,0.78575,7.2348)
PSI Invgauss (11.343,18.569)
DPW Uniform (0.037171,2.0128)

BetaGeneral
¢ (1.1591,1.211,1.7662,89.412)
1.619 2.714
5.0% 90.0% 5.0% |

Q 0 Q ) o ) Q 0
- ~N ~ ™ ¢ - -

3

Figure 6. Probability distribution function of TBM
penetration rate.

4. Discussion

In comparison with the statistical methods, the
mentioned distribution function gave a better view
for the penetration rate changes, and instead of a
number, it could give a range of changes in ROP.
For example, with a confidence level of 90%, the
TBM penetration rate in the mentioned tunnel was
between 1.59 and 2.71 m/h. The value for ROP in
several confidence levels are shown in Table 5.
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The average measured ROP was about 2.04 m/h,
which was less than the confidence level of 50%.
This meant that ROP in 57 percent of the cases
was less than half. On the other hand, ROP in only
7 percent of the cases was more than the
confidence level of 90%.

Table 5. ROP value in several confidence levels.

Row Percentile ROP (m/h)
1 5% 1.59
2 10% 1.68
3 50% 2.1
4 90% 2.51

Sensitivity analysis was performed on the input
parameters (Figure 7), and it was found that
hardness and density had the most and least
effects on the TBM penetration rate, respectively.

DSt 082

Alpha angle

03
DPW
ucs
BTS

Density

0.8

s o
< <
Coefficient Value

Figure 7. Sensitivity analysis of input parameters.

5. Conclusions

In this study, an attempt was made to
investigate the effects of rock mechanic
parameters on the TBM penetration rate using
the two diverse approaches dimensional
analysis and Monte-Carlo (MC) simulation.
The following results were obtained:

- Dimensional analysis can be used as a
reliable and efficient tool for solving the rock
mechanics problems.

- Based on the rock mechanics
parameters, a new mathematical equation was
presented for calculating the TBM penetration
rate. The RMSE error of the equation
obtained was less than 0.3.
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- MC simulation can be used as an
efficient technique for the prediction of the
TBM penetration rate.

- The sensitivity analysis shows that
hardness and density of rocks have the most
and least effects on the TBM penetration rate,
respectively.

References

[1]. Deketh, H.J.R. (1995). Wear of rock cutting tools.
Laboratory experiments on the abrasivity of rock.
Rotterdam: Balkema.

[2]. Den Hartog, M.H., Babuska, R., Deketh, H.J.R.,
Alvarez Grima, M., Verhoef, P.N.W. and Verbruggen,
H.B. (1997). Knowledge-based fuzzy model for
performance prediction of a rock cutting trencher.
International Journal of Approximate Reasoning. 16
(1): 43-66.

[3]. Verhoef, P.N.W. (1997). Wear of Rock Cutting
Tools: Implications for the site investigation of rock
dredging projects. Rotterdam: Balkema.

[4]. Deketh, H.J.R., Alvarez Grima, M. Hergarden, I.
Giezen, M. and Verhoef. P.N.W. (1998). Towards the
prediction of rock excavation machine performance.
Bulletin of Engineering Geology and the Environment.
57: 3-15.

[5]. Alvarez Grima, M. and Verhoef. P.N.W. (1999).
Forecasting rock trencher performance using fuzzy
logic. International Journal of Rock Mechanics and
Mining Sciences. 36 (4): 413-432.

[6]. Bruines, P. (1998). Neuro-fuzzy modeling of TBM
performance with emphasis on the penetration rate.
Memoirs of the Centre of Engineering Geology in the
Netherlands, Delft.

[7]. Alvarez Grima, M. (2000). Modeling Tunnel
Boring Machine Performance by Neuro-Fuzzy
Methods. Tunnelling and Underground Space
Technology. 15 (3): 259-269.

[8]. Tarkoy, P.J. (1973). Predicting TBM penetration
rates in selected rock types, In Proceedings, Ninth
Canadian Rock Mechanics Symposium, Montreal.

[9]. Graham, P.C. (1976). Rock exploration for
machine manufacturers, In Proceedings, Symposium
on exploration for rock engineering, Johannesburg. pp.
173-180.

[10]. Bruland, A., Johannessen, B.E., Lislerud, A.,
Movinkel, T., Myrvold, K. and Johannessen, O. (1988).
Hard rock tunnel boring. Project report. Trondheim:
Norwegian Institute of Technology. pp. 1-88.

[11]. Innaurato, N., Mancini, R., Rondena, E. and
Zaninetti, A. (1991). Forecasting and effective TBM
performances in rapid excavation of a tunnel in Italy. In
7th Internationaler Kongress uber Felsmechanik;

183

Berichte, Aachen, Deutschland, Bd. 2 (W. Wittke, ed.),
9135-990. Rotterdam: Balkema.

[12]. Cassinelli, F., Cina, S., Innaurato, N., Mancin, R.
and Sampaolo, A. (1982). Power consumption and
metal wear in tunnel-boring machines; analysis of
tunnel boring operation in hard rock, Tunnelling’82,
Jones, M.J. Ed. (London; IMM). pp. 73-81.

[13]. Wickham, G.E., Tiedemann, H.R., Skinner, E.H.
(1974). Ground support prediction model - RSR
concept. Proc. 2nd North American Rapid Excavation
& Tunnelling Conference (RETC), San Francisco 1.
American Institute of Mining, Metallurgical and
Petroleum Engineers (AIME), New York. pp. 691-707.

[14]. Chiaia, B. (2001). Fracture mechanisms induced
in a brittle material by a hard cutting indenter.
International Journal of Solids and Structure. 38: 7747-
7768.

[15]. Gong, Q.M., Zhao, J. and Jiao, Y.Y. (2005).
Numerical modeling of the effects of joint orientation
on rock fragmentation by TBM cutters. Underground
Technology and Rock Engineering Program, Protective
Technology Research Centre and School of Civil and
Environmental.

[16]. Gong, Q.M. and Zhao, J. (2006). Numerical
modelling of the effects of joint spacing on rock
fragmentation by TBM cutters. Underground
Technology and Rock Engineering Program, Protective
Technology Research Centre and School of Civil and
Environmental.

[17]. Ma, H., Yin, L. and Ji, H. (2011). Numerical
study of the effect of confining stress on rock
fragmentation by TBM cutters, International Journal of
Rock Mechanics and Mining Sciences 48: 1021-1033.

[18]. Khademi Hamidi, J., Shahriar, K., Rezai, B. and
Rostami, J. (2011). Response by the authors to S.
Yagiz discussion to the paper: J. Khademi Hamidi et al.
(2010). Performance prediction of hard rock TBM
using Rock Mass Rating (RMR) system, Tunnelling
and Underground Space Technology. 25: 333-345.
Tunnelling and Underground Space Technology 26
(6): 795-797.

[19]. Hassanpour, J., Rostami, J. and Zhao, J. (2011). A
new hard rock TBM performance prediction model for
project planning, Tunnell. Undergr. Space Technol. 26
(5): 595-603.

[20]. Farrokh, E., Rostami, J. and Laughton, C. (2012).
Study of various models for estimation of penetration
rate of hard rock TBMs, Tunnell. Undergr. Space
Technol. 30: 110-123.

[21]. Medel-Morales, R.C. and Botello-Rionda, S.
(2013). Design and Optimization of Tunnel Boring
Machines by Simulating the Cutting Rock Process
using the Discrete Element Method. Computacion y
Sistemas. 17 (3): 329-339.


http://www.springer.com/earth+sciences+and+geography/environmental+science+%26+engineering/journal/10064

Dehghani & Mikhak Beiranvand/ Journal of Mining & Environment, Vol.7, No.2, 2016

[22]. Langhaar H. (1951). Dimensional analysis and
theory of models. 1st ed. New York: Wiley.

[23]. Rayleigh, J.W.S. (1878). The theory of sound.
London: Macmillan.

[24]. Bellamine, F.H. and Elkamel, A. (2006).
Numerical characterization of distributed dynamic
systems using tools of intelligent computing and
generalized dimensional analysis. Appl Math Comp.
182: 021-1039.

[25]. Dehghani, H. and Ataee-pour, M. (2012).
Development of a model to predict peak particle
velocity in a blasting operation. International journal of
rock mechanics and mining science. 48: 51-58.

[26]. Bridgman, P. (1922). Dimensional analysis. New
Haven: Yale University Press.

[27]. Yagiz, S. (2008). Utilizing rock mass properties
for predicting TBM performance in hard rock
condition. Tunnelling and Underground Space
Technology. 23 (3): 326-339.

[28]. Merguerian, C. (2000). Rock mass properties of
the Queens Tunnel Complex: Duke Geological
Laboratory Report QT0010. 257 P. (unpublished).

[29]. ASTM, Standard Practice for Preparing Rock
Core Specimens and Determining Dimension and

184

Shape Tolerances. American Society for Testing and
Materials, D4543. 1995.

[30]. ASTM, Standard Test Method for Unconfined
Compressive Strength of Intact Rock Core Specimens.
American Society for Testing and Materials, D2938.
1995.

[31]. ASTM, Standard Test Method for Splitting
Tensile Strength of Intact Rock Core Specimens.
American Society for Testing and Materials, D3967.
1995.

[32]. Dollinger, G.L., Handewith, J.H. and Breeds,
C.D. (1998). Use of punch tests for estimating TBM
performance. Tunneling and Underground Space
Technology. 13 (14): 403-408.

[33]. Szwedzicki, T. (1998). Draft ISRM suggested
method for determining the indentation hardness index
of rock materials. International Journal of Rock
Mechanics and Mining Science. 35 (6):831-835.

[34]. Yagiz, S. (2002). Development of rock fracture
and brittleness indices to quantify the effects of rock
mass features and toughness in the CSM Model basic
penetration for hard rock tunneling machines. Ph.D.
Thesis, Department of Mining and Earth Systems
Engineering, Colorado School of Mines, Golden,
Colorado, USA. 289 P.



179D Jlo o9 0)lass pidd 0,90 cCns jlamo g yheo (g — cole il /gl Svo g ldoo

)5 ign (8l g 3l ooliiol by Jigh yio (slacrmitlo S9i & 53 cras

Qg s SBran (4 g 9 @Lu.: plus

Olpl sl gizieo olLils (yaro (pwdigo 0Ll
YNON Y G pdy FVOIVY Loyl

dehghani@hut.ac.ir :olslse Jyias odius g #

RN

e 58 5 s AT sl il el S5 5 s (TBMS) Jigs i (slocsmtle o Slas ot s slo sy e o5
S 395 S Sl Sl 5o S Sl ol J 255 M 5 i iy £33 TBM 8 Sllaiie ki 555 45 s 53
9581 sl bl gy 4 oz Slesly; alal, S @l g S9ii g el S 009 Sleogas BT ) o Beod ol el 5 Ban oS aternds
—ools olLSL ol ulusl ol s solazwl TBM o Slae g5l Jon sly of 8000 (g3lwannd (s, 5l cdan cpl ay obiews jglainds .ol TBM o Sloc
5 LSt gl 60 5 6y0akols «Kins s 5 S e iy (S aoglio 0 ygoeocSS (6L aoglio ol Siw SilSo bl j1 St (o]
aalono (gl by Lol alal, oSy cgolad 5T g, 5l ool b e i iS5 U1 il i S ) 4l 10) 50 TBM o (5 Sl S5 ¢
390 3985 7 5 asld SYlaisl mls of LS Ciige (gilwand (g, 5l oslatuwl b Coles s .ol ools dnwgs oadioly slaools ulwl » TBM 34a5 & 5 ol 5e
ol i ¢l LS g (g5t gulis el + /¥ 5l jiaS golginy alal, (RMSE) gllas Sley o j9dome a5 olo olis oo liel gls .28 5 18 ) p

5,0 TBM 3485 & 35 559, p 1) 53l e85 o yiin ol 5 0 S S5 5 (t5ew o

wgolal 5IUT ool 5 ige (g3luand 35k &5 o Jigh yao (ible 1 guadS OlalS




